//" ‘//{;L%‘
(Lap', UL
i
{ [/7 [f A E

VISIBILITY COMPUTATIONS
ON TRIANGULATED TERRAINS

PARALLELIZING

[ST ECTS
5 1 ELL e
[BIBLIOTECA |

Internal Report C13-93

November 4 1993

| ==
(L A A
/,///’/W) \/ / ﬂ /pl__\}’ /1~
[N U g2

L. De Floriani
C. Montani
R. Scopigno

Parallelizing Visibility Computations

on Triangulated Terrains

L. De Floriani!, C. Montani', R. Scopigno*

! Dip. di Informatica e Scienze dell'Informazione - Universita’ di Genova,
Viale Benedetto XV, 3, 16132 Genova, ITALY, E-mail: deflo@disi.unige.it
' LLE.I. - Consiglio Nazionale delle Ricerche, via S. Maria 46, 56126 Pisa, ITALY,
E-mail: montani@iei.pi.cnr.it
* CNUCE - Consiglio Nazionale delle Ricerche, via S. Maria 36, 56126 Pisa, ITALY

E-mail: scop@icnucevm.cnuce.cnr.it

November 12, 1993

Abstract

In this paper we address the problem of computing visibility information on digital ter-
rain models in parallel. We propose a parallel algorithm for computing the visible region
of an observation point located on the terrain. The algorithm is based on a sequential
triangle-sorting visibility approach proposed in [4]. Static and dynamic parallelization
strategies, both in terms of partitioning criteria and scheduling policies, are discussed.
The different parallelization strategies are implemented on an MIMD multicomputer and

evaluated through experimental results.

1 Introduction

The problem of computing visibility information on a terrain has several important applications.

One application. which has been studied in great depth. is terrain visualization, which consists

of producing a two-dimensional image of the terrain. Apart from visualization, applications in-
clude the computation of a set of optimal observation points [18, 6], the location of transmitters
and receivers for line-of-sight communication and surveillance [13, 14, 11], orientation and nav-
igation [22] and the extraction of significant topographic features [7]. While image production
is much faster using standard silicon-coded projective graphics, visibility information necessary
for further analysis is required in object-space format (i.e., independent of the display device).
In the literature, several object-space algorithms have been developed also for the visualization

of a terrain [19, 16, 1, 15], which exploit the peculiar characteristic of the scene.

This paper outlines the development and experimentation of a parallel algorithm for com-
puting the visibility model with respect to a discrete set of viewpoints located on the terrain
surface. A terrain is described by a function z = f(z,y) defined over a connected domain,
and, in our application, approximated by a digital terrain model with triangular faces (called a
Triangulated Irregular Network (TIX:.j. Two points are considered to be mutually visible when
they can be joined by a straight-line segment lying above the terrain (and intersecting it only
at its two extreme points). A visibility model of a terrain with respect to a set of viewpoints is
a collection of visible regions, each of which is associated with a viewpoint. A wvisible region of

a viewpoint is defined as the portion of the terrain visible from that point.

The problem of visualizing a terrain through an object-space approach has been studied
in recent years in computational geometry, and interestihg algorithms have been developed
[19, 16. 1, 15]. With the exception of the one by Preparata and Vitter [16}, all these algorithms
are more theoretical (since they optimize asymptotic complexity) than practical. The algorithm
by Preparata and Vitter uses a similar approach to the one proposed by Reif and Sen [19]
with simpler data structures, while achieving the same worst-case time complexity. The time
complexity of both algorithms depends on the number of vertices of the terrain model as well

as on the size of the computed visible image.

Another approach to computing visibility on a terrain consists in determining the lower
envelope of the set of triangles in a TIN [10, 2]. The lower envelope of a set 7 of triangles in the
3D space defines a partition of the z-y plane into maximal connected regions. each labeled with
a triangle of 7 in such a way that, if a region R is labeled with triangle ¢ of 7, then t is the
triangle with the minimum height over R. In [4] an algorithm was proposed which computes the
visible region of a viewpoint on a triangulated network by examining the triangles in a spiral
order around the viewpoint and monitoring a growing horizon at each step. The algorithm is

suboptimal and works for TINs based on the Delaunay triangulation {17]. On the other hand, it

is conceptually simple and efficient, as shown by the results of our implementation (see Section

2).

The requirement for efficiency of visibility algorithms is related to the increasing use of
visibility computation in a number of GIS applications. High performances are required, for
istance, in line-of-sight problems or in navigation, where the visibility model of a terrain must

be updated in real time.

Several proposals have been published regarding parallel visibility computations in the field
of computer graphics (i.e., for computing the visible parts of the solid objects contained in a
scene, from a viewpoint lying either within or outside to the bounding volume of the scene).
Among the more recent proposals, not covered in the tutorial paper by Whitman and Parent
25], there are the object-space solutions proposed by Franklin et al. [9], Theoharis (23], and
Scopigno et al. {20].

