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Abstract: This paper addresses the problem of optimal planning for collection, sorting, and recycling
operations. The problem arises in industrial waste management, where distinct actors manage the
collection and the sorting operations. In a weekly or monthly plan horizon, they usually interact to
find a suitable schedule for servicing customers but with a not well-defined scheme. We proposal an
improved negotiation-based approach using an auction mechanism for optimizing these operations.
Two interdependent models are presented: one for waste collection by a logistics operator and the
other for sorting operations at a recycling plant. These models are formulated as mixed-integer linear
programs where costs associated with sorting and collection are to be minimized, respectively. We
describe the negotiation-based approach involving an auction where the logistics operator bids for
collection time slots, and the recycling plant selects the optimal bid based on the integration of sorting
and collection costs. This approach aims to achieve an optimization of the entire waste management
process. Computational experiments are presented.

Keywords: waste management; optimization; auctions; negotiation approaches

1. Introduction and Literature Review

The purpose of this study is to provide a model based on negotiation in the field of
waste management and recycling. The paper is inspired by previous work [1] in which a
similar approach was proposed for a waste collection problem. Several efforts are reported
in countries and/or local administrations to incentivize waste collection and material
circularity through incentives and negotiation mechanisms. In this area, particular attention
has been devoted to the collection and sorting processes. Collection refers to the process of
gathering and collecting waste from various sources, such as households, businesses, and
public areas. It involves the use of waste collection vehicles and containers to transport
waste to designated collection points or facilities. Sorting, on the other hand, involves
the separation and categorization of different types of waste materials. This process is
necessary to ensure that different recyclable materials (i.e., fractions of recyclable materials)
are properly identified and separated from non-recyclable waste. Sorting can be performed
manually or with the help of automated systems and technologies.

The main research gap covered in this work is the proposal of an improved combi-
natorial auction system that takes into account the specific characteristics of industrial
waste recycling, leveraging the interactions among logistics and sorting operators. In
particular, the main innovation of the proposal lies in the different and improved design
of the bidding phase. Thanks to the improved auction system, the bidders can generate
more different bids, covering a larger solution space. In particular, bids are generated not
only by looking at the objective of the logistics operator but also at the objective of the
sorting decision maker to obtain more robust solutions. This led to solving the winner
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determination problem more effectively compared to standard methods, as we will show
in the following.

The interaction between collection and sorting is crucial for waste management. Here
is how they work together.

• Waste collection systems need to be well planned and organized to ensure that waste
is collected regularly and efficiently. Proper collection routes and schedules are
established based on the type of waste, the volume of waste generated, and the
specific needs of the area. By implementing effective collection practices, waste can be
gathered and transported to sorting facilities in a timely and cost-effective manner.

• Sorting plays a vital role in separating recyclable materials from non-recyclable waste.
Once waste reaches the sorting facility, trained personnel or automated systems sort
through the waste to identify and separate materials such as paper, plastic, glass, metal,
and organic waste. This segregation allows for the recycling of valuable materials and
prevents them from being disposed of in landfills or incinerators.

• By effectively sorting waste, recyclable materials can be diverted from landfills
and sent to recycling facilities. Sorting also enables the recovery of valuable re-
sources from waste, promoting a circular economy and reducing the need for raw
material extraction.

• Not all waste materials can be recycled. Sorting ensures that non-recyclable waste
is properly identified and disposed of in appropriate ways, such as landfilling or
waste-to-energy facilities. By separating non-recyclable waste, the focus can be placed
on maximizing the recycling potential of the remaining materials.

In summary, collection and sorting are interconnected steps in waste management.
The efficient collection ensures that waste is gathered and transported to sorting facilities,
while sorting allows for the separation of recyclables from non-recyclable waste. This
collaboration is essential for effective waste management practices that promote recycling,
resource conservation, and proper disposal.

Negotiation plays an important role in waste management, especially when it comes to
addressing the interests of various stakeholders and finding mutually beneficial solutions.
Here is how negotiation works in waste management.

• The first step in the negotiation process is identifying the relevant stakeholders in-
volved in waste management. This may include government agencies, waste manage-
ment companies, environmental organizations, local communities, and residents.

• Each stakeholder will have different interests, objectives, and concerns when it comes
to waste management. It is crucial to understand these interests and objectives to
facilitate effective negotiations. For example, waste management companies may
prioritize cost-efficiency and profitability, while environmental organizations may
focus on sustainability and minimizing environmental impact.

• Successful negotiations require building relationships and establishing trust among the
stakeholders. This involves open communication, active listening, and acknowledging
the perspectives of all parties involved. Building trust creates a collaborative environ-
ment where stakeholders are more willing to work together to find common ground.

