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Abstract We study numerically the role of hydrodynamics in the liquid-hexatic transition of active colloids
at intermediate activity, where motility induced phase separation (MIPS) does not occur. We show that in
the case of active Brownian particles (ABP), the critical density of the transition decreases upon increasing
the particle’s mass, enhancing ordering, while self-propulsion has the opposite effect in the activity regime
considered. Active hydrodynamic particles (AHP), instead, undergo the liquid-hexatic transition at higher
values of packing fraction φ than the corresponding ABP, suggesting that hydrodynamics have the net
effect of disordering the system. At increasing densities, close to the hexatic-liquid transition, we found
in the case of AHP the appearance of self-sustained organized motion with clusters of particles moving
coherently.

1 Introduction

Self-propelled particles (SPP) are the fundamental
units of a broad class of theoretical models for active
matter. In the context of SPP models, injected energy
from the environment fuels a persistent motion of the
single constituents, driving the system out of thermal
equilibrium. Simplified models of SPP [1–4] are of cru-
cial importance, because they offer a minimal setup to
explore some of the large variety of collective behaviours
observed in nature for systems of motile living bodies at
different length scales, from flocking of birds and fish [5],
to swarming in bacterial colonies [6] and dynamics in
cells’ cytoskeleton [7].

Active Brownian Particles (ABP) models are very
popular among SPP models [1,8,9]. Active colloids are
usually spherical particles undergoing directed motion
due to an active force, while both translational and
rotational degrees of freedom are in contact with a
stochastic thermal bath. Although the model is very
simple, ABP show paradigmatic collective phenomena
like motility-induced phase separation (MIPS) [1,10–
13] and are therefore very interesting in order to charac-
terize the fundamental principles governing active mat-
ter systems. Moreover, ABP are of primary use for com-
parisons with experimental systems of synthetic micro-
swimmers [13,14], opening the perspectives for a sys-
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tematic control of active systems and collective motion,
with the purpose to exploit some of their unique fea-
tures for technological uses, for instance in robotics [15–
17], realisation of biological machines [18], or under-
standing of flocking intelligence [19,20].

Of particular interest is the characterization of ABP
in the dense regime, see e.g. spontaneous flow [21] or
glassy behaviour [22,23] in biological tissues, biofilms,
cell mono-layers [24,25], and can be considered a target
for the development of new materials [26]. In two dimen-
sions (2D), ABP present ordering phase transitions
when the density of the system is increased [8,9,27,28],
which are connected to those encountered for pas-
sive hard colloids [29–31]. At intermediate values of
the self-propelling force, a liquid-hexatic critical tran-
sition is followed by a hexatic-solid transition, where
the solid phase has quasi-long-range (QLR) positional
and long-range (LR) orientational order, the hexatic
phase has short-range (SR) positional and QLR orienta-
tional order, while the liquid phase is homogeneous and
has SR positional and orientational order. This scenario
is very similar to the theoretical Kosterlitz, Thouless,
Halperin, Nelson, and Young (KTHNY) two-step sce-
nario [32–34]. If activity is high enough, instead, MIPS
takes place, as a phase separation between a dense
phase and a gaseous one [8].

The aforementioned features of the ABP phase dia-
gram have been well established in the context of over-
damped motion and without an explicit underlying
thermo-hydrodynamic bath. At the same time, there
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are other interesting questions that remain to be con-
sidered. The first question concerns the role of par-
ticles mass, and in particular the interplay between
inertial and active diffusion timescales, which can be
varied independently [35,36]. It has been pointed out
in [37] that in three-dimensional active systems, iner-
tia should attenuate the destabilizing effect of activity
on the ordered phase. The presence of large inertia has
also been shown to strongly affect the kinetic energy of
the particles into the highly dense phase of MIPS [38],
and to highly inhibit phase segregation [39]. However,
the role of inertia in the context of dense ABP, and
in particular how the particle’s mass affects the hexatic
phase, has not yet been characterized. The second ques-
tion concerns the role of hydrodynamic interactions in
the dense phase. Regarding the influence of hydrody-
namics in MIPS, it is found that in 2D MIPS is sup-
pressed [40–42], as hydrodynamics favour reorientation
of particles’ self propulsion direction, while in quasi-2D
systems MIPS has been observed for low-density flu-
ids [43] and not when the fluid was made incompress-
ible [42,44]. For elongated colloids, steric alignment and
hydrodynamics show highly non-trivial interplay, such
that MIPS is enhanced for pullers and suppressed for
pushers [40].

As a first step in the direction of answering these two
questions, we characterize how the critical density for
the liquid-hexatic transition of active particles is mod-
ified, in an intermediate activity regime where MIPS
does not occur for ABP, by i) the inertial effects due
to mass changes, and ii) the presence of non-isotropic
interactions between colloids introduced by hydrody-
namics. Hydrodynamics has been implemented by using
the multi-particle collision method [45,46], which seam-
lessly integrate with the dynamics of active Brownian
particles [47]. In particular, we implement thermal slip
boundary conditions, decoupling colloids rotational dif-
fusion from the solvent and test the consistency of this
implementation with known benchmark tests. We focus
here only on 2D systems where the rotational diffusion
follows the same equations as for ABP. This allows us
to have an active hydrodynamic particle (AHP) model
with the same friction, temperature and rotational dif-
fusion as the ABP model, providing a way to quantita-
tively compare them.

We find that changing the colloids mass and introduc-
ing hydrodynamic interactions affect the critical density
at which the liquid-hexatic transition occurs. In par-
ticular, mass changes lower this density with respect
to over-damped ABP, while hydrodynamics increases
the critical density. We also find that the system with
hydrodynamics undergoes a transition from a disorga-
nized to a self-sustained flow regime upon increasing the
density, with particles moving on the same direction at
high densities.

The work is organized in the following way. In Sect.
2 we discuss the numerical methods and parameter
choice for the ABP model and for the AHP model, with
Sect. 2.3 providing several tests for implementation of
the latter model. In Sect. 3.1 we discuss how the liquid-
hexatic scenario changes by varying the active colloids

mass, while in Sect. 3.2 we discuss the effects due to
hydrodynamics interactions. Finally we draw some con-
clusions discussing the main findings.