To authors’ knowledge, there has only been one proposal for a parallel algorithm for terrain
visibility, i.e. the one by Reif and Sen [19]. This algorithm is not a direct parallelization of
the sequential algorithm developed by the same authors, but it embeds some key ideas. The
time complexity complexity of such algorithm depends on the size of the output scene, and
it employs a model of parallel computation slightly different from the conventional PRAM
(Parallel Random Access Machine) model [24]. The algorithm is thus more of theoretical

interest than of practical interest.

In this paper we propose a parallel solution to visibility computation on an MIMD architec-
ture based on a parallelization of the sequential algorithm described in [4]. This algorithm can
simply be parallelized by partitioning the input data set. Thus, we propose different partition-
ing criteria for the input data based both on a static and on a dynamic approach. In the design
of our parallel solution, our main goal was to get maximal portability of the solution. This
was achieved by reducing (and possibly avoiding) interprocess communication so as to design a
parallel algorithm which could efficiently run on a distributed-memory MIMD parallel machine

as well as on networks of workstations running under a distributed computing environment.

The remainder of the paper is organized as follows. Section 2 describes the sequential
approach to visibility computation., on which our parallel algorithm is based: its implementation,
developed by the authors, is also discussed. Section 3 describes the various parallelization
strategies, the parallel implementation, and scheduling and local balancing issues. Section 4 is

devoted to the presentation, discussion and comparison of experimental results.

SZ— viewpoint

Figure 1: One of the possible radial orders (the approximated spiral visiting path is shown).

2 A Sequential Visibility Algorithm

In this Section, we propose a sequential algorithm for the computation of the visible region of
a viewpoint on acyclic TINs. More precisely, given an acyclic TIN D = (£, F), and a point
of view V on D, the algorithm determines the visible portion of each face of D, i.e., for every
triangle t; of ¥, the subset made of polygonal portions of ¢; such that each of these portions is

completely visible from V.

This solution, called Horizon-Cut, is an optimized and revised version of the terrain visi-
bility algorithm proposed by De Floriani et al. [4], developed in order to reduce its practical
computational complexity, by simplifying its kernel processing phase.

Horizon-Cut algorithm operates in two steps:

e sorting of the triangles of T by increasing distance with respect to the projection V of

the viewpoint V on the — y plane (radial sorting phase);

e computation of the visible portions of each triangle of D with respect to V (wisibility

comnputation phase).

2.1 Radial Sort

Radial sort is performed by building a star-shaped ' polygon IT around V by incrementally
adding one triangle at a time to an initial polygon formed by the triangles of £ incident on
V. The acyclicity property of ¥ ensures that at each step we can always add a new triangle,

while maintaining the star shape of the resulting polygon [5]. The triangulation ¥ is therefore

1A polygon IT is said to be star shaped with respect to a point V € I1 if V € kernel(IT) [17].

==w:Cn edge radial sector edge radial sector

I
intruding
triangle protruding protruding
triangle triangle
viewpoint viewpoint viewpoint

(a) (b) (c)

Figure 2: An example of intruding triangle, (a), and examples of two protruding triangles: in (b)

star shape is mantained, in (c) star shape is not mantained.

ordered by an approximated spiral visit which covers all of the triangles from the viewpoint to
the triangulation boundary (Figure 1).

The triangulation ¥ is encoded using a triangle-based representation scheme [12]: for each
triangle t of £, the three vertices and the three edge-adjacent triangles are stored.

Initially, IT consists of the union of the triangles of ¥ containing V' inside or on the boundary.
At a generic step, an edge [on the boundary of IT is chosen, and the triangle ¢ adjacent outwards

to | is examined. Two situations may arise :

o if ¢t is adjacent to II along two edges (i.e., it is called a intruding triangle), it can be
selected as the next triangle in the radial sorted list (Figure 2.a); it is therefore added to

IT and to the sorted triangle list Tsors;

e if ¢ is adjacent to II along a single edge (= [) (i.e. it is called a protruding triangle), it
can be added to I iff the opposite vertex of ¢ lies in the radial sector defined by V' and
I (Figure 2.b); otherwise, ¢ is not added to II because it does not maintain the star-shape

of IT (Figure 2.c); t will be examined again later.

In our implementation, we keep the boundary Cy of polygon II. After examining an edge [
of Cp, we delete [from Cpy, whether the corresponding triangle ¢ has been added to II or not.
In this way, a rejected protruding triangle ¢t will be examined again only when another edge !’
of t has been included in Cy, i.e., when it is possible to add ¢ to II. Every triangle ¢ of ¥ is
thus examined at most twice, and then the radial sorting operates in linear time in the number
of triangles in Z.

The pseudocode description of the radial sorting algorithm is reported below.