• Transparency and sharing of relevant information are essential in waste management
negotiations. This includes data on waste generation, recycling rates, waste treatment
technologies, and regulatory requirements. Sharing information helps stakeholders
make informed decisions and facilitates the development of effective waste manage-
ment strategies.

• Negotiations in waste management aim to find win–win solutions that address the
interests and concerns of all stakeholders involved. For example, waste management
companies may agree to invest in more environmentally friendly technologies in
exchange for regulatory incentives or public support.

• In complex negotiations, mediators or facilitators may be involved to assist in the
negotiation process. They help manage conflicts, guide discussions, and ensure that all



Algorithms 2024, 17, 380 3 of 15

parties have an equal opportunity to express their views. Mediators can help bridge
the gap between different stakeholders and facilitate productive negotiations.

• Once an agreement is reached, it needs to be implemented and monitored to ensure
compliance. This may involve developing waste management plans, implementing
new policies or regulations, and monitoring progress toward waste reduction and
recycling targets. Regular review and evaluation of the agreement can help identify
areas for improvement and ensure its effectiveness over time.

The literature addressed solid waste management in different ways, and several au-
thors analyzed the topic from the strategic, tactical, and operational side. Cerqueira-Streit
et al. [2] detail in their survey how waste management is a critical factor in turning the
circular economy into a profitable business. To address the complexity of waste manage-
ment processes, Cardoso et al. [3] propose a method based on a literature review and
apply evidence-based decision making to resolve conflicts in electronic waste management.
However, profitability can only be reached if the underlying waste management processes
are optimized. For a comprehensive review of the literature on strategic and tactical issues
in the management of solid waste, the readers are referred to the following surveys [4–6].

Combinatorial auctions (CAs) are a well-consolidated method to mathematically for-
malize and solve shared resource allocation problems between different actors. In particular,
they are useful when the bidder is interested in bidding not only on a single item but also
on a combination of them [7]. In recent years, we assisted a renewed interest in CAs as
methods to solve multi-actor problems in shared economy or for eco-sustainable service
systems. Triki [8] uses CAs to formalize and optimize the interactions among actors in
crowd shipping, where occasional drivers are considered and the winner determination
problem is used to solve the vehicle routing problem. The problem of allocating energy
storage to optimize social welfare and prices is addressed by Zhong et al. [9] using CAs.
In [10], the design of online CAs is considered when supply chain costs are considered. An-
other recent application of CAs is in the renewal energy industry and market. As illustrated
by the survey of Ehrhart et al. [11], the characteristics of complementary and substitute
relationships between renewal energy projects can be exploited by CAs. CAs show good
perspectives in circular economy, reverse logistics, and green supply chains. Ma et al. [12]
use CAs to improve the performances of an online used-car platform with the aim of social
welfare maximization and considering incentive compatibility conditions. The authors use
both price and non-price attributes in bid generation, such as environmental compliance,
service level, and car rating. CAs in the circular economy are also used in [13] to optimally
compute, through the winner determination problem, the reselling prices in secondary
markets. The remanufacturing of end-of-life products is the application case for an auto-
mated demand–supply matching negotiation algorithm proposed by Fernández et al. [14].
Reverse CAs are studied by Triki et al. [15] for real applications in food industries. In-
centives for recycling in the international supply chain is the topic addressed in the work
by Bimonte et al. [16], where the strategic decision is addressed with a Stackelberg game.
In [17], auctions are used to regulate the relations between a carrier and several shippers
in the waste collection process. Auction allocation and routing problems are solved by
metaheuristics. The paper proposes the auction framework as a carrier-centric pattern
in addition to solving synchronization issues. Differently, our proposal focuses on the
relations between the logistics operators and the sorting/recycling plant. The work in [18]
studies auctions for the battery recycling industry. The authors propose a multi-unit trade
reduction mechanism that is demonstrated to be efficient for resource allocation in the elec-
tric vehicle battery recycling market. The work is aimed at supporting the decision-maker
in evaluating policies for developing the EVBR market. In [19], a multi-objective approach
for the circular economy is proposed. The importance of using a similar approach to the
one presented in the previous paper is underlined in [20] where the literature on zero defect
manufacturing has been classified. The investigation on how to combine optimization
and negotiation to minimize recycling costs, taking into account the collection process
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and material sorting cost, has also been studied in [21] where the authors proposed a
mixed-integer linear formulation for the multiperiod planning problem.