2 Numerical methods

In this Section we describe the numerical models.
We will start with the ABP model, which follows a
Langevin equation and does not include hydrodynamic
interactions. We will then describe the AHP model,
where hydrodynamic is accounted explicitly, and pro-
vide some numerical tests of the implementation.

2.1 Active Brownian particles (ABP)

We consider a two-dimensional system with Nc disks
of mass mc and diameter σc in a square box size of
side L. Each disk i has also an associated axis ni =
(cos θi(t), sin θi(t)), where θi is the angle between the
axis and the x-axis and which evolves over time. ni rep-
resents the direction in which the self-propulsion occurs.

The particles interact with each other via a short-
ranged repulsive potential:

U(r) = 4ε
[(σ

r

)64

−
(σ

r

)32

+
1
4

]
Θ(σc − r) (1)

where r is the inter-particle distance between the center
of masses of each colloid, Θ(r) is the Heaviside function
(Θ(r) = 0 for r < 0 and Θ(r) = 1 for r ≥ 0), and
σ = 2−1/32σc.

The evolution of the centre of mass of disks is
described by a Langevin equation, with activity mod-
elled as a force Fact of constant magnitude acting along
the particle axis ni, while the propulsion axis changes
its direction in time through a diffusion equation:

mcr̈i = −γṙi + Factni − ∇i

∑
j �=i

U(rij) + ξi, (2)

θ̇i = ηi , (3)

where i = 1, .., Nc, rij = |ri − rj | and γ is the damp-
ing coefficient. The terms ξi and ηi are Gaussian white
noises that mimic the interaction with a thermal bath,
with average zero and variance fixed by the fluctuation-
dissipation theorem:

〈ξiα(t)〉 = 0, 〈ηi(t)〉 = 0, (4)
〈ξiα(t1)ξjβ(t2)〉 = 2kBTγδijδαβδ(t1 − t2), (5)

〈ηi(t1)ηj(t2)〉 = 2Dθδijδ(t1 − t2), (6)

where α, β = 1, 2 are the indices of the spatial coordi-
nates, T the temperature of the system, kB the Boltz-
mann constant and Dθ the rotational diffusion coeffi-
cient. We express all the quantities in units of mass,
length and energy (m̃, σ̃ and ε, respectively), with the
time unit expressed as τ = (m̃σ̃2/ε)1/2. Note that we
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fix σc = 1σ̃, while mc is varied with respect to the mass
unit m̃. From now on we will drop the units for sim-
plicity.

The density of the system is expressed in terms of the
packing fraction φ = πσ2

cNc/(4L2), ratio between the
surface occupied by the colloids and the total system
surface L2. An important adimensional number, which
measures the ratio between the active work required to
move a particle by σc and the typical thermal energy
kBT , is the Péclet number Pe = Factσc/(kBT ). Another
useful adimensional number is the active Reynolds
number, which measures the ratio between inertial and
viscous forces acting on the colloids, React = mcFa

σcγ2 [48].
The typical time scales for a single ABP are the iner-

tial time tI = mc/γ and the persistence time tp = 1/Dθ,
with the latter signaling the crossover to the final diffu-
sive regime and that depends only on the rate of rota-
tional diffusion and not on the activity parameter. We
can define a useful adimensional number as the ratio
between tI and tp, to which we refer to hereafter as the
persistence number pn = tI/tp.

We fix in our numerical simulations γ = 10, as pre-
viously done for ABP [8] where the choice mc = 1 was
adopted, which corresponds to limit inertial effects at
small times tI = 0.1. In the following we keep fixed γ
and vary the disk mass mc to consider different inertial
contributions, kBT = 0.05 and Dθ = 3kBT/(σ2

cγ) =
0.015. We fix Nc = 16384 and vary L in order to obtain
the correct packing fraction φ. We use LAMMPS [49]
to integrate numerically the equations of motion, using
a timestep Δtc = 0.001 and periodic boundary condi-
tions. We fix the Péclet number to Pe = 5, 10 and 20,
and vary the packing fraction φ between 0.60 and 0.88.
Within the range of chosen parameters, React is always
smaller than one. For each set of parameters a single
realization was considered which was run between 104
and 105 simulation time units after steady state was
reached. In this time frame averaged quantities were
computed.

2.2 Active hydrodynamics particles (AHP)

The ABP model described beforehand does not account
explicitly for the solvent. In order to add this effect, we
choose as model a mesoscopic method known as multi-
particle collision (MPC) dynamics, first introduced in
[45]. After briefly describing the MPC model, we will
introduce two possible ways to couple solvent and disks,
their dynamics and the specific parameters used for sim-
ulations. Tests of this implementation are presented in
Sect. 2.3.

2.2.1 Solvent dynamics

The solvent consists of Ns identical point-like particles
of mass ms embedded in a two-dimensional square box
of size L. Each particle i is characterized by position
ri and velocity vi, both of which are continuous vari-
ables. In this algorithm, the time is discretized in units
Δts, and the evolution of the system is composed by

two steps, propagation and collision, which are applied
consecutively for each Δts.

In the propagation step, particles are freely streamed
according to their velocities as

ri(t + Δts) = ri(t) + vi(t)Δts. (7)

In order to perform the collision step, the system is
partitioned into cells of a square lattice with mesh size
σs. Each cell is the scattering area where a MPC occurs,
which updates particles velocities according to the rule
[45,50]

vi(t + Δts) = u(t) + Ω[vi(t) − u(t)], (8)

where u = (
∑m

i=1 vi)/m is the mean velocity of the m
colliding particles in the cell, also assumed to be the
macroscopic velocity of the fluid. Ω is a rotation matrix
with angle ±α (0 < α < π). The angle α is fixed at the
beginning of the simulation while its sign is assigned
with equal probability to every cell at each time step.
In each cell all the m relative velocities are rotated with
the same angle. Linear momentum and kinetic energy
are conserved under this dynamics.

