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Abstract. For a better understanding of Spitzer-Härm closure restrictions and for estimating
the relevancy of this expression when collisionnality decreases, an effort is done in developing
simple models that aim at catching the physics of the transition from conductive to free-
streaming heat flux. In that perspective, one-dimensional particle models are developed to
study heat transfer properties in the direction parallel to the magnetic field in tokamaks. These
models are based on particles that carry energy at a specific velocity and that can interact with
each other or with heat sources. By adjusting the particle dynamics and particle interaction
properties, it is possible to generate a broad range of models of growing complexity. The simplest
models can be solved analytically and are used to link particle behavior to general macroscopic
heat transfer properties. In particular, some configurations recover Fourier’s law and make
possible to investigate the dependance of thermal conductivity on temperature. Besides, some
configurations where local balance is lost require defining non local expression for heat flux.
These different classes of models could then be linked to different plasma configurations and
used to study transition from collisional to non-collisional plasma.

1. Introduction
Heat transport in the presence of a temperature gradient imposed by heat reservoirs is a classical
problem in the physics of plasmas, that has been tackled over decades by different approaches.
In order to improve heat transfer modeling in weakly collisional plasma, the development of so
called “toy models” is of a great interest. These models have the goal of catching the specificities
of different regimes of heat transfer in the simplest way. In this paper, we focus on heat transfer
in the direction parallel to the magnetic field in tokamak plasma. These plasmas are known to
be weakly collisional, however, the computation of the heat flux in these plasma often relies on
Spitzer-Härm expression [1] of the heat flux that is based on a strong collisionality assumption.
In fact, this closure equation is used in the fluid approximation where local balance should
be verified. In order to account for the departure from local balance at high temperature, the
Spitzer-Härm formulation is sometime adjusted. Many examples of these flux limiter corrections
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adjusting the flux expression to work at low collisionalities can be found in the literature [2; 3].
In this manuscript we aim at revisiting this problem by considering very simple models that
epitomize the minimal ingredients for reproducing some general properties that are known to
characterize the diffusive as well as the ballistic regimes typical of heat transfer in plasmas.

Far from a complex kinetic treatment, our models rely on particles that move along a closed
magnetic field line and that exchange energy with each other. They can also interact with heat
sources. In our approach, the properties of the tokamak magnetic field line are simplified and
we consider that the magnetic field is constant on the field line. By comparison with a tokamak,
one can consider that all the particles are passing and trapped particles are not considered.
The models implemented in this work can be sorted in two categories. The first ones that
will be presented in section 2 consider particles traveling with a constant velocity. The second
ones illustrated in section 3 assume that particle velocities are linked to their respective energy
following the relation v = A

√
E. We further show that these two models can be related one to

another by a suitable relation.
This particle models could be studied in parallel with the kinetic treatment performed two

decades ago to study transition from strongly collisional to collisionless regime [4; 5].

2. Models with constant particle velocity
The domain considered in the following model is a periodic line of length L where a heat source
of energy Es1 is located at xs1 and another one of energy Es2 is located at xs2 . On this line,
2×N particles are uniformly spread on the mesh {xi}i∈J1,NK, with xi = iL/N . Hence, on each
node of the grid xi are located two particles. One is travelling forward with velocity v+, one is
travelling backward with velocity v− with |v+| = |v−| = v. E+

i and E−i denote the forward (+)
and backward (−) moving particle volumic energies, respectively. The energy E of a particle is
given by the relation E = VE = SδxE, where V = Sδx is the volume of a particle, S is the
arbitrary surface of the particle pependicular to the direction considered so far and δx is the
characteristic length of a particle equal to the mesh length δx = L/N .

Figure 1. Sketch of the domain

The evolution law of the system relies on two steps: a dynamic step (t → t + 1/2) when
the particles jump from one node to the closest neighboring node according to the sign of their
velocity, and an interaction step (t+ 1/2→ t+ 1) during which the + and − particles that are
located on the same node exchange part of their energy. The evolution is given by Equations
2.1 where the t+1/2 step is denoted with a prime and the t+1 step is denoted with two primes.