We are interested in solution approaches that use market-based mechanisms, as de-
scribed in [22], negotiations, cooperation, and auctions. Auctions and CAs make it pos-
sible to formally describe the problem of assigning shared and limited resources among
customers and suppliers, as shown in [7]. Some applications can be found in flexible manu-
facturing [23], healthcare [24] and value creation in manufacturing [25]. Simulation is used
in [26] to study negotiation protocols in a closed supply chain and to assess reusing policies.
Ref. [27] consider the importance of multiple criteria analysis in waste collection. Another
study is presented in [17] in which waste collection is solved using an auction-based system.
The authors assume that the carrier plays the auctioneer role to decide on who wins the
bids and the corresponding payments, while the shippers are the bidders.

Notwithstanding the renewed interest in combinatorial auctions in applications such
as the shared economy and eco-sustainability, there are a few applications in waste recy-
cling and in particular bidding auction systems specifically designed to improve waste
management operations. In contrast, in our manuscript, we propose a model based on
combinatorial auctions able to efficiently allocate resources in the joint process of industrial
solid waste collection and sorting.

The remainder of the paper is as follows. Section 2 presents the mathematical models
of the two problems. Section 3 formalizes the negotiation-based approach to integrate these
models. Section 4 details the experiments and results; Section 5 provides the conclusions.

2. Models for Sorting and Logistics Operators

In this section, we model collection and sorting planning in an industrial solid waste
management system. The processes of the case studied are sketched in Figure 1 for transport
and in Figure 2 for sorting. Transport is carried out by a specialized logistics operator
that serves customers by transporting empty containers to their location and picking full
containers to be delivered to the sorting plant. Several industries produce mixed waste that
must be sorted. In particular, warehouses and transport operators are a source of recyclable
waste where different types of plastic and paper are grouped. In the analyzed sorting plant,
waste goes through a sorting cabin where it is visually inspected and separated into its
components. After several other sequential operations, the separated waste is transformed
into secondary raw material and can be sent to other processing plants.

Figure 1. Diagram of the process operated by the carriers.

Different technologies can be used to improve the automation and digitization phases
of the collection and sorting processes both at the operational and planning levels. Arebey
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et al. [28] surveyed how tracking technologies, such as RFID and GPS, could support
waste management. In particular, RFID and image recognition applied to bins are used
to track waste production and improve planning processes. Recently, Abdallah et al. [29]
surveyed the research literature considering artificial intelligence applications to municipal
waste management. Artificial intelligence and computer vision can be applied to sorting to
automatically separate waste [30]. In this context, our case study is related to an industrial
waste recycling network, where RFID is used to track the position of containers located in
customer locations or in a sorting plant.

Figure 2. Diagram of sorting plant with the main waste treatment phases from the input of solid
waste to secondary raw materials (SRM).

The sorting process is still not automated, and visual inspection coupled with manual
sorting at the cabin is performed. Customers, the logistics operator, and the sorting operator
are connected through email and the Enterprise Resource Planning (ERP) system. The
planning of the two processes is scheduled every week/month independently by the
sorting and the logistics operators. This leads to peaks in daily sorting operations because
the customers interact directly only with the logistics operator. In the studied case, only a
not formally specified interaction between logistics and sorting operator occurs, mostly by
phone call, to synchronize transports with sorting operations.

Starting with these premises, we decided to focus on negotiation as a way to manage
our waste management problem. In particular, the decision process that needs optimization
and is studied in this paper is as follows. Business customers establish contracts with
recycling operators. They generate waste during their business processes, which is stored
in local buffers (e.g., containers). Once the buffers are full, a recycling request is generated
to the logistics operator in charge to define a transportation plan. Once the transportation
schedule is established and communicated to the sorting operator, the latter can plan the
sorting operations at the plant. The plant operates sequential sorting stations that require
setup and staffing. Additionally, waste buffers have limited capacity and incur occupancy
costs. After the sorting/recycling operations, the recycled material can be directed to
secondary raw material markets. Although the planning of these two subproblems (col-
lection and sorting) is usually completed sequentially and separately, this study proposes
an effective method to optimize and integrate both planning phases. We use an improved
auction-based scheme to solve the sorting and collection problems in an integrated way and
obtain an optimal multiperiod schedule for the two sub-processes. In particular, concerning
the approach described in [1], the bid generation scheme is designed to produce a more
robust transport plan and thus greater opportunities for the sorting operators to optimize
the sorting plan.