Algorithm RADIAL SORT
input
T: acyclic triangulation with respect to point V:
V': viewpoint, contained in the domain of I:
output
Tsore: ordered list of triangles;
begin .
{Initialization:}
case position of V in Z:
V vertex of &:
Tsort +— the triangles incident in V. in any order;
Cr « the edges not incident in V' of the above triangles;
V on an edge e of :
Tsort + the two triangles adjacent to e, in any order;
Cn — the four edges # e of the above triangles;
V inside a triangle ¢ of :
Toort — {t};
Ch < the three edges of ¢;
{Main loop:}
while there are triangles not included in Typr do
[«+ an edge in Cp;
t «— the triangle not in Ty.r: adjacent to [;
if Intruding(t) or (Extruding(t) and StarShape(Cm,t))
then
concatenate t to Tsort;
delete from Cpy the edges of ¢t that are in Cpy; {among them [}
insert in Cp the edges of t not yet considered;
else delete | from Cry;

end.

P \%
Figure 3: A blocking edge e with respect to viewpoint V: triangle f; is face-up, triangle f» is
face~-down.

2.2 Visibility Computation

The visibility computation step com;-ites successive horizons incrementally, each horizon being
restricted to the set of edges of the terrain examined so far. The horizon sequence is determined
by examining the triangular faces of the model according to the ordered sequence produced by

the radial sorting algorithm.

To describe the second step in more detail we need to introduce some definitions.
A face f; of D is said to be face up with respect to a viewpoint V if its external side is oriented
towards V'; conversely, f; is called face down (Figure 3).
We say that an edge e of D is a blocking edge when, if f; denotes the closest face incident in
e and f, the furthest, then f; is face up and f is face down. Figure 3 shows an example of a

blocking edge.

The visibility algorithm constructs an active circular list of blocking edges, called Active
Blocking Edge Segment Sequence (ABESS). ABESS contains all those portions of blocking
edges belonging to triangles already visited which can cast a shadow on triangles not vet ex-
amined (see Figure 4). At the beginning of the computation, ABESS is initialized to an empty
list of intervals. Then the triangles of £ are processed one at a time, following the radial order,
in order to compute their visible regions. Processing the current triangle ¢t involves two kinds

of operations:

o determining the visible portions of ¢: if ¢ is face down with respect to V, then ¢ is totally
invisible. Otherwise, we consider all segments in ABESS which will project onto ¢ (called

the relevant segments of ABESS for t), given the observation point V. For example, in

- Cn

== = ABESS radial
segments

Figure 4: Configuration of ABESS and Cpy at an intermediate step of the algorithm (the viewpoint

is the marked vertex; the triangles in II are shaded).

visible_part(t) -

proj(ABESS)

updated ABESS

(a) (b)

Figure 5: Clipping the visible part of the current triangle ¢ (part above the projection of the ABESS
horizon); ABESS is updated by replacing part of it with part of the upper edges of ¢ plus two radial

segments, inserted to maintain ABESS connectivity (drawn hatched).

: Proj. ABESS

:Cn
Figure 6: Projection of ABESS on the plane of an intruding triangie and visible part cutting.

Figure 5.a, the relevant segments for triangle t are s1, s and s3. Then we compute the

visible portion/s of ¢t by cutting those parts of ¢ which are above ABESS.

e updating ABESS: all (or part) of ABESS segments which project into ¢ are replaced with
the corresponding upper edge/s, or section of edges, of t (Figure 5.b).

The triangle-ABESS cut therefore requires a polyline-triangle clip, with the simplification
that heuristics can be devised to reduce the number of tests by taking into account the specific
characteristic of the problem.

Horizon-Cut performs the triangle-ABESS cut through a restricted number of simple tests. The
core operation is the projection of each ABESS vertex on the plane of ¢, and an internal/external
test with respect to t. In order to take into account the specific structure of the problem and
to produce an efficient solution, a number of special cases must be correctly managed. Figures
6 and 7 show different spatial dispositions of active edges of ¢, of the projected ABESS and of
the triangle visible parts. Note that the ABESS projection can only intersect active edges, i.e.,
the edges of t which are not part of the current Cr;. This is a significant simplification, because
in the case of an intruding triangle only one edge is compared with each ABESS segment, and

only two are compared for protruding triangles.

For each triangle, the portions of active edges which are above the current ABESS are
computed as a by-product of the triangle-ABESS cut, and inserted into the updated ABESS.
Note that ABESS fragmentation tends to increase; in the case of a protruding triangle, for
example, a section of an ABESS segment may be replaced by two edge segments (Figure 5.b).
ABESS fragmentation is a serious problem. as the computational complexity of the algorithm

is linearly dependent on the number of segments in ABESS.

Figure 7: Projection of ABESS on the plane of a protruding triangle and visible part cutting.

The pseudocode description of the Horizon-Cut algorithm is reported below.

Algorithm HORIZON-CUT
input
D = (T, F): acyclic TIN model with respect to V', where £ = (V,£,7);
V. viewpoint;
output
{VR,| VR, C t;,t; € T}: family of plane visible regions;
begin
{Radial sort:}
Tsort — RADIAL SORT (Z,V);
{Visibility determination:}
ABESS « empty list;
{Main loop:}
while Tyory 7# empty list do
extract the next triangle ¢, from Tyore;
if t; is face down then VR; « 0; {t; is totally invisible}
else
VR, « portion/s of t; above ABESS;
for every active edge! of¢; do
update ABESS by inserting sections of | above ABESS:
update ABESS by removing ABESS sections below [;

end.