Dynamic step Interaction step{
E+′
i = E+

i−1

E−′i = E−i+1

{
E+′′
i = E+′

i + E−′i −E
+′
i

α

E−′′i = E−′i + E+′
i −E

−′
i

α

(2.1)

α is a number that quantify the exchanged amount of energy between the particles. If α = 2, the
energy of the two particles after the interaction is the same. In this case, one can say that the
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interaction is total. Moreover, when the particles pass through the nodes xis1 and xis2 where the
heat sources are located, they take the energy of the source. In stationary conditions, we have
for all i, E±′′i = E±i . Hence, using Equations (2.1), the solution can be obtained by iterating
equations (2.2) with the “boundary conditions” E±is1 = Es1 and E±is2 = Es2.{

E+
i = E+

i−1 + ∆Ei
E−i = E−i+1 −∆Ei

with ∆Ei =
E−i+1−E

+
i−1

α (2.2)

From recursive serie analysis, one can prove that the solution takes the form E+
i = ai + b

and E−i = ci + d. Reporting these expressions in Equations 2.2 and considering the boundary
conditions, one obtains the value of a, b, c and d:{

E+
i = Es1−Es2

is1−is2+(2−α) · i+ Es2·is1−Es1·is2+Es1·(2−α)
is1−is2+(2−α)

E−i = Es1−Es2
is1−is2+(2−α) · i+ Es2·is1−Es1·is2+Es2·(2−α)

is1−is2+(2−α)

for i ∈ Jis1, is2K (2.3)

It is also possible to compute the energy exchanged with the source at each time step. For
instance, for source s1, this energy increment is given by the relation

δE = V ·
(
2Es1 − E+′

is1
− E−′is1

)
= V

(
2Es1 − E+

is1−1 − E
−
is1+1

)
(2.4)

Also, since Es1 = E−is1 = E+
is1

, the expression of the δE can be expressed as

δE = V ·
{

(E−is1 − E
+
is1−1) + (E+

is1
− E−is1+1)

}
(2.5)

One notices from Equation 2.2 that the quantity ξi = E+
i−1 − E

−
i verifies ξi+1 = ξi = ξ. This

quantity is conserved wherever the particles interact with each other and do not interact with
the sources. These subdomains are denoted with the letter A and B on Figure 1. Consequently,
the energy exchanged with the source s1 can also be written as δE = V(−ξA + ξB). If we divide
this energy by the time step δt = δx/v and by the surface S, one can determine the heat flux q
by

q =
δE

S · δt
= v(−ξA + ξB) = qA + qB (2.6)

Using Equations 2.3 gives the following expression for qB

qB = v · ξB = v(E+
is1
− E−is1+1) = v · (Es1 − Es2) (1− α)

is1 − is2 + (2− α)
(2.7)

Besides, one can calculate the energy gradients,

∇E± =
E±i+1 − E

±
i

xi+1 − xi
=

1
δx
· Es1 − Es2
is1 − is2 + (2− α)

(2.8)

Reporting equation 2.8 into Equation 2.7 gives

qB = −(α− 1) · δx · v · ∇E± (2.9)

As noticed previously, the case where α = 2 is of particular interest since it implies a
thermalization between the + and − particles. This condition guarantees local equilibrium,
i.e. E+

i = E−i . This balance leads to defining the temperature as T ∼ E±. The heat flux is then
expressed by the standard Fourier law for heat conduction : q = −vδx∇T = −κ∇T . Moreover,
this expression is compatible with the standard derivation of heat conductivity [6]:

κ = kBnλvth (2.10)
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where λ is the mean free path, vth is the thermal speed, kB is Boltzmann constant and n is the
plasma density. In the case where α = 2, the equivalent mean free path is δx since thermalization
occurs at the lattice scale. v plays the role of the thermal speed.

For α 6= 2, E+
i 6= E−i and it is not possible to define local balance at the mesh scale.