The sorting operator aims to minimize the cost function of the sorting operations in
the plant formed of variable and fixed components. The variable component considers
both sorting and inventory costs based on the amount of commodity processed, while the
fixed component considers the setup cost of the working stations involved. In fact, the
model is a variant of lot sizing applied to a reverse logistics problem.
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The commodity to be sorted in the sorting plant must be moved from waste generation
points, where customer demands are assumed to be generated; to this end, a logistics
operator aims to minimize such collection cost by optimally routing a fleet of vehicles. To
model its decision problem, the logistics operator has to estimate some core parameters
such as the planning time horizon and its discretization in time slots, where customers are
located, their demands, the unit collection cost (time and customer dependent), the fleet of
vehicles, and their capacities.

The connection between the two problems (collection and sorting) is that the optimal
quantity at to be sorted in each time slot t should be equal to the total amount of commodity
collected by the logistics operator from customers in the same time slot. In the following,
we first define the formulation of the two problems, and next, we show how to tunnel
information between the latter.

2.1. Formulation of the Sorting Problem

The sorting problem aims to define the optimal amount of waste to be sorted within a
planning horizon, discretized into |Ts| time slots, for every sorting facility. To this end, we
introduce a nonnegative variable xjt defining the quantity of material to be sorted in time
slot t ∈ Ts, and a binary decision variable yjt that is equal to 1 if the sorting station (facility)
j ∈ J is opened in t ∈ Ts and 0 otherwise. Opening a sorting facility in t ∈ Ts implies
a setup time, as detailed in the following; therefore, it is important to correctly evaluate
which facilities must operate and which must be closed. Ijt is the level of inventory of the
upstream buffer of station j ∈ J in time slot t ∈ Ts with the condition Ij0 = 0, ∀j ∈ J. Here
are the parameters:

• cs
t , f j, hj are the variable sorting costs in time slot t ∈ Ts, the fixed setup time for station

j ∈ J, and the inventory holding cost for station j ∈ J, respectively;
• at is the quantity of material arriving at the sorting plant at time slot t ∈ Ts;
• Ej, Mj are the minimum and maximum allowed sorting quantity for station j ∈ J,

respectively, in case it is activated;
• α is the loss factor considering the mean percentage of material that is discarded after

selection at each sorting stage;
• LCj is the inventory capacity for station j ∈ J.

The P1 sorting model is the following:

min Zs = ∑
j∈J

∑
t∈Ts

cs
t · xjt + ∑

j∈J
∑

t∈Ts

f j · max(0, yjt − yj,t−1) + ∑
j∈J

∑
t∈Ts

hj · Ijt (1)

s.t.

Ejyjt ≤xjt ≤ Mjyjt, ∀j ∈ J, ∀t ∈ Ts, (2)

I1,t =I1,t−1 + at−1 − x1,t−1, ∀t ∈ Ts \ {0}, (3)

Ij,t =Ij,t−1 + αxj−1,t−1 − xj,t−1, ∀t ∈ Ts \ {0}, j ∈ J \ {1}, (4)

Ijt ≤LCj, ∀j ∈ J, t ∈ Ts, (5)

xjt ≥0, yjt ∈ {0, 1}, ∀t ∈ Ts, ∀j ∈ J. (6)

Equation (1) is the objective function of the problem aiming at minimizing the sorting
cost, the setup time cost, and the inventory holding cost. Constraint (2) limits xjt values.
Constraints (3) and (4) define the inventories. We note that (3) embeds the quantities to
be collected from the customers. Constraints (5) limit the inventory level to a maximum
capacity, while (6) defines the variable domains.
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Model P1 has a nonlinearity in the objective function that can be easily linearized
as follows:

min Zs = ∑
j∈J

∑
t∈Ts

cs
t · xjt + ∑

j∈J
∑

t∈Ts

f j · ȳjt + ∑
j∈J

∑
t∈Ts

hj · Ijt (7)

s.t.

Ejyjt ≤xjt ≤ Mjyjt, ∀j ∈ J, ∀t ∈ Ts, (2’)

I1,t =I1,t−1 + at−1 − x1,t−1, ∀t ∈ Ts \ {0}, (3’)

Ij,t =Ij,t−1 + αxj−1,t−1 − xj,t−1, ∀t ∈ Ts \ {0}, j ∈ J \ {1}, (4’)

Ijt ≤LCj, ∀j ∈ J, t ∈ Ts, (5’)

xjt ≥0, yjt ∈ {0, 1}, ∀t ∈ Ts, ∀j ∈ J. (6’)

ȳjt ≥yjt − yj,t−1, ∀j ∈ J, t ∈ Ts, (8)

ȳjt ≥0, ∀j ∈ J, t ∈ Ts. (9)

2.2. Formulation of the Collection Problem

In the collection problem, we have a set I of customers who require the collection of
quantities qi, ∀i ∈ I, of waste material to be sorted/recycled during the time horizon Tc
with Tc ≤ Ts. The logistics operator uses a fleet H of vehicles, which each have a limited
capacity C. The cost cc

it measures the expenses for the logistics operator to collect the
waste commodity from customer i ∈ I in time slot t ∈ Tc. The binary decision variable
ziht ∈ {0, 1} is equal to 1 if customer i ∈ I is serviced by vehicle h ∈ H in time slot t ∈ Tc,
and it is zero otherwise. The resulting collection model P2 is the following:

min Zc =∑
i∈I

∑
h∈H

∑
t∈Tc

cc
it · ziht (10)

s.t.