For the sake of simplicity, the algorithm has been described by specifying the twovphases,

radial sorting and visibility computation, as two separate steps. In the actual implementation

10

these two activities are exploited at once: as soon as a triangle is selected by the radial sorter,

it is immediately tested for visibility.

2.3 Evaluation of the Sequential Implementation

The overall structure of Horizon-Cut is similar to the algorithm originally proposed by De Flori-
ani et al. [4]. The main modification is the implementation of the ABESS-triangle comparison:
for each current triangle t; a single ABESS-triangle cut is evaluated instead of many intersec-
tions with the shadow-polygons cast by the ABESS segments which project on t;, as required

by the original proposal. This produces:

e a much lower fragmentation of both ABESS and results (e.g. the number of visible

regions);

e an effective speedup of the algorithm.

Fragmentation reduction

A by-product of computing the whole visible part at once is that ABESS updates do not cause
the excessive fragmentation which characterizes the original algorithm. Horizon-Cut produces
at most one new ABESS segment for each active edge - ABESS intersection point (clearly, the
number of such intersections is lower than the ABESS segments which project onto the interior
of t). Horizon-Cut therefore does not require searching and eliminating collinear segments after

each ABESS update, while such search is mandatory in the original algorithm [4].

The results are less fragmented because, instead of having a visible region for each pro-
jected ABESS segment, we return a number of visible regions proportional to the number of
intersection points between the active edges of ¢t and the current ABESS (a single region as in

Figure 6.a, or multiple regions as in Figure 6.b).

Speedup

The radial sorting step has a worst-case time complexity linear in the number of triangles in ¥;
the visibility computation step has an O(n?a(n)) worst-case time complexity, since O(na(n))
is the size of ABESS in the worst case?, and O(n) triangles are examined. The size of ABESS is

at worst O(na(n)) only if there are no colinear segments in ABESS; this complexity is achieved

2Where a(n) is the inverse of the Ackermann function [26].

11

£ (no.tria.) 21K 41K 61K 80K 165K 236K

time (sec.) 11.54 20.68 30.51 36.48 74.13 107.47

Table 1: Computing times of Horizon-Cut algorithm on one pe and over different resolution datasets

(average times over 100 runs with different viewpoints).

only through the reduction of ABESS fragmentation produced by our revised algorithm.
Apart from the effect on the worst case complexity, the simplification of the kernel phase
(ABESS-triangle intersection) reduces the processing cost of a crucial phase, instanziated into
the overall cycle of the algorithm, which requires a number of different geometrical tests and
handling of many special cases.

The times of the sequential implementation over a number of tests confirm the practical effec-
tiveness of our approach (Table 1). A comparison with the times of the original implementation
of the algorithm [4], around 300 sec for 5K vertices TIN on a Sun 3/60 workstation {3 Mips
CPUJ, shows a remarkable increase in performance while processing similar dataset: Horizon-
Cut times are reduced to around 6 sec. on a 7.5 Mips, 2.4 MFLOPS CPU (a single node of the

multiprocessor computer described afterwards).

3 Parallelization of Visibility Computations

The strategies for splitting a sequential computation into parallel streams can be subdivided into
data partitioning techniques, where the problem is independently solved on each partition
of input/output data (also known as geometric parallelism), and functional partitioning
techniques, where the overall algorithm is rewritten in terms of parallel threads and/or of a
pipeline of sub—phases [8]. Geometric parallelism solutions are common in Computer Graphics
and they are either based on the partition of the input dataset or of the output space. In both
cases the same code is applied on a number of processing elements (pe) independently and the
solution is obtained as the union of local solutions. Classical examples of output space partition
are distributed ray tracing, where pixel values can be independently computed, and image-space
visibility algorithms, where different scan lines can be computed on different processing nodes

independently.

A parallel visibility solution based on geometric parallelism is proposed here. Horizon-Cut
algorithm can be simply parallelized by partitioning the input dataset, but the partition must

guarantee the feasibility of independent visibility computations. This property is maintained by

12

equal length

(a) (b))

Figure 8: On the left, partition in equal angle sectors; in the center, quadrant based partition; on

the right, equal area partition.

partitioning the input dataset into sectors, having their common vertex at the viewpoint: all
the triangles that may partially cover a triangle ¢ are contained in the same sector (apart from
the triangles on the sector borders, see Figure 8). Visibility can be computed on each sector
independently, because all the triangles which are needed to solve the visibility of a triangle ¢

are contained within the sector.

In the design of parallel Horizon-Cut one main requirement has been highlighted: mazimal
portability of the solution. A coarse—grain multi-process software architecture directly derives
from the characteristics of the sequential algorithm; while in designing an implementation
for an MIMD architecture, our goal was to reduce (and, if possible, to avoid) inter—process
communication, in order to produce a parallel algorithm which could be executed efficiently
both on distributed-~memory MIMD parallel machines and on networks of workstation running
under a distributed computing environment, such as PVM [21] or Linda {3]. Due to high
instability and rapid technological advances in parallel processing, portability is considered by

the authors at least as important as efficiency and scalability.