However, if we define Ē = (E+ + E−)/2, we have a Fourier’s like expression for the heat flux
that is q = −v(α − 1)δx ∇Ē. In this case, we have κ = v(α − 1)δx. To be coherent with the
usual derivation of heat capacity, one should find that the equivalent mean free path in this case
is λ = (α − 1)δx. In fact, the interaction rule guarantees an exponential decay to equilibrium
after a characteristic number of interactions n = α − 1 and thus a characteristic decay length
compatible with the above expression for the mean free path.

For α going to infinity, the + and − particles almost do not interact with each other. A
standard collisionless regime is then expected. Indeed, using Equations 2.3, one can find directly
that ∇E± → 0. Hence, in the domain B of Figure 1 for instance, we have Es1 = E+ 6= E− = Es2
and there is no local equilibrium. As expected, the mean free path tends to infinity and the
particle behavior is ballistic. Moreover, making α→∞ in Equation 2.7 gives q = v(Es1 − Es2)
which is compatible with the ballistic expression of heat flux.

On Figure 2 are plotted results for α = 2 and α = 30. In the first case, one can notice that
E+ = E− = Ē that defines local equilibrium.

Collisional (α = 2) Intermediate (α = 15) Ballistic (α = 103)

Figure 2. Simulations performed with constant velocity for different values of α. E+ (circles),
E− (triangles) and Ē (solid thick line). The sources are located at x = 5 and x = 15. Their
respective energies are 3 and 1. The length of the domain is 20. The number of particles is
2× 50

To go further, since the quantity λ = (α − 1)δx plays the role of mean free path, it can be
interesting to introduce also a dependance of α on the energy. This is done by considering the
following law for α:

αi = 2 ·
(

max(E+
i , E

−
i )

Eref

)r
(2.11)

In this expression, Eref is chosen small enough to ensure that the energy ratio is always larger
than one such that α > 2. r is a positive real number. The idea is to consider the case where
α� 1 yielding the approximation λ = δx(α−1) ≈ 2δx

(
max(E+

i , E
−
i )/Eref

)r ∝ Eir. For plasma
physics, the case where r = 2 is of particular interest since Coulombian interactions between
plasma particles give a mean free path proportional to the energy square. The assumption
α � 1 does not imply that collisionless cases are the only ones considered. Indeed, as long as
λ� L⇔ (α−1)� N where L is the domain legnth anf N the number of interactions undergone
by a particle as it travels through the domain, the model can be supposed to be collisional.

We are interested in finding analytical solutions for this system. We will solve it in the domain
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B on Figure 1 where E+ > E−. The system to solve is then
E+
i = E+

i−1 +
E−i+1−E

+
i−1

2·(E+
i−1/Eref)r

= E+
i−1 + ε · (E−i+1 − E

+
i−1)

E−i = E−i+1 −
E−i+1−E

+
i−1

2·(E+
i−1/Eref)r

= E−i+1 − ε · (E
−
i+1 − E

+
i−1)

(2.12)

where ε = 1/α� 1. One must notice that the numerator of the exchange term can be developped
as

E−i+1 − E
+
i−1 = E−i+1 − E

+
i + (E+

i − E
+
i−1)

= E−i+1 − E
+
i + ε · (E−i+1 − E

+
i−1)

≈ E−i+1 − E
+
i = ξ = constant

Hence, the problem is reduced to solving recursive Equation 2.13 for E+
i :

E+
i = E+

i−1 +
B

(E+
i−1)r

with B = ξ · Erref/2 (2.13)

An approximate solution is

E+
i =

(
E1+r
s1 + (i− is1) ·B · (1 + r)

) 1
1+r (2.14)

The unknown B is determined using ξ = E−i − E
+
i−1 = 2B/Erref and E−is2 = Es2. Reporting in

Equation 2.14 for i = is2 − 1, one find

2B/Erref = Es2 −
(
E1+r
s1 + (is2 − 1− is1) ·B · (1 + r)