∑
h∈H

∑
t∈Tc

ziht =1, ∀i ∈ I, (11)

∑
i∈I

qi · ziht ≤C, ∀h ∈ H, ∀t ∈ Tc, (12)

ziht ∈{0, 1}, ∀i ∈ I, h ∈ H, t ∈ Tc. (13)

Equation (22) is the objective cost function. Constraint (11) imposes that each customer
has to be serviced only once, while (12) defines capacity restrictions for each vehicle in each
timeslot. Constraint (13) defines the domain of variables ziht. While model P1 is a variant
of the lot sizing model and a variant of the model presented in [21], model P2 defines a
multiperiod allocation problem which can be considered a variant of the knapsack problem.

3. The Negotiation-Based Approach

As mentioned previously, the two models are interdependent because the quantity to
be sorted in each time slot is determined based on the decision on when to collect materials
from customers. In particular, the binding between the two models is defined by the
following equation:

at = ∑
i∈I

∑
h∈H

qi · ziht. (14)

Since the two problems are addressed, in general, by two different decision-makers, a
negotiation-based approach can support the selection of a solution, taking into account the
distinct objectives of the two actors of the system. Negotiation-based approaches have been
applied in several forms in the literature (see, e.g. [7]) to address different applications.
In this paper, we solve the problem by proposing a negotiation scheme with an auction
model depicted in Figure 3 and described in the following. The interactions among the
actors start from the customers and the sorting operator sides simultaneously; indeed, the
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first send requests qi and the latter send the available capacities over time. Once all the
data are received, the logistics operator defines the bids and sends them to the sorting
operator. Then, the plant operator, based on the bids received, chooses the best bid solving
a winner determination problem. Once the best bid is made, the sorting operator sends
this information to the logistics operator who prepares the collection plan and informs the
customers of the collection schedule. In the following, we detail how bids are generated
and how the winner determination problem is defined.

Send requests qi
Sends available capacities in 

each time slot
Collects data

Generatares bids
Solves winner 

determination problem

CUSTOMERS LOGISTICS OPERATOR

Sends the optimal bid to 
the logistics operator

SORTING OPERATOR

Prepares collection plan and 
acknowledges customers

Figure 3. Scheme of the auction-based negotiation.

3.1. The Bid Generation Problem

The bid is the vector (γ, τ) where γ is a row vector of dimensions |I| that corresponds
to the quantities to be processed from each customer and τ is a vector of dimensions |I|
of the time slots chosen in the bid to serve each customer. A set of K bids is generated by
iteratively solving the problem P2. In particular, at each iteration k, the solution obtained in
iteration (k − 1) is totally or partially prohibited in problem P2 by adding a specific con-
straint in the k-th bid generation problem. The proposed bid generation scheme guarantees
different bids that are feasible for the logistics operator and near-optimal. At each iteration
k, let Nk−1 = {(i, h, t) : z∗iht = 1} in bid k − 1 (clearly N0 = ∅). To generate a bid at iteration
k ≥ 1, we introduce a tabu list Lk

iht such that

Lk
iht =


0, if k = 1,

Lk−1
iht − 1, if k > 1 and (i, h, t) ∈ Nk−1 and Lk−1

iht > 1,

r, if k > 1 and Lk−1
iht = 0.

List L acts as a tabu list; in fact, the idea is to prevent client i from being serviced by
vehicle h at time t in iteration k if it has been serviced by the same vehicle at the same
time in the previous iteration. This allows for diversifying the solutions associated with
the bids to be given in input to the collection problem in the next winner-determination
problem. However, in order not to possibly prohibit all the assignments of the previous
iteration, guaranteeing both diversification and intensification, we define an aspiration
criterion such that

ziht ≤ ρk
iht + ζk

iht (15)

where
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ρk
iht =

0, if Lk
iht > 0,

1, if Lk
iht = 0.

and

ζk
iht =


1, if Uni f orm(0, 1) > 1 − Z(k−1)

c −Z(k−2)
c

Z(k−2)
c

,

0, otherwise.