3.1 Data Partitioning Criteria

A straightforward sector partitioning can be performed by simply dividing the triangulation
into m equal-angle sectors (see Figure 8). This equal-angle solution is simple, but generates
uneven partitions when the viewpoint is not located close to the center of the bounding rect-

angle.

13

Balanced partitions (in terms of the number of contained triangles), with sufficiently good
chance, require similar visibility computing time and therefore allow balanced loads. But ex-
act equal-sized partitioning criteria are not feasible, because they would require knowledge of
the actual geometry of the triangulated terrain and thus partitioning costs would be too high.

However, “approximated” equal-sized criteria can be devised as proposed below.

Figure 8.b depicts a second criterion, the quadrant partition, based on a two—step subdivi-
sion process. The area is first subdivided into four quadrants, with center at the viewpoint; then
the ratio r; between the area of each quadrant and the bounding rectangle area is computed.
Each quadrant is then divided into m * r; equal-angle sectors. This criterion gives a better
subdivision than the former one, but partitions are still too unbalanced in each quadrant when

the viewpoint is situated in a non-central position.

A third partitioning criterion (see Figure 8.c¢), called equal area partition, is an attempt to
solve this problem by applying a different subdivision rule. The bounding rectangle is divided
into four sectors by the four lines which connect the viewpoint to the region vertices. Each
sector is again subdivided into m * r; subsectors, but now the subsectors are selected in such a
way that all their non-radial edges® are the same length. This partition guarantees a sufficiently
good balanced space subdivision and requires only the computation of a simple function over

the current viewpoint location.

Effective processing load not only depends on the characteristic of the partition, but also
on the geometric properties of the triangulated surface and on the position of the viewpoint.
In fact a partitioning criterion, which subdivides the triangulation into equal-sized triangle
subsets, may also result in unbalanced loads. This fact, along with higher processing costs,

means that exact partitioning criteria are not practical.

All criteria described above are static, i.e., the extents of each sector are computed at the
beginning of the computation. Another possibility is to apply an adaptive dynamic partitioning,
where computation starts by using an initial simple partition (for example, into four quadrants).
The subdivision is then refined at run time. when the load of the current processing element
becomes too heavy. The effective load of Horizon-Cut algorithm can be approximately measured
by the current length of ABESS (in terms of number of segments). A distributed dynamic
partitioning criterion can therefore monitor ABESS length on each running visibility process

pi. As soon as the maximum value is reached, the computation is split by generating a new

%A non-radial edge is the intersection segment between the sector edges and the bounding rectangle of the

triangulation on the z-y plane

14

Si2
AN 212
2
\)
St1.]
S) 2\ 292
3 ’ T
S4 N AN
N P N
N
- = \ -
S4.2 - 3
\ \\ 2
S4.1 3
.

Figure 9: Adaptive dynamic partitioning.

process po: the current sector s is divided into two halves, s; and s, as well as the current
ABESS and Cp. Then, the computation continues with process p;, by computing visibility on
s; following ABESS; and Cr,, and process ps by computing visibility on s, following ABESS,
and Cp, (Figure 9).

This strategy aims at load balancing optimization «nd a criterion such as ABESS complexity
could be more sound than the equal area partition of the former static strategy, though at the
cost of a much more complex implementation, processing overheads and lower portability. To
be efficiently implemented, this approach entails dynamical process generation and allocation,
or the availability of a master process which manages the splitting requests of worker processes.
Moreover, efficient inter-process communications are required, in order to allow fast transmis-
sions of current Cry and ABESS to the split processes. Finally, the subdivision of dataset and
data structures (S;, Cn, and ABESS;,) is required at run time for each split, and this originates
an overhead which will reduce the overall performance.

We thus decided to concentrate on a more simpler and portable solution based on the previous

static approaches.

3.2 A Parallel Visibility Computation Algorithm

Horizon-Cut requires some minor modifications in order to run properly on a single sector.

15

visible_part(t) e

proj(ABESS)

-

A= ..
- "&panmon
border

plane

Figure 10: ABESS — triangle cut in the case of a border triangle.

The input dataset is loaded at initialization time. We decided to load all datasets on each
pe, in order to make successive runs of the same algorithm (with different viewpoints) possible,
without requiring further input triangulation loads. This is adequate for architectures where the
local memory is sufficient for storing the whole triangulation; in other cases, the triangulation

load can be simply limited to the triangles contained in the local sector.

Parallel Horizon-Cut first computes the extents of the local sector. It then marks the
triangles on the border of the sector with a border triangle mark. If topological information
is maintained in the data structure representing the triangulation (as in our implementation),
such marking phase can be implemented with high efficiency, by accessing only the border
triangles. ABESS and Cpy are implemented in this case as non~circular doubly linked lists and,

clearly, they only connect triangles contained (partially or completely) in the local sector.