The transport coefficients of this model can be ana-
lytically derived. In particular, for our purposes the
kinematic viscosity νs and the self-diffusion coefficient
Ds will be useful. In 2D the viscosity is equal to [51,52]:

νs =
σ2

s

2Δts

[(
λ

σs

)2 (
ns

(ns − 1 + exp (−ns)) sin2(α)
− 1

)

+
(ns − 1 + exp (−ns))(1 − cos(α))

6ns

]
, (9)

while the coefficient Ds is [53]:

Ds =
λ2

2Δts

(
2ns

(ns − 1 + exp (−ns))(1 − cos(α))

)
,

(10)
where ns = Nsσ

2
s/L2 is the average number of particles

per cell and λ = Δts
√

kBT/ms is the mean-free path.

2.2.2 Solvent-colloids coupling

The next step would be to integrate the solvent particles
with the colloids, which means that we need to decide
how to couple colloids and solvent dynamics. Different
strategies are possible and a review for MPC with pas-
sive colloids can be found in [46]; here we adopted the
one implemented in the LAMMPS software [47].

In this implementation colloids are evolved for n
timesteps Δtc, following the equation of motion (2)
without the force terms ξi and γṙi, which accounted
implicitly for the thermal bath in the ABP model, and
are substituted here by the MPC bath. Afterwards sol-
vent particles are propagated for a timestep equal to
Δts = nΔtc. Note that both Δtc and Δts are expressed
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in the same time unit as in the ABP model. Before com-
puting the collision (8), the algorithm checks if solvent
particles are overlapping with disks having diameter σc

and mass mc, that is if the position of point-like sol-
vent particles is inside the disks area. In this case, an
exchange of momentum occurs, followed by a change in
the position of solvent particles to place them out of
the colloids, and, finally, the collision step for solvent
particles is applied.

The exchange of momentum is decided by the proper
colloid–solvent boundary condition (BC) adopted, which
can be either no-slip or slip. No-slip BC means that
both linear and angular momentum are exchanged
between colloid and solvent particles [54], while for slip
BC only linear momentum is transferred as in the case
with radial interactions [50]. Several implementations
of the BC are available, such as the so called thermal
BC [55] and the bounce-back collision rule [56]. The
latter, used in the case of no-slip BC, requires the use
of phantom particles inside the colloid while the for-
mer does not. Here we choose the thermal BC method,
described below for the slip and no-slip cases, as it is
in general useful under forced flow conditions, like the
case of active particles, and is particularly suited when
the solvent mean free path is much smaller than the
disk radius [57,58].

In the no-slip thermal BC, when a solvent particle
of velocity v overlaps with a disk, it is moved back
to the disk surface along the shortest vector rd and
then streamed for a distance v′Δtsε, where v′ is the
updated velocity and ε is a uniformly distributed ran-
dom number in the interval [0, 1] [59]. The new veloc-
ity v′ is divided in the normal vN and tangential vT

velocity components with respect to the particle-colloid
distance, and chosen according to the stochastic distri-
butions

pN (vN ) = (msvN/kBT ) exp (−msv
2
N/2kBT ), vN > 0

(11)

pT (vT ) =
√

ms/2πkBT exp (−msv
2
T /2kBT ), (12)

centred around the local velocity vd of the colloid sur-
face, where vd = V + ω × (rd − R), with R being
the position of the colloid centre, V and ω the lin-
ear and angular velocities of the colloid. Regarding the
change in momentum for the colloid after the collision,
all the linear and angular momenta variations of the
overlapping solvent particles are summed up as ΔP =∑

s ms(v − v′) and ΔL =
∑

s ms(rd − R) × (v − v′),
and the linear and angular velocities of the colloid are
updated as: V′ = V+ΔP/mc and ω′ = ω+ΔL/I where
I = mcσ

2
c/8 is the moment of inertia of a disk. In case

of high packing fraction of colloids, it may happen that
a single solvent particle can scatter with several disks in
the same timestep Δts. Ignoring such multiple collisions
would cause an attractive depletion-like force between
disks [59]. This effect can be kept under control allow-
ing a maximum number NM of multiple collisions. It
was found empirically that NM � 10 is the best choice
to optimize computational speed and accuracy.

Fig. 1 VACF for different values of the number of solvent
particles per cell ns. Panels (a–c) show the VACF for three
different values of ns, namely ns = 20 (blue curves) ns = 10
(purple curves), and ns = 5 (orange curves). For short times
(a), the autocorrelation function shows a clear exponential
decay, which overlaps well with the theoretical predictions
of the the Enskog time, tE , shown as a dashed line for each
case. At late times (b) simulations show a long time tail t−1

(grey dashed lines in panels (b) and (c), and dotted purple
line in panel (a)). All the data collapse to the same curve if
time is rescaled by tν (c)

In the case of slip thermal BC, the tangential compo-
nent of the fluid particle velocity is preserved during the
scattering with disks; thus no torque is imparted to col-
loids. The normal component vN of the solvent particle
new velocity v′ is sampled from a Gaussian distribution
according to the distribution of Eq. (11) which is cen-
tered around the disk velocity V (the angular velocity
is irrelevant since collisions are now treated as central)
[47].

The choice between no-slip and slip BC is directly
connected to the way the axis of colloids ni is evolved.
In the first case, the solvent-disk interaction determines
directly through torque exchange how colloids diffuse
rotationally. In the second case, the rotational diffusion
is accounted independently using Eq. (3). In this paper
we choose the slip thermal BC for two reasons. The first
one is that in this way we can choose the value of Dθ

independently and match it with the one used in the
ABP model. The second reason is that the integration
of slip conditions is much faster than no-slip ones, since
there is no need of considering the integration of disks
angular velocities.