) 1
1+r (2.15)

Solving equation 2.15 gives B, ξ and finally the heat flux q. The simulation results are compared
with the analytical solution on Figure 3. One expects to find a good agreement between the
simulation results and the analytical solution in the cases where α � 1. For the first case, we
have chosen Eref = 0.5, E ∈ [2, 5] and r = 2 hence α ∈ [16, 100] � 1. The hottest particles
will thus require about 100 interactions to thermalize. The number of particles used in the
simulation is N = 2 × 3000. Consequently, each particle undergoes 3000 interactions when it
covers the domain. Since 3000� 100, this case can then be considered as a collisional case, that
is λ � L. In fact, on Figure 3,a, one can notice that for all i, E+

i ≈ E−i . In the second case,
we choose the same parameters except that we limit the number of particles to 300. Thus, the
relation λ ∼ L applies and the case is not collisional. One can notice the departure between E+

and E− on Figure 3,b

3. Models with non-constant velocity
Unlike the previous models where the velocity of particles is constant, a dependancy of velocity
on the energy is added such that v± = A

√
E±. The previous energy can now be seen as the

particle’s kinetic energy. In the following simulations, we consider the same domain as described
on Figure 1. Particles are randomly placed in the domain with a given initial energy. One half
is moving forward and one half is moving backward. The algorithm detects when two particles
meet or when they meet the sources. In that case, particles exchange part of their energy with
the same rules as those described in the previous section. The particle’s velocity modules are
recalculated and their velocity sign is conserved. Since the sign of velocity is unchanged, particles
exchange energy with the two source alternatively. The U-turn is not allowed since making the

Theory of Fusion Plasmas: Joint Varenna–Lausanne International Workshop IOP Publishing
Journal of Physics: Conference Series 260 (2010) 012005 doi:10.1088/1742-6596/260/1/012005

5



(a) (b)

Figure 3. Simulation results with α ∝ max(E+, E−)2. Es1 = 5 and Es2 = 2. (a): Energy
profiles obtained when the simulation is performed with 2 × 3000 particles and guarantee that
for all i, 1/α� 1 and λ� L. (b): The simulation is performed with 2×300 particles for λ ∼ L.
Simulations results are plotted with symbols: E+ (triangles), E− (circles) and Ē (squares).
Analytical estimations corresponding to Equation (2.14) are plotted with lines.

two traveling directions equally probable would lead to defining an automatic local equilibrium.
As a consequence, some fluctuations apart, the rate of interaction with the two sources is the
same. This interaction rate is also characteristic of the rate with which particles interact with
each other. Analytical solutions are more difficult to obtain for this kind of model since there is
no well defined lattice for solving the recursive equations. However, in the collisional case where
E+ ≈ E−, an approximate solution can be found by solving Equations (2.1,2.12) on the lattices
{x+

i } and {x−i }, see Figure 4, where |x
+
i+1 − x

+
i | = |δt · v+

i | = δt ·A
√
E+
i

|x−i − x
−
i−1| = |δt · v−i | = δt ·A

√
E−i

(3.1)

Since E+
i ≈ E

−
i , one has ∀i, ∆x+

i ≈ ∆x−i−1 and one can define the lattice xi ∼ x+
i ∼ x

−
i , see

Figure 4. To determine the values of xi for all i, one has to solve ∆xi = Aδt
√
Ei constrained

by
∑

N ∆xi = L where the values of Ei are given by the solutions found in the previous section.
One has to remember that this approach is only valid for the collisional cases.