At the end of the initialization phase, visibility processing starts. The modifications required
are limited to the control of ABESS and Cy end-list condition (which requires inverting the
scanning direction) and the management of ABESS - triangle cut when the latter is a border
triangle (i.e., when the triangle is intersected by one of the sector’s radial edges).

This is the only significant modification to the sequential version. In fact, when a triangle ¢p
is a border triangle its visibility depends on the triangles contained in both adjacent sectors.
But the problem can be divided into two subproblems, by splitting ¢, into two regions by the
sector border plane (the plane orthogonal to the z-y plane and whose intersection with z-y is the
border line between the two sectors) and separately computing visibility on these two regions.
ABESS-triangle cut is therefore implemented on border triangles by computing only the visible

subpart within the sector; ABESS is updated accordingly (see Figure 10).

16

3.3 Scheduling and Load Balancing

Two scheduling policies have been implemented. The first is a static scheduling policy: the
number of partitions generated is equal to the number of pe’s, and a single partition is assigned
to each pe. In this solution, different processing times due to uneven loads of the generated

sectors might reduce global efficiency.

For better exploiting the available processing power, a dynamic scheduling policy has also
been implemented. In the dynamic scheduling implementation, a greater number of partitions
than the number of pe’s is selected statically. Then, a master process allocates tasks to worker
nodes. As soon as a worker has terminated visibility computations on the assigned sector, it
communicates to the master its free state, and the master replies with a new sector extent.
The communication rate between master and worker is extremely low, since it is limited to the

exchange of “free state” messages ar..' new sector extents (a few bytes).

4 Experimental Results

QOur parallel implementation has been designed and tested on a hypercube multicomputer, an
nCUBE 2 system model 6410. The nCUBE 2 has an MIMD distributed memory architecture,
with 4/16 MBytes of local memory on each pe in the conﬁguration used. The CPU technology
of this machine is quite conservative: running at a clock rate of 20 MHz, a single nCUBE 2
node processor is rated at 7.5 MIPS and 3.3 MFLOPS, single precision, or 2.4 MFLOPS, double

precision.

All computing times presented in Tables 1, 2, 3 and 4 are computed as the average of the
computation times (in seconds) over 100 different runs of the algorithm on the same terrain,
but with different viewpoints. Viewpoints are randomly generated as points contained in the

rectangular domain of triangulated terrains.

Table 1 presents the computing times of algorithm Horizon-Cut on increasing resolution
triangulated terrains. Run time increases less than linearly with the dataset resolution, giving a

sublinear practical complexity much lower than the asymptotic worst case complexity compiled
in [4], O(n%a(n)).

The results obtained by using the three static partitioning strategies are reported in Table 2

(on each column, a different number of sector is used, with number of sector equal to the number

17

1 4 8 16 32 64 128

Z: 21K triangles 11.54
equal angles: times 608 3.79 226 136 0.85 0.59
speed up 1.89 3.04 509 846 1346 1947
quadrant: times 592 274 159 106 074 0.56
speed up 1.94 4.21 7.25 10.87 1542 20.54
equal areas: times 465 228 128 0.8 057 0.44
speed up 248 504 897 1426 20.20 25.87

3: 61K triangles 30.51
equal angles: times 16.02 9.88 566 323 189 1.17
speed up 1.90 3.08 538 943 16.06 2587
quadrant: times 1583 6.84 375 239 161 1.13
speed up 1.92 446 811 12,74 1891 27.00
equal areas: times 12.07 553 279 160 1.04 0.74
speed up 252 551 10.80 19.01 29.10 41.11

Table 2: Evaluation of the three static partition strategies (times in seconds).

of pe’'s). The equal area criterion gives the most balanced load, confirming the assumptions

outlined in Section 4.1.

The results obtained using equal area partitions on a number of triangulations are presented
in Table 3. Times, speedup, efficiency and the number of triangles computed per seconds (t/sec)
are reported. In order to get a closer look at the effective pe load, we report the time required
by the most complex sector {t,qz), together with the time of the least complex (f,,:,) and the
mean of the times required to process all the sectors (f,meqn). Obviously, efficiency and speedup
are computed using t,,.. values. Figure 11 shows the efficiency of parallel Horizon-Cut with

increasing dataset resolution and number of pe’s used.