Since we will mostly deal with non-equilibrium sim-
ulations, solvent particles must be coupled to a ther-
mostat to maintain constant temperature. We use the
method of locally rescaling fluid particles velocities vi

relative to the centre of mass velocity u for each cell by
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Fig. 2 VACF for different values of the temperature kBT .
Panels (a–c) show the VACF for the values kBT = 0.05 (red
curves) and kBT = 0.1 (yellow curves), for the same number
of solvent particles per cell ns = 10. For short times (a), the
autocorrelation function shows a clear exponential decay,
which overlaps well with the theoretical prediction of the
Enskog time tE shown as dashed line for each case. At late
times (b) simulations show a long time tail t−1 (dotted line
in panel (b)). All the data collapse to the same curve if time
is rescaled by tν (c). d Time evolution, in semi-logarithmic
scale, of the diffusion coefficient computed from the integral
of the VACF, for the same parameters of the yellow curves
of panel (a). The dotted line has the slope kBT

8πρsνs

a proper factor that enforces the correct temperature
[60]. We do not expect that this approach may alter
flow profiles since, as later shown, we will adopt a very
small cell size σs compared to variations in flow pat-
terns and a very large value of ns, the average number
of solvent particles per cell. Note that this implementa-
tion ensures only local linear momentum conservation,
while angular and total linear momenta are not con-
served, as typically ensured in simulations of swimmers
[44].

2.2.3 Parameter choice

In the case of the MPC fluid, an additional set of sim-
ulation parameters has to be set – ns, ms, σs, α, Δts –
which will be expressed in terms of the colloids units –
m̃, σ̃, ε. In order to decide the MPC parameter values,
a set of criteria, listed below, has to be satisfied.

The first criterion is that the solvent has to behave
as a fluid (we remind that MPC particles satisfy an
ideal gas equation of state); for such purpose we need
to have a Schmidt number Sc � 102 − 103, typical of
liquids [61]. The Schmidt number represents in fact the
ratio between the rate of momentum diffusion and the
rate of mass transfer, and for large values of Sc the
dynamics resembles the one of a liquid [62]. Sc is defined

as Sc = νs/Ds. Values Sc ∼ O(10) can be obtained
by requiring small values of λ and large rotation angle
[62]. Note that the choice λ < σs is known to break the
Galilean invariance [63], although this problem is cured
by implementing the random shift procedure [63] which
is here implemented. By using the expressions of νs and
Ds in the limit of λ/σs � 1, we find that the Schmidt
number depends only on the mean-free path and takes
the simple form [61]:

Sc � 1
12(λ/σs)2

, (13)

where the dependence on ns and α has been omitted
since the dominant contribution is with λ.

The second criterion is that we want to have the same
value of the friction γ as in ABP simulations, where γ
has the same role as in the Langevin equation. For the
MPC dynamics, this formula is:

γ = C2Dπνsρs(σc/2), (14)

where ρs = nsms/σ2
s is the solvent density. The coeffi-

cient C2D depends on dimensionality [64] and the MPC
model considered [40]. We performed simulations mea-
suring the velocity of a colloid dragged by a constant
force along a direction in 2D and we fitted a value of
C2D = 1.84 ± 0.1, using six different values of forces
and averaging over ten realizations. It is evident that
also the choice of γ depends directly only on λ, when
all the other parameters are fixed.

Regarding the active force and the rotational diffu-
sion of the colloids axis, we do not need any change in
the parameters chosen for the ABP, as the active force
and the rotational diffusion are the same as the ones
described in the equation of motion of the ABP model
(equation (3)). Thus, the Pe number depends only on
the colloids parameters, and is already set.

The last criterion that we need to follow is to have a
very low compressibility in presence of the active force,
in order for the fluid to remain homogeneous during the
time evolution. This criterion was discussed in [40,58].
The correct parameters to look at are the Mach number
and the Pumping number. The Mach number Ma is
given by the ratio between the average fluid velocity vs

due to the external forces (in our case due to activity)
and the sound velocity vsound =

√
2kBT/ms inside the

fluid:

Ma =
vs

vsound
. (15)

Its value depends directly on flow velocity. In order
to reduce compressibility effects of the MPC fluid it
should be Ma < 0.2 [65,66]. The Pumping number Pu,
instead, is the ratio between the active stationary col-
loid velocity Fact/γ and the fluid self-diffusion:

Pu =
σcFact

6γDs
, (16)
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Fig. 3 Hexatic order parameter color map in the ABP
model. a–c Color maps of the projection of the local hex-
atic order parameter of each particle, ψ6,j , onto the direction

of the system’s global average, Ψ = 1/N
∑

j ψ6,j , at fixed
Pe = 10 and mc = 44 for φ = 0.710, 0.730, 0.760 respec-
tively, for a system of size L = 256σc

and should be less than 1 [40] in order for the fluid-
particle diffusion to be faster than activity-induced
advection, thus avoiding strong density inhomogeneities
in the fluid.

Following these criteria, we chose the cell size to
be σs = 0.2σc. This guarantees that there is a suffi-
ciently large number of cells covering a colloid [59]. We
fix α = π/2, ms = 0.15 and ns = 15 for the fluid.
Typically the colloids and solvent mass density should
match in order for the colloids to be buoyant, so we
set mc = 44.15 such that nsms/σ2

s = 4mc/(πσ2
c ). This

choice provides a good compromise between avoiding
compressibility effects [44], which for example arises
if we choose lower ns, and computational cost, which
arises with higher values of ns. We use as Δtc = 10−4

and Δts = 410Δtc. The temperature T for the solvent
and the other parameters relative to the active force and
rotational diffusion remain the same as the one used for
ABP. These parameters lead to the required values of
γ = 10.04 (νs = 0.061 and ρs = 56.24), Sc = 99.48,
Ma = 0.1 and Pu = 0.9 for the highest Pe = 20 value
considered. We note that the Reynolds number of the
fluid is given by

Re = vsσc/νs = Factσc/γνs = 6PuDs/νs = 6Pu/Sc,
(17)

which is always much less than one for our choice of the
parameters. Thus we are in the low Reynolds number
regime.