Parameter ζk
iht has the following effect: assume that the algorithm is processing it-

eration k in the bid generation problem. Let Z(k−1)
c and Z(k−1)

c be the optimal solution
value of the bid generation problem in iterations (k − 1) and (k − 2), respectively. The ratio
Z(k−1)

c −Z(k−2)
c

Z(k−2)
c

is the percentage of variation of the optimal objective of the bids associated

with the iterations mentioned. If the variation is positive and large, that is, the cost is
increased by a sufficiently large amount, the algorithm is not prone to intensify this solu-
tion; therefore, if an assignment that may restore a previous more profitable solution is
prohibited, the algorithm tries to activate an aspiration criterion to override the tabu list

status. As can be seen, if ρk
iht is zero and the ratio Z(k−1)

c −Z(k−2)
c

Z(k−2)
c

is large, 1 − Z(k−1)
c −Z(k−2)

c

Z(k−2)
c

is

small, say close to zero, and there is a greater chance that ζk
iht becomes 1 by its definition.

The overall problem to solve to find the k-th bid is the following.

min ∑
i∈I

∑
h∈H

∑
t∈Tc

cc
it · ziht + ∑

t∈Tc

max{0, [at − ∑
j∈J

(LCj − Ijt)]} (16)

s.t.

∑
h∈H,t∈Tc

ziht = 1, ∀i ∈ I, (17)

∑
i∈I

qi · ziht = at, ∀h ∈ H, ∀t ∈ Tc, (18)

at ≤ C, ∀t ∈ Tc, (19)

ziht ≤ ρk
iht + ζk

iht, ∀i ∈ I, ∀h ∈ H, ∀t ∈ Tc, (20)

ziht ∈ {0, 1}, ∀i ∈ I, ∀h ∈ H, ∀t ∈ Tc. (21)

Note that the objective function takes into account two components. The first com-
ponent is exactly the collection cost; the second part of the objective tries to infer the
state of occupancy of the resources that the sorting operator will use. In fact, the term
[at − ∑j∈J(LCj − Ijt)] penalizes scenarios in which there is no residual capacity in the sort-
ing facilities at time t. Instead, if at is smaller than the residual capacity at time t, then the
second term of the objective is zero. Note that even though this second term is nonlinear, it
can be easily linearized as follows:

min ∑
i∈I

∑
h∈H

∑
t∈Tc

cc
it · ziht + ∑

t∈Tc

Rt (22)

s.t.

∑
h∈H,t∈Tc

ziht = 1, ∀i ∈ I, (23)

∑
i∈I

qi · ziht = at, ∀h ∈ H, ∀t ∈ Tc, (24)

(25)
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at ≤ C, ∀t ∈ Tc, (26)

ziht ≤ ρk
iht + ζk

iht, ∀i ∈ I, ∀h ∈ H, ∀t ∈ Tc, (27)

Rt ≥ [at − ∑
j∈J

(LCj − Ijt)], ∀t ∈ Tc, (28)

Rt ≥ 0, ∀t ∈ Tc, (29)

ziht ∈ {0, 1}, ∀i ∈ I, ∀h ∈ H, ∀t ∈ Tc. (30)

3.2. The Winner Determination Problem

The winner determination problem starts from problem P1 and considers Equation (14).
To embed the bids into the model, we consider the following reformulation. The k-th bid
(γ, τ)k can be rewritten by introducing parameter qk

it, ∀i ∈ I, ∀t ∈ Tc, ∀k ∈ K, such that

qk
it =

{
qi, if customer i is serviced in timeslot t ∈ Tc in bid k,

0, otherwise.

Note that qk
it = 0, ∀t ∈ Ts \ Tc. Moreover, a bid selection binary variable uk ∈

{0, 1}, ∀k ∈ K, is needed such that

uk =

{
1 if bid k is selected,

0 otherwise.

Thus, Equation (3) can be rewritten as

I1,t = I1,t−1 + ∑
i∈I,k∈K

qk
i,t−1 · uk − x1,t−1 ∀t ∈ Ts \ {0} (31)

To ensure only one bid is the winner, the following constraint is added

∑
k∈K

uk = 1 (32)

The winner determination problem is then:

min Zc (33)

s.t.
Equations (2), (4), (5), (6), (31) and (32),
uk ∈ {0, 1}, ∀k ∈ K.