The dynamic scheduling version of Horizon-Cut has been evaluated by generating, for
each terrain map, a number of partitions which doubles the number of pe’s actually used. In
Table 4, the times obtained by dynamic and static scheduling are compared. Each reported
value is, as in the previous tables, the average of 100 runs, each performed with a different
viewpoint. Times with dynamic scheduling are, generally, slightly higher, because the dynamic
scheduling approach reduces the times of runs with unbalanced loads but, at the same time,

the finer partition used increases overheads (which depend on the number of border triangles

18

tmaz tmin tmean SDeedup eff. t/sec
4 pe’s
Z: 21K tria. 465 1.36 3.01 248 062 45K
2: 41K tria. 829 225 532 249 062 49K
2: 61K tria. 12.07 324 770 252 063 50K
L: 80K tria. 1352 494 9.02 269 067 59K
: 165K tria. || 28.89 741 18.75 256 064 57K
¥: 236K tria. || 41.93 1042 27.19 256 064 56K
16 pe’s
0 21K tria. 128 058 0.90 897 056 164K
3: 41K tria. 1.99 0.96 1.49 1034 064 206K
2: 61K tria. 2.79 136 212 10.89 0.68 218K
2Z: 80K tria. 312 170 245 11.67 0.72 256 K
£: 165K tria. 6.15 3.11 4.78 12.05 0.75 268K
: 236K tria. 8.68 444 6.78 1237 077 271 K
64 pe’s
Z: 21K tria. 0.57 020 0.36 20.20 031 368K
2 41K tria. 0.80 034 0.54 2568 040 512K
¥: 61K tria. 1.04 048 074 29.19 045 586K
3: 80K tria. 1.14 056 0.80 31.84 049 701K
¥: 165K tria. 1.96 1.06 1.47 3765 0.58 841K
£: 236K tria. 2.58 149 201 41.54 064 914K

Table 3: Times on different resolution dataset, using the equal area partition.

4 pe’s 8 pe’s 16 pe’s 32 pe’s
stat dvn stat dyn stat dyn stat dyn
2 21K 4.65 4.80 228 235 1.28 1.39 0.80 0.94
41K 8.29 8.68 387 391 1.99 215 1.19 1.38
= 61K || 12.07 11.99 5.53 541 2.79 291 1.60 1.80

Table 4. Comparison of dynamic and static scheduling times; the number of sectors is equal to the

number of pe for static scheduling, or double to the pe's number in the case of dynamic scheduling.

19

Efficiency :

—{}— 80K triangles

........ .o;...... 165 K triaﬂgles.

====QOr--- 236 K triangles

0,3 L L
0 16 ® 8/ & H % 112 128

Figure 11: Efficiency of parallel Horizon-Cut on three datasets.

to be marked and clip on both the adjacent partitions).

If both the static and the dynamic versions are executed on a single unbalanced load con-
figuration, the computing time of the dynamic version results generally lower. For example,
Horizon-Cut times on two unbalanced configuration (a highly irregular TIN with 59K triangles
processed using 8 pe's) are reduced from 10.35 sec. (sté.tic) to 6.65 sec. (dynamic), and from
9.02 sec. (static) to 6.75 sec. (dynamic). Critical configurations, however, cannot be detected
“a priori”, i.e., before computing visibility. As already pointed out, unbalance depends on both
the shape of the surface and the position of the viewpoint. The two scheduling strategies thus
cannot be compared on unbalanced configurations only, but on a number of runs as in Table 4.
This table shows that dynamic scheduling tends to give better results only if (a) few pe’s are
used and (b) the dataset resolution is high (and, therefore, when the overhead due to the finer

partition used is proportionally lower).

5 Concluding Remarks

A parallel visibility algorithm has been presented. The algorithm works on triangulated térrains
and returns the set of regions visible from a set of viewpoints positioned within the triangula-

tion. The sequential solution is an optimized version of the algorithm described in [4] which

20

has led to a reduction of both ABESS and output data fragmentation, and significantly affects
algorithm efficiency. Speedups of an order of magnitude over the original sequential implemen-
tation have been obtained.

Several parallelization stategies for the previous algorithm have been discussed. A static par-
tition strategy has been implemented on an NCUBE 2 multicomputer. The structure of the
parallel algorithm allow simple and portable implementation on environments with coarse grain
processor elements, such as networks of workstation or multicomputers.

The paper reports the efficiency of an implementations on an nCUBE 2 hypercube multicom-
puter. The scability of our solution is sufficiently good, showing an efficiency higher than 0.5
up to 64 pe’s (considering a TIN with about 100K triangles); efficiency clearly improves with
higher TIN resolution. The most efficient runs have been obtained using more than 8 pe’s, in
order to guarantee a sufficiently balanced partition, and allowing a subdivision with more than
2K triangles per sector. By using 8 or more pe’s, 0.5 efficiency is in general obtained on data
partitions with sectors containing 2K triangles or more, while efficiency 0.75 is obtained on

dataset which allow the generation of partitions containing not less than 10K triangles.

Running times suffer from the low performance of the nCUBE 2 pe’s; porting Horizon-
Cut on a state-of-the-art workstation cluster should guarantee times of more than one order
of magnitude lower. The performance obtained by executing Horizon-Cut in parallel on 128

NCUBE nodes should be reachable on a network of 4/8 cooperating workstations.

Acknoledgements

The work described in this paper has been partially supported by the Progetto Finalizzato
“Sistemi Informatici e Calcolo Parallelo” of the Italian National Research Council.

The authors would like to thank Raffaele Perego, Davide Marzilli and Giuseppe Giurleo for

valuable discussions and support in the implementation.