We start from a close-packed initial configuration of
particles positioned in a triangular lattice, forming a
slab, and with the orientation of the self-propelled force
uniformly distributed. The initial velocities of all par-
ticles (fluid particles and colloids) were extracted from
a Gaussian distribution with zero mean and variance
kBT/ms and kBT/mc for solvent particles and colloids,
respectively. Given that all the MPC and MD param-
eters are the same we are able to consider the same
exact active colloids system, except for the presence
of long range hydrodynamic interactions. We fix the
Péclet number to Pe = 10 and 20, and vary the pack-
ing fraction φ between 0.60 and 0.88, where the hexatic-

Fig. 4 Hexatic order correlation functions for the ABP
model. Hexatic order correlation functions g6(r) for mc = 44
at Pe = 10 (left) and Pe = 20 (right) for different global
packing fractions given in the keys

liquid transition was found to be critical for mc = 1 [8].
For each set of parameters a single realization was con-
sidered, run between 104 and 105 simulation time units
after steady state was reached, and averaged quantities
where performed during this time frame. To limit the
computational cost for MPC simulations we always fix
the box side to L = 128σc, unless otherwise specified.

2.3 Validation of slip boundary conditions

We focus here on the behaviour of passive colloids
embedded in a solvent to test the accuracy of the previ-
ously described slip boundary conditions with respect
to known results for 2D hydrodynamics. Following
Ref. [67], we measure the velocity auto-correlation func-
tion (VACF) and the diffusion coefficient Dc of colloids.
The parameters chosen for the simulation are the same
as described in the previous section, except that we
also varied either the average number of solvent parti-
cles per cell ns or the temperature kBT , always keep-
ing the Schmidt number Sc � 100. We considered large
systems, with L = 900σc to reduce periodic boundary
effects.

At very short times, when hydrodynamics effects can
be neglected, the main contribution to the overall dif-
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Fig. 5 Effects of colloids mass on the Liquid-Hexatic tran-
sition. On the left panel, orientational correlation functions,
g6(r), at fixed Pe = 10 and φ = 0.74 for different val-
ues of the mass of the particles given in the keys. On the
right panel, the liquid-Hexatic critical density, φc, at fixed
Pe = 10, as a function of the mass of the colloids mc. The
solid line is a fit of the data using the function φc(mc) =

a + be−mc/c, with parameters a = 0.71, b = 0.05, c = 10.37
for Pe = 5; a = 0.72, b = 0.08, c = 12.92 for Pe = 10; and
a = 0.76, b = 0.08, c = 14.30 for Pe = 20. The error bars
correspond to the gap Δφ between the densities scanned in
the simulations for each value of the mass mc

fusion comes from the local random collisions between
colloid and solvent particles. The VACF is given by

Cu(t) =< u(t)u(0) >=
kBT

mc
exp(−t/tE) , (18)

where u is a Cartesian components (either x or y) of col-
loids velocity, tE = mc/ξ is the Enskog time, that is the
typical velocity decorrelation time, and ξ the Enskog
friction coefficient given in two spatial dimensions by
[67]

ξ =
3
√

2
4

σcnsπ
3/2

(
kBT

mcms

mc + ms

)1/2

. (19)

The integral of the VACF is related to the diffusion
coefficient Dc through the Green-Kubo relation,

Dc =
∫ ∞

0

< u(t)u(0) > dt =
kBT

ξ
. (20)

However, as well known [68,69], fluid dynamic inter-
actions have an important effect on the long-time
behaviour of the VACF. Indeed, due to momentum con-
servation, the asymptotic form of the VACF shows an
algebraic decay of the form

Cu(t) =
(

1
2ρs

)
kBT

[4π(Dc + νs)t]
, (21)

for slip boundary conditions in two dimensions. The
VACF has a t−1 tail, meaning that the diffusion coef-
ficient Dc diverges logarithmically with time. The long
time tail can be expected to appear on the kinematic

Fig. 6 Velocity field induced by an active colloid in the
AHP model. Fluid velocity field around an active colloid for
Pe = 20, in the lab frame (a) and in the colloid frame (b).
The black arrow indicates the direction of the active force

time scale tν = σ2
c/νs, that is the time required by

the kinematic viscosity νs to diffuse over the colloid
radius. We validate the slip coupling method introduced
in Sect. 2.2.2 between solvent and passive colloids by
testing these predictions.

Since the kinematic viscosity (9) depends only very
weakly on ns, for large values of ns, and given that

Cu(0) =
kBT

mc
, (22)

from equipartition, the long-time tails should all scale
onto the same curve if time is rescaled by tν .

Figure 1 shows the VACF for three different values
of ns and kBT = 0.1. As shown in panel (a), for short
times, the autocorrelation function shows clear expo-
nential decay, while at late times (panels (b)-(c)) simu-
lations show a long time tail t−1. When plotted as func-
tions of the reduced time t/tν , all the data collapse onto
the same curve (panel (c)). The oscillations visible in
panels (b) and (c) for long times originate from sound
modes and are a consequence of the finite compress-
ibility of the MPC fluid combined with the periodic
boundary conditions [70]. We checked that this effect
decreases increasing the simulation box size.

The Enskog friction coefficient (19) slightly varies
with ns; in order to test the sensibility of the imple-
mentation used we fixed ns = 10

and varied the temperature to change the Enskog
friction coefficient. Figure 2a shows the early time expo-
nential decay of the VACF for the values kBT =
0.05, 0.1. The measured values of tE are in good agree-
ment with the theoretical predictions. Also in this case
the long-time tail has the expected t−1 slope (panel
(b)), and all the curves collapse if time is rescaled by
t/tν (panel (c)).

Using the Green-Kubo relation and Eq. (21), the dif-
fusion coefficient can be approximated at long times,
assuming that Dc � νs and that the Enskog and hydro-
dynamic contributions to the VACF can be separated,
as
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Fig. 7 Hexatic order parameter color map in the AHP model. a–c Color maps of the local hexatic order parameter, ψ6,j ,
as reported in Fig. 3, for Pe = 10 and mc = 44, with φ = 0.78, 0.8, 0.81 from left to right, for a system of size L = 128σc

Dc(t) =
∫ t

0

< u(t′)u(0) > dt′

≈
∫ t

tν

kBT

8πρsνst′
dt′ ≈ kBT

8πρsνs
[ln t]ttν

.