4. Experimental Results

The algorithm and the models have been implemented in Python 3.12.0 and solved with
GurobiTM on a Windows machine equipped with an Intel CoreTM i7-12700K @ 3.60 GHz,
12 core and 32 GB RAM. The instance used for experimentation is adapted from a real recycling
plant composed of two stations. The number of customers is 30. The collection time horizon
is 25 days; the sorting problem time horizon is 30 days. The cost of collection is set to a
uniform distribution such that cc

i ∈ [5, 15], while quantities are chosen uniformly at random
in the interval [3, 5], and the maximum capacity for trucks is fixed and equal to 10. The
variable selection cost cs

i is set to 3, while the setup cost is 5 and the inventory storage cost per
unit of quantity and time is set to 1. The inventory capacity is 50, while the minimum and
maximum production capacity for stations for a unit of time are 0 and 10, respectively. No
loss is considered, i.e., α = 1.
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Figure 4 reports the results when the algorithm is run with the number of bids gen-
erated ranging from 1 to 20. If we have only one bid, the logistics operator proposes its
optimal solution to the recycling plant that is used to solve the plant planning problem. In
that case, we have the minimum cost for the collection process and the maximum cost for
the sorting process. In the other cases, the winner determination problem defines the bid to
be selected. Figure 4a shows the number of the selected bids. The objective values of the
collection and sorting problems are reported in Figures 4b and 4c, respectively. The total
cost, that is, the sum of the two objectives, is reported in Figure 4d.

Figure 4. Results obtained by the proposed approach. (a) shows the number of bids generated and
the number of selected bids; (b) shows the number of bids generated and the collection cost; (c) shows
the number of bids generated and the sorting cost; (d) shows the number of bids generated and the
total cost.

As can be seen by analyzing the results, as the number of bids generated by the
algorithm increases, the collection cost tends to increase as well (see Figure 4b), while the
sorting cost shows a nonincreasing behavior (see Figure 4c). However, in general, they
produce a decreasing total cost. In fact, even though the percentage of increase and the
percentage of reduction of the two cost functions are substantially the same, that is, about
10%, the total cost exhibits a 5% overall reduction (see Figure 4d).

For comparison, in Figure 5, we report the results obtained by implementing a com-
peting approach [1] on the same testbed. As can be seen, while the sorting cost decreased
with the increasing number of bids and the collection cost was reduced instead, similarly
to what happened with our approach, the overall total cost increased by about 2%. This
shows the effectiveness of the ingredients used in the proposed algorithm and the models
to improve the overall efficiency of the system.
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Figure 5. Results obtained by a competing approach. (a) shows the number of bids generated and the
number of selected bids; (b) shows the number of bids generated and the collection cost; (c) shows
the number of bids generated and the sorting cost; (d) shows the number of bids generated and the
total cost.

Further Comparison with an Integrated Model and Increasing Instance Size

In this section, we compare the proposed model with a reference integrated model
defined in a single decision-maker environment where the decision-maker optimizes
simultaneously the two (i.e., collection and sorting) problems, minimizing the objective of
the sorting problem. The model (denoted P3) is formed by the constraints of both model P1
and model P2 and is detailed in the following.

minZc = ∑
i∈I

∑
h∈H

∑
t∈Tc

cc
it · ziht

s.t.

Ejyjt ≤ xjt ≤ Mjyjt, ∀j ∈ J, ∀t ∈ Ts,

I1,t = I1,t−1 + ∑
i∈I

∑
h∈H

qi · zih,t−1 − x1,t−1, ∀t ∈ Ts \ {0},

Ij,t = Ij,t−1 + αxj−1,t−1 − xj,t−1, ∀t ∈ Ts \ {0}, j ∈ J \ {1},

Ijt ≤ LCj, ∀j ∈ J, t ∈ Ts,

∑
h∈H

∑
t∈Tc

ziht = 1, ∀i ∈ I,

∑
i∈I

qi · ziht ≤ C, ∀h ∈ H, ∀t ∈ Tc,

xjt ≥ 0, yjt ∈ {0, 1}, ∀t ∈ Ts, ∀j ∈ J,

ziht ∈ {0, 1}, ∀i ∈ I, h ∈ H, t ∈ Tc.
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We tested P3 in the same test scenario used before and found that P3 produces an
optimal solution value of 542, which is the same solution value as that found by our
approach when 20 bids are generated.

Repeating the same test considering the variant of P3 where the objective function is
replaced by the objective of the collection problem P1 leads to the same results as the one
obtained when only one bid is allowed.

To complete our experimental campaign, we tested our approach by increasing the
instance size considering 30 and 70 customers. The number of bids is 20. The results of
these tests are reported in Table 1. As can be seen in the last column, the gain in terms of
the total cost (the sum of collection and sorting costs) of our approach compared to the
competing approach [1] increases with an increasing number of customers, passing from
4.9% (30 customers) to 9.4% (70 customers), indicating the effectiveness of our approach.

