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Motivations and Summary

Molecular self-diffusion in heterogeneous porous media can be used to

reconstruct statistical properties of the disorder

« Diffusion NMR is a non-invasive experimental tool to measure ordinary and
anomalous diffusion in biological tissues and porous media

 Often diffusion show non-Gaussian anomalies, i.e. the diffusion coefficient D

depends on time in a certain -window. Saxton M.J., Biophys. J. 92 (2007)
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Steinhardt P.J., Nelson D.R., Ronchetti M., Phys. Rev. B 28 (1983)




_ Nuclear Magnetic Resonance

NMR for dummies

= S 607
NMR is non-invasive experimental tool to provide \_7/

a 3d measure of nuclear magnetic moments (e.g. H*) density

in biological tissues and materials and related relaxation times
of energy popu]aﬁons MAGNETIC Piscussion

These quantities can be used both for
spectroscopy and imaging

Particular NMR experimental protocols can
implemented to measure H* ions diffusion:
Pulse Gradient Spin Echo (PSGE) sequence




| Diffusion NMR

Main ideas of anomalous diffusion MRI

« Study of water diffusion in heterogeneous materials has great importance
in many interdisciplinary fields (e.g. biology, medicine in vivo, brain science)

 NMR + generalized diffusion theory, e.g. Continuous Time Random Walk
(CTRW), provides a natural, powerful and non-invasive tool to study structure
in biological tissues and disordered materials

« dNMR permits both to characterize the spatial features of obstacles
studying sub-diffusion effects

[For chemio-physical properties detected through pseudo-superdiffusion
induced by gradients of magnetic susceptibility - See M Palombo talk in "Brain” satellite meeting]

M Palombo, AG, S De Santis, C Cametti, G Ruocco, S Capuani, J. of Chem. Phys., 135, 034504 (2011)
M Palombo, AG, S De Santis, S Capuani, J. of Mag. Res., 216, 28 (2012).




| Diffusion NMR: PFG techniques

Diffusion Magnetic Resonance Imaging (dMRI)

One can encode spatial information of different points in the NMR signal
through static and uniform gradients G of the polarizing field:
After a time t the phase of the spins depend on their position r.

In principle we can write

B(F)=%B,+G T = w(F)=y(B, +GF)

Larmor frequency depends on the position r: with appropriate
experimental protocols one can use phase differences to detect
displacements and then study random motions.




| Diffusion NMR: PFG techniques

Pulse Gradient Spin Echo (PSGE) sequence
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Let us suppose that the spin at =0 isatrand at t=Ais at r’.

If & is small, the gradient after the first radiofrequency pulse gives a phase
shift ydg-r atr.

The gradient after the second radiofrequency which reverse the spins gives
a phase shift -yog-r’ at r'.

The net phase coefficient is therefore exp[iydg-(r-r’)]




| Diffusion NMR: PFG techniques

Therefore, neglecting R,, the attenuation of the signal due to diffusion is

S.(§) = [d’R- p(R,A)exp(ig - R)

—

where R =7 -7 and § = 88 and

™,

‘usion in time A

p(R,A) =propagator of the di
E.g. in case of ordinary Gaussian diffusion in that time window

S\(@)= [ d’R- p(R,A)exp(ig - R) = exp(-DAg’)

e.g. DTI= Diffusion Tensor Imaging




| Non-ordinary diffusion and NMR signal
CTRW: how to measure a by NMR technique

a: A varying PGSE

TR/TE = 3000/8 ms

0 =2ms;

Fory:

A=80ms; g=(24 + 960) mT/m
Forao :

A=(10+1300) ms; g =120 mT/m

Intensita’ Segnale (a.u.)

" o N
A(s)

S(A) = S(0)expl- K, ¢°A°)

Palombo M. et al., J. Chem. Phys. 135, 034504 (2011




Non-ordinary diffusion: constrained diffusion

Ordinary materials: CLT

Diffusion in disordered systems with
characteristic constraining length scale

0.010f —— Linear dependence

0.008 |

Reduced diffusion coefficient

0.006 due to porosity & tortuosity & Typical in most of disordered systems
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« At small f free ordinary diffusion: p(R,t) Gaussian
« Atlarge t hindered ordinary diffusion (caging effects
due to heterogeneities are averaged out): p(R,t) Gaussian

At intermediate t effective anomalous sub-diffusion
sensibility to heterogeneities)
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-ordinary diffusion: anomalous diffusion

Violation of Central Limit Theorem

1) The value of transport coefficients are not constant: no characteristic scale

2) The very laws of Brownian motion are modified in various ways: memory
effects and time correlations, broad resting time pdf, etc.: e.g. CTRW

D = D(t) ] [MSD o« {¢, oc<1]

100
time (ms)

200 300 400 500
time {(ms)

Bouchaud J.P., Georges A., Phys. Rep. 195 (1990)




Anomalous diffusion in 3D crowded media: simulations

Porous media arising from regular and disordered sphere packing

Q= Bond-orientational order parameters

SE
Occupied volume

It quantifies degree of
rotational symmetry

[
o e > (¥, .0, )>|2
m=-1

1/2

random config.

/’\\\

“|\20+1 4

1 (...) = average over all n.n. pairs i, j

Q= Q6system/Q6fcc

Sphere packing

O = Vsphere inunit cell
unit cell
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Real samples for dNMR:
30, 20, 15,10, 6 um
polystirene spherical beads
in water: 0.35<®<0.56




From random fluid to disordered poly-crystal through jamming transition
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Fraction of configurations close to crystal Fraction of particles with local @>@;
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Densest disordered configurations: frustrated grains locally arranged in impossible
ordered configurations (e.g. icosahedral) creates large heterogeneities.

Wide distribution of voids characteristic length scales which reflects disorder
properties: multi-scale hindering

Wide distribution of voids Broad distribution of cep
MAITI M.; LAKSHMINARAYANAN A.; SASTRY‘ diffusing molecules waiting ‘ SUb-dIfflusmn
' ' o<

S.. The European Physical Journal E, 2013, .
36.1:1-13. times

L. Granasy et al. Nature Materials 3, 645-650 (2004)



Molecular diffusion in the hindered regime can describe these
properties and monitor structural transitions

o estimation from simulations
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Anomalous diffusion in 3D crowded media: NMR experiments

From geometrical structure characterization
to anomalous diffusion properties:

&l comparison of Monte Carlo simulation
£ 4 results to dNMR experimental data
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| conclusion

Our computational data indicate that o, which quantifies hierarchical
caging effects on diffusion process, is affected by both the density (®P)
and the spatial distribution (Q) of obstacles:

o =0o(Q, D)

o value quantifies global structural complexity much better than
tortuosity parameter O,=®,/®,. It enables a classification of different
kinds of disorder and it allows to monitor structural transitions.

We demonstrated that o can be measured by non invasive and non
destructives diffusion NMR techniques.

Our NMR experimental results, obtained in packed polystyrene micro-
sphere systems, fully confirm simulation results.

The present work suggests that o may be used to quantify unresolved
effects due to heterogeneities and disorder in soft materials and living
tissues.