(23)

Figure 2d shows the temporal evolution of the diffu-
sion coefficient computed from the VACF. On the time
scales of the simulation, we observe a behavior consis-
tent with Dc � ln(t), as expected from the t−1 tail of
the VACF.

3 Hydrodynamic and variable mass effects
on hexatic liquid transition

In this Section, we discuss the effects of changing the
particles mass for the 2D ABP model and the role of
hydrodynamics in the AHP model, using the numerical
framework illustrated in the previous Section. In par-
ticular, we will focus onto characterizing the presence
and location of the liquid-hexatic transition, by varying
the system density in a region of the phase diagram at
intermediate active forces where MIPS does not occur
for over-damped ABP. The latter undergo the transi-
tion at φc = 0.795 for Pe = 10 and at φc = 0.83 for
Pe = 20 [71].

The transition can be characterized by measuring the
hexatic order parameter, ψ6(ri) = 1

Ni

∑Ni

j=1 ei6θij , with
Ni the number of nearest Voronoi neighbours for parti-
cle i, and θij the angle formed between the segment con-
necting particles i and j and the x-axis. From ψ6(ri) we
can compute the hexatic correlation function, defined
as:

g6(r) =
〈ψ6(ri)ψ6(rj)〉

〈ψ2
6(ri)〉 , (24)

where r = |ri −rj |. The transition between hexatic and
liquid phases can be observed by the change in the func-
tional dependence of g6(r) from exponential decay for
short-range order, g6(r) ∼ e−r/lc , where lc is the cor-
relation length, to algebraic for quasi-long-range order,

g6(r) ∼ r−β . We use henceforth this criteria to distin-
guish between the liquid and the hexatic phase in our
system. In Sect. 3.2.2 we also discuss from a dynami-
cal perspective how macroscopic flow properties emerge
when hydrodynamics is considered.

3.1 Effects of different colloids mass in the ABP
model

Here we characterize the evolution of ABP following the
model described in Sect 2.1 at Pe = 5, 10, 20 and com-
pare the results with the ones obtained in Ref. [71]. In
particular, while in Ref. [71] only the value mc = 1 was
considered, here we will study the system with various
masses ranging from mc = 5 to 50. Thus, the main dif-
ference is that here we are increasing the inertial time
tI = mc/γ, ranging from tI = 0.5 to 5 while maintain-
ing the persistence time tp = 1/Dθ ≈ 67 [1] constant,
so that 7 × 10−3 < pn < 7 × 10−2. The use of large
masses will allow a direct comparison with the AHP
model (where mc = 44) that will be used in the follow-
ing.

We will focus on measuring approximately the value
of the critical density φc where the liquid-hexatic tran-
sition occurs, computing the hexatic correlation at a
fixed Pe within intervals of φ ranging from 0.05 to 0.1.

Figure 3a–c show typical configurations at Pe = 10,
mc = 44 and three different densities. Configurations
are colored according to the local hexatic parameter
ψ6,j , projected onto its average value. In panel (a)
(φ = 0.71) we do not observe the appearance of any
macroscopic hexatic domain, while in panel c (φ = 0.76)
we observe a fully hexatically ordered system. Panel (b),
with φ = 0.73, is an intermediate density where macro-
scopic and orientationally ordered domains emerge,
suggesting that this density is close to the transition
point.

In order to locate the liquid-hexatic transition point
at a fixed activity, we resort to study the hexatic cor-
relation functions, finding the density at which these
functions change from exponential to algebraic decay.
Figure 4 shows these functions for mc = 44 and Pe =
10, 20. At densities below φ = 0.72 for Pe = 10 and
φ = 0.74 for Pe = 20, we find that the correlations
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Fig. 8 Hexatic order correlation function for the AHP
model. a–b Hexatic order correlation function g6(r) at
Pe = 10 (d) and Pe = 20 (e) for different global packing
fractions given in the keys and mc = 44

have an exponential decay, while for larger values the
behaviours that best fits the decay is that of an alge-
braic function. Thus, we find that at both activities con-
sidered the values where the liquid-hexatic transition
occurs are lowered with respect to the ones at mc = 1
reported in Ref. [28], suggesting that the increase in
mass enhances the orientational ordering at fixed activ-
ity. In particular, we estimate φc = 0.730 ± 0.01 and
0.760 ± 0.01 for Pe = 10, 20, respectively.

We also checked that this ordering effect occurs while
fixing the system density and activity, and increasing
the colloids mass. The correlation functions in Fig. 5,
left side, at Pe = 10 and φ = 0.74, show that by increas-
ing the mass the system crosses from a liquid state to
a hexatic one. We summarize these measurements in
the right panel of Fig. 5, where we show the location of
the critical density for different Pe and different mc. It
is evident that the critical density of the liquid-hexatic
transition continuously decreases increasing the value of
the mass for the different Pe considered. Interestingly,
the data fit with the function φc(mc) = a + be−mc/c,
with coefficients reported in the caption.

To summarize, the results showed here point out that
an enlarged mass, and therefore an increase in the iner-
tial time tI , has an effect of enhancing the orientational
ordering of the system. It is important to note that
this is a non-equilibrium effect not present in the pas-
sive system. Indeed, we checked (not shown) that in
the absence of activity the transition density value is
independent of the mass value. We also observed that
the asymptotic values for large mc (coefficient a in the
fitting function) are close to the transition density at
Pe = 0 [71]. When the persistence number is pn � 10−2

(mc ≈ 10), the system behaves closer to the passive
case. On the other hand, when pn � 10−2 the active
force has a disordering effect in the hexatic ordering.

3.2 Hydrodynamics effects

We now turn our attention to the role of hydrodynam-
ics by studying the AHP model. To do so, we employ
the hybrid mesoscopic approach presented and tested
in Sect. 2, where the MPC solvent is coupled with the
active colloids to account for hydrodynamic interac-
tions. It is important to stress that in our numerical

Fig. 9 Liquid-Hexatic transition in the ABP and AHP
model. Global hexatic parameter as a function of the global
packing fraction for Pe = 10 and mc = 44,. The orange
and blue curves correspond to simulations with and with-
out hydrodynamics, respectively, for active colloids with the
same mass

model no tangential flow velocity is imposed to colloids
(they are not squirmers), thus the resulting velocity
field is the result of collisions between moving colloids
and fluid particles. In Fig. 6 we show the velocity field
of our active colloid immersed in a fluid. The flow field
strongly resembles that of a neutral swimmer.