References

[1] M.De Berg, D.Halperin, M. Avennars, J.Snoeyink, and M. Van Kreveld. Efficient ray shoot-
ing and hidden surface removal. In Proceedings 7th ACM Symposium on Computational

Geometry, pages 21-30, 1991.

[2] J.D. Boissonnat and K.Dobrindt. On-line construction of the upper envelope of triangles

in E3. In Proceedings 4th Canadian Conference on Computational Geometry, August 1992.

21

3l

4]

(11]

(12]

[13]

N. Carriero and D. Gelenter. How to write a parallel program: a guide to the Perplexed.

ACM Computing Surveys, 21(3):323-358, September 1989.

L. De Floriani, B. Falcidieno, D.M. Jung, G. Nagy, and C. Pienovi. Polyhedral terrain
description using visibility criteria. Technical Report No. 17, Istituto per la Matematica

Applicata del C.N.R., October 1989.

L. De Floriani, B. Falcidieno, G. Nagy, and C. Pienovi. On sorting triangles in a Delaunay

tessellation. Algorithmica, (6):522-532, 1991.

L. De Floriani, B. Falcidieno, C. Pienovi, D. Allen, and G. Nagy. A visibility-based model
for terrain features. In Proceedings 2nd International Symposium on Spatial Data Handling,

pages 235-250, Seattle, July 1986.

L. De Floriani, G. Nagy, and H. Nair. Visibility-oriented criteria for surface characteriza-

tion. Technical Report 88-824, I.CSE Dept., Rensselaer Polytechnic Institute, 1988,
G.C. Fox et al. Solving Problem on Concurrent Processors. Prentice Hall, 1988.

W. R. Franklin and M. S. Kankanhalli. Parallel object-space hidden surface removal. ACM
Computer Graphics, 24(4):87-94, Aug. 1990.

| H.Edelsbrunner, L.J.Guibas, and M.Sharir. The upper envelope of piecewise linear func-

tions: algorithms and applications. Discrete and Computational Geometry, (4):311-336,
1989.

J.Lee. Analysis of visibility sites on topographic surfaces. International Journal of Geo-

graphic Information Systems, 5(4):413-425, 1991.

C.L. Lawson. Software for C1 Surface Interpolation. In J.R. Rice, editor, Mathematical

Software III, pages 161~-164. Academic Press, 1977.

M.Cazzanti, L. De Floriani, E. Puppo, and G.Nagy. Visibility computation on a tri-
angulated terrain. In Proceedings 8th International Conference on Image Analysis and

Processing, September 1991.

M.F.Goodchild and J.Lee. Coverage problems and visibility regions on topographic sur-

faces. Annals of Operation Research, 20:175-186, 1989.

M.J.Katz, M.H.Ovemmars, and M.Sharir. Efficient hidden surface removal for objects with

small union size. In Proceedings 7th ACM Symposium on Computational Geometry. pages

31-40, 1991.

[16]

17

[18]

[19]

F.P. Preparata and J.S.Vitter. A simplified technique for hidden line elimination in terrains.

In Proceedings STACS’92, pages 193-200, Paris, February 1992.

F.P. Preparata and M.I. Shamos. Computational Geometry - An Introduction. Springer-
Verlag, 1985.

R.Cole and M.Sharir. Visibility problems for polyhedral terrains. Journal of Symbolic
Computation, 7(1):11-30, 1989.

J.H. Reif and S. Sen. An efficient output—sensitive HSR algorithm and its parallelization.
In 4th ACM Symposium on Computational Geometry, pages 193-200. A.C.M. Press, 1988.

R. Scopigno, A. Paoluzzi, S. Guerrini, and G. Rumolo. Parallel Depth~Merge: a paradigm
for hidden surface removal. Computers & Graphics, 17(5):583-592, 1993.

V.S. Sunderam and G.A. Geist. Network-Based Concurrent Computing on the PVM
System. Concurrency: Practice and Ezperience, 4(4):293-311, July 1992.

T.D.Garvey. Evidential reasoning for land-use classification. In Proceedings Workshop on
Analytical Methods in Remote Sensing for Geographic Information Systems, pages 171-202,
Paris, 1986.

T. Theoharis. Algorithms for Parallel Polygon Rendering. Lecture Notes in Computer
Science No.373, Springer Verlag, 1989.

L.G. Valiant. General Purpose Parallel Architectures. Technical Report TR-07-89, Harvard
Technical Report, 1989. Also Handbook of Theoretical Computer Science, J.van Leeuwen
Ed., North Holland, Amsterdam, 1990.

S. Whitman and R. Parent. A survey of parallel hidden surface removal algorithms. In
Parallel Processing and Advanced Architectures in Computer Graphics, pages 157-173.
A.C.M. SIGGRAPH ’89 Course Notes, 1989.

A. Wiernik and M. Sharir. Planar realizations of nonlinear Davenport-Schinzel sequences

by segments. Discrete and Computational Geometry, 3:15-47, 1988.

23