Table 1. Test for an increasing number of customers.

Customers Collection Time
Horizon (Days)

Sorting Time
Horizon (Days)

Collection
Cost

Sorting
Cost

Gain in the
Total Cost

30 25 30 175 542 4.9%
40 25 30 222 721 5.4%
50 30 35 278 812 7.5%
60 30 35 329 1025 8.9%
70 35 40 389 1144 9.4%

5. Conclusions

This paper addressed a problem that arises in waste management when recycling
operations must be optimized while coordinating a logistics operator that must minimize
the collection cost of the commodity to be disposed of and a recycling plant to minimize
sorting operations. We formulated two multiperiod planning problems and proposed a new
negotiation scheme based on auctions. The results show that the approach is promising, as
the total cost can be lowered when the number of bids generated by the logistics operator
increases. As a follow-up of this approach, further large-scale tests are planned, and
additional details in the formulations of the two problems will be considered.

This research has two main shortcomings. The first is that the proposed methodology
needs the actors to be integrated with an information system (a virtual marketplace) where
the bids can be exchanged automatically. A second flaw is that we did not consider the
possibility of having the participation of spot actors, such as occasional logistics operators.
Future development of the paper could consider these kinds of extensions to our proposal
as well as the opportunity to measure the robustness of the approach to varying the input
to the problem.
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27. Nowakowski, P.; Król, A.; Mrówczyńska, B. Supporting mobile WEEE collection on demand: A method for multi-criteria vehicle
routing, loading and cost optimisation. Waste Manag. 2017, 69, 377–392. [CrossRef]

28. Arebey, M.; Hannan, M.; Basri, H.; Begum, R.; Abdullah, H. Integrated technologies for solid waste bin monitoring system.
Environ. Monit. Assess. 2011, 177, 399–408. [CrossRef]

http://dx.doi.org/10.3390/logistics7030066
http://dx.doi.org/10.3390/logistics7040074
http://dx.doi.org/10.1016/j.cor.2013.10.006
http://dx.doi.org/10.1016/j.jclepro.2019.04.323
http://dx.doi.org/10.1016/j.wasman.2023.10.006
http://dx.doi.org/10.1287/ijoc.15.3.284.16077
http://dx.doi.org/10.1016/j.jclepro.2021.127057
http://dx.doi.org/10.1109/TSG.2020.2986468
http://dx.doi.org/10.1109/JSAC.2020.2971810
http://dx.doi.org/10.1016/j.enpol.2024.113988
http://dx.doi.org/10.3390/su151612512
http://dx.doi.org/10.1016/j.asoc.2021.107308
http://dx.doi.org/10.1504/IJPM.2023.129555
http://dx.doi.org/10.1002/bse.3337
http://dx.doi.org/10.1016/j.trb.2019.12.004
http://dx.doi.org/10.1080/00207543.2022.2157904
http://dx.doi.org/10.1016/j.procir.2016.04.166
http://dx.doi.org/10.1080/00207543.2019.1605228
http://dx.doi.org/10.1016/S0925-5273(03)00114-2
http://dx.doi.org/10.1016/j.jmsy.2012.10.002
http://dx.doi.org/10.1016/j.procir.2017.03.313
http://dx.doi.org/10.1016/j.wasman.2017.07.045
http://dx.doi.org/10.1007/s10661-010-1642-x


Algorithms 2024, 17, 380 15 of 15

29. Abdallah, M.; Talib, M.A.; Feroz, S.; Nasir, Q.; Abdalla, H.; Mahfood, B. Artificial intelligence applications in solid waste
management: A systematic research review. Waste Manag. 2020, 109, 231–246. [CrossRef] [PubMed]

30. Alawi, A.E.B.; Saeed, A.Y.; Almashhor, F.; Al-Shathely, R.; Hassan, A.N. Solid waste classification using deep learning techniques.
In Proceedings of the 2021 International Congress of Advanced Technology and Engineering (ICOTEN), Taiz, Yemen, 4–5 July
2021; pp. 1–5.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.wasman.2020.04.057
http://www.ncbi.nlm.nih.gov/pubmed/32428727

	Introduction and Literature Review
	Models for Sorting and Logistics Operators
	Formulation of the Sorting Problem
	Formulation of the Collection Problem

	The Negotiation-Based Approach
	The Bid Generation Problem
	The Winner Determination Problem

	Experimental Results
	Conclusions
	References