The parameters of AHP, chosen in order to fulfil the
constraints discussed in Sect. 2.2.3, fix the colloid mass
to mc = 44 and γ = 10. In this way, the AHP simulation
results can be directly compared with the ones of ABP
with the same mc. We will scan values of φ between 0.5
and 0.85.

3.2.1 Liquid-hexatic transition

We start by looking at how the ordering properties are
affected by hydrodynamics. Figure 7a–c show, for three
different densities at Pe = 10, the color map of the
local hexatic parameter ψ6,j projected onto its average
value. In panel (a) (φ = 0.78) we do not observe the
appearance of macroscopic hexatic domains, but locally
we still observe small orientationally ordered regions.
These regions appear to become larger upon increasing
the density (panel (b), φ = 0.8), although global order-
ing is not observed. At φ = 0.81, panel (c), a single fully
hexatically ordered system is observed. Thus, also AHP
present a transition between liquid and hexatic phases.

Figure 8 shows the hexatic correlation functions vary-
ing the density for Pe = 10, 20, to be compared with the
results presented in Fig. 4 for the ABP system. For both
values of activity, we find that the hexatic order corre-
lation function shifts from an exponential decay to a
power-law decay at substantially higher values of pack-
ing fraction φ. More precisely the transition is located
at φc ≈ 0.805± 0.01 for Pe = 10, and φc ≈ 0.840± 0.01
for Pe = 20.

The increase in value of the transition density φc

with respect to the ABP model suggests that the addi-
tion of hydrodynamic interactions has a disordering net
effect regarding the global orientational order. This is
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opposite to the effect of increasing the particles mass,
which instead promotes hexatic ordering. Indeed, if we
measure the average global hexatic parameter ψ6 =
1
N |∑N

i ψ6,i| as a function of the global packing fraction
φ (Fig. 9 ), which increases from 0 to 1 as the liquid-
hexatic transition is crossed, we find that the transition
is significantly shifted. Note that both curves converge
to almost the same value for very high densities, sug-
gesting that for densely packed systems hydrodynamic
does not disrupt the ordering properties of colloids.

We also checked (not shown) that in the absence of
activity, the transition density values that limit the
coexistence region of the liquid-hexatic transition of
passive colloids [8] are not affected by the presence
of hydrodynamic interactions. However, hydrodynam-
ics produces other relevant effects which will be now
discussed.

3.2.2 Self sustained motion at high density

We now want to better understand the behavior and
the role of the fluid velocity field, which for AHP can
be locally organized, while the ABP model has no such
feature, and rely only on hard-core repulsion. Thus, we
will have a deeper look into the velocity field of AHP,
and if it can trigger a coherent motion of small clusters
of particles.

Figure 10 shows the coarse-grained steady state
velocity fields of the fluid, v(r) (panels d-f) along
with associated snapshots of the configurations colored
according to the hexatic parameter (panels a-c), for
AHP with Pe = 10 and three different values of pack-
ing fraction φ. Coarse-grained velocity fields of the fluid
are realized by averaging the velocity of fluid particles
inside blocks of size 4σc = 20σs (such large coarse-
graining cells are chosen for the sake of visualization;
similar profiles can be obtained with smaller cells). The
first density, φ = 0.60 (panels (a), (d)), is characterized
by the absence of orientational order. At the same time,
however, its corresponding velocity field presents the
formation of vortexes along with regions where flow is
both not correlated and lower in magnitude. The associ-
ated velocity field for the active colloids (not shown) has
a matching profile, while the local average direction of
the active force is random, and thus not coherent with
the velocity field.

Figure 10b, e show instead a larger density φ = 0.80.
We observe, here, a case close to the hexatic transition
point, with locally formed fluctuating hexatic domains
with their typical size remaining stationary over time.
Along with these clusters, the flow becomes more coher-
ent than at φ = 0.60, with fluid and colloids having
again a similar velocity field. Again, we do not observe a
local average direction of the active force coherent with
the flow field. The same behaviour becomes even more
pronounced upon increasing the density (φ = 0.860
panels (c) and (f)), where the system is fully orienta-
tionally ordered. In this case, the associated flow field
becomes an unidirected self-sustained flow, with parti-
cles moving typically along the same direction, and with

the global direction of the flow slowly changing over
time. Interestingly, this behaviour is similar to trav-
elling bands occurring in Vicsek-like models [72,73],
where an additional alignment interaction of active
force directions is introduced, which allows particles to
move coherently. Velocity correlations between parti-
cles have also been found in systems of ABP with dif-
ferent persistence times [74–77], flowing crystals made
of spontaneously aligning self-propelled hard disks [78]
and self-sustained spontaneous flows in active gels [79–
83].

We do not have at the moment a full theoretical
understanding of the emergence of the coherent motion,
which occurs even when there is no orientational order-
ing. We can only try to interpret the phenomenology
in the following way: the self-propulsion force of col-
loids continuously injects energy into the fluid, setting
it into motion. Fluid particles can later self-organize
their motion in a coherent form, and drag colloids along
their direction of motion, which is not necessarily the
same direction of the active force of each particle.

A quantitative measure of this transition to uni-
directed self-sustained flow, as a synergetic effect of
self-propulsion and hydrodynamic interactions, can be
obtained by measuring the spatial velocity correlation
function for the fluid velocity:

Cv(r) =
〈v(r)v(0)〉

〈v(0)2〉 . (25)

Figure 11 shows Cv(r) for different values of φ, for
Pe = 10. For low values of φ (see e.g. φ = 0.600) the
curve shows an exponential decay. This corresponds to
the case shown in Fig. 10d, characterized by the pres-
ence of isolated vortexes. When we increase the density,
we observe that the velocity correlation has a slower
decay, or a longer correlation length. Above density
φ � 0.730, the correlation becomes almost constant.
We note that the transition in the velocity correlations
between exponential and algebraic decay does not man-
ifest itself at the liquid-hexatic transition, since the lat-
ter appears at higher values of φ. In the inset of Fig.
11 the velocity correlation function for ABP in the hex-
atic phase (Pe = 10 and φ = 0.760) is also shown for
comparison. It shortly decays to zero, while for AHP,
even in the liquid case (yellow curve), the decay is much
slower. To gain more insights on the effects of hydro-
dynamic interactions we report the radial distribution
function g(r) in Fig. 12, for φ = 0.750 both for ABP and
AHP at Pe = 10. We observe that the presence of fluid
in AHP does not considerably change the position of
the peaks in the radial distribution function. However,
we notice that the intensity of the peaks is enhanced
in the ABP case, meaning that the fluid interferes with
ordering, thus shifting the hexatic transition to higher
densities.

As a last check, we switched off/on hydrodynam-
ics by just removing/adding the solvent particles and
adding/removing the Langevin friction and noise terms
in the colloids equation of motion (3). This enables us
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Fig. 10 Self-sustained active flow. a–c Color maps of the local hexatic order parameter for Pe = 10 and φ = 0.60, 0.80, 0.86,
respectively. Panels d–f show the corresponding steady state fluid velocity field. The color code is the same as the one in
Fig. 3

to check if a stationary AHP configuration is naturally
able to relax to a stationary conformation of the ABP
when hydrodynamics is switched off. We choose Pe = 10
and φ = 0.795, a density where the system is hexatically
disordered/ordered with/without hydrodynamics. The
results are shown in Fig. 13. We start with AHP in a
fully ordered configuration; after an equilibration time
of 104 simulation time units, the system forms fluctuat-
ing ordered domains which change over time but do not
grow in size (panel (a)). We then turn off hydrodynam-
ics, and the system gradually sets after t = 105 simu-
lation time units to an almost fully hexatically ordered
conformation (panel (b)). The corresponding colloids
velocity field is shown in panels (c)-(d). Note that the
configuration is still not fully ordered only due to the
large time required to relax to the fully ordered state;
however we observe that the global hexatic parameter
is steadily growing over time. Switching on hydrody-
namics again the system returns to the configuration
shown in Fig. 13a.

4 Conclusions

We have studied with extensive simulations the role of
particles mass and hydrodynamics in active colloids,
and showed how they affect the liquid-hexatic transition
in an intermediate activity regime in which MIPS does
not occur yet (Pe = 10, 20).

Fig. 11 Spatial velocity correlations. Spatial velocity cor-
relation functions Cv(r), for different values of φ, for Pe =
10. In the inset the velocity correlation function of ABP at
Pe = 10 and φ = 0.760 is compared with φ = 0.60 for AHP
at the same Pe

We have first characterized the ABP by changing
their mass, while maintaining the same Pe and Dθ, so
that we have a non-trivial interplay between the inertial
time and the persistence time tp = 1/Dθ. We showed
that the critical density of the transition is shifted to
a lower density upon increasing the colloid mass. This
critical density is close to the one found at Pe = 0, sug-
gesting that inertia has an orientational ordering effect
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Fig. 12 Radial distribution function. Radial distribution
function for ABP and AHP models with φ = 0.750 at Pe =
10

Fig. 13 Switch between ABP and AHP model. a–b Snap-
shots of the system at different times t = 104, 105 of the local
hexatic order parameter, at Pe = 10 and φ = 0.795, before
(panel (a)) and after (panel (b)) switching off hydrodynam-
ics. The corresponding colloids velocity fields are shown in
panels (c–d)

on the system, bringing the system closer to equilib-
rium behaviour and counteracting the disordering role
of self-propulsion.

When hydrodynamic interactions are taken into
account, we found instead that the liquid-hexatic tran-
sition moves towards higher values of packing fraction
φ, thus suggesting that hydrodynamics has a net effect
of orientationally disordering the system. We also ana-
lyzed the fluid velocity field of AHP, and found at
Pe = 10 two results: i) the formation below φ ≈ 0.72
of small regions of correlated velocity field, character-
ized by the presence of vortices, that are not associated
to any local orientational ordering; ii) the arisal above
φ ≈ 0.720 of a self sustained motion, with the fluid par-
ticles moving in one direction. This change in behavior
has been characterized by measuring the spatial veloc-
ity correlation which changes from an exponential to an
algebraic decay.

Regarding the role of inertia, it will be interesting
in the future to reconstruct a phase diagram similar
to the one of Ref. [8], by characterizing in more detail
the hexatic phase and the location of the solid phase.
Regarding AHP, instead, it will be necessary to better
describe the physical mechanisms producing the vor-
tices at smaller densities and the transition to a self-
sustained motion at larger densities. It remains an open
question whether such a scenario is still encountered in
quasi 2D and 3D geometries as well as in experiments
with wet active colloids. It would also be of interest to
investigate the effect of no-slip boundary conditions,
which would completely determine the colloid angu-
lar diffusion and could induce additional cooperative
effects, the effects of changing colloidal mass, and to
study in more details particle-particle flow interactions
and local velocity field effects. We hope that our results
can boost further research in this direction.
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53. E. Tüzel, T. Ihle, D.M. Kroll, Dynamic correlations
in stochastic rotation dynamics. Phys. Rev. E 74,
056702056702 (2006)

54. L. Bocquet, J. Barrat, Hydrodynamic boundary condi-
tions, correlation functions, and kubo relations for con-
fined fluids. Phys. Rev. E 49, 3079–3092 (1994)

55. Y. Inoue, Y. Chen, H. Ohashi, Development of a simu-
lation model for solid objects suspended in a fluctuating
fluid. J. Stat. Phys. 107(1), 85–100 (2002)

56. A. Lamura, G. Gompper, T. Ihle, D.M. Kroll, Multi-
particle collision dynamics: flow around a circular and a
square cylinder. Europhys. Lett. (EPL) 56(3), 319–325
(2001)

57. J.T. Padding, A. Wysocki, H. Löwen, A.A. Louis,
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