Figure 4. Lattice definitions in
the collisional approximation for
non-constant velocity

Figure 5. Energy profiles in the non-constant
velocity case for r = 2. Simulation results: E+

(triangles), E− (circles) and Ē (squares). Line:
analytical estimation. Number of particles: 2× 500.
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In particular, one finds {xi} in the case where the mean free path depends on the energy.
From Equation 2.14, the energy is given by the relation

Ei = (a+ b · i)1/(1+r) (3.2)

where a = E1+r
s1 − Bis1(1 + r) and b = B(1 + r). In the following, we just focus on the

domain B defined on Figure 1. In order to determine the value of xi, we use the approximation
∆xi/∆i ≈ dx/di. Hence,

dx = Aδt(a+ b · i)
1

2(1+r) di

xi − xs1 = Aδt
∫ i
is1

(a+ b · i)
1

2(1+r) di

xs2 − xs1 = Aδt
∫ is2
is1

(a+ b · i)
1

2(1+r) di

(3.3)

The solution of these equations is{
xi = c+ d(a+ b · i)

3+2r
2(1+r)

i = 1
b

(
xi−c
d

) 2(1+r)
3+2r − a

b

(3.4)

c and d can be determined using xis1 = xs1 and xis2 = xs2 . Reporting the expression of i in
Equation 3.2 gives

Ei =
(
xi − c
d

) 2
3+2r

(3.5)

Since in the collisional case, one has E(xs1) = Es1 and E(xs2) = Es2, the constant can be
determined and the energy is finally given by Equation 3.6.

E =

(
E

1/β
s1 +

E
1/β
s2 − E

1/β
s1

xs2 − xs1
(x− xs1)

)β
with β =

2
3 + 2r

(3.6)

In this collisional case where a lattice has been determined, the heat flux can be calculated
as in the previous section, see Equation 2.7. The velocity is now a function of the temperature:

q =
V·(E+

i −E
−
i+1)

S·δt = ` ·A
√
Ei

E+
i −E

−
i

xi+1−xi

= −A · ` · (α− 1)
√
Ē∇Ē

(3.7)

On Figure 5, a comparison between simulation results in the collisional case for r = 2 and the
above analytical estimation is plotted. The + and − particles energy are shown. One notices
that these two variables are almost equal which justifies the above approximations.

We also study the dependance of the heat flux on the energy in the case r = 2. To do so,
the number of particles is kept constant equal to 500. The energy of the source is chosen as
Es1 = 1.05 × E0 and Es2 = 0.95 × E0 where E0 is a parameter that describes the energy of
the system. We choose Eref = 0.8 and simulations are performed for values of E0 between 2
and 200. A particle undergoes approximately Ninter = 500 interactions as it travels from one
source to the other. Since α represents the number of interactions necessary to thermalize, the
regime is expected to be collisional for α = 2(E0/Eref)2 < 500. To make it clearer, we define
the collisionality ν∗ as ν∗ = Ninter/α. We are in a collisional regime if ν∗ > 1 that is E0 < 13.
For E0 > 13, the regime is ballistic. The distance between the source is denoted L. For each
case, one computes the average gradient of Ē. On Figure 6,a is plotted the equivalent heat
condictivity κ = q/Ē as a function of E0. On Figure 6,b is plotted qL/(Es1 − Es2).
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(a) (b)

Figure 6. (a). q/{(Es1 − Es2)/L} as a function of the energy of the system E0. Simulation
results (symbols) exhibiting the transition from conductive to ballistic regime. Power law fittings
are represented with lines. (b). Effective heat conductivity κ = q/∇Ē as a function of the energy
of the system E0, simulation results (symbols), power law fitting (line) exhibiting κ ∝ E5/2

0 . The
collisionality is plotted with dot-line.

On Figure 6,a we notice that for low energies we have q ∝ E5/2
0 (Es2−Es1)/L. Besides, for low

energies, we have ∇T ≈ (Es2 − Es1)/L thus q ∝ E
5/2
0 ∇T . This characteristic of the collisional

Spitzer-Härm regime. For high energy, we have q ∝
√
E0(Es2 − Es2)/L ∼ vth(Es2 − Es2). This

is characteristic of the ballistic regime. The transtion occurs for ν∗ = 1, as expected. On Figure
6,b we notice that with the definition of Ē = (E+ + E−)/2, we recover the Spitzer-Härm like
law for the heat flux, even in the collisionless case (ν∗ < 1).

4. Conclusions
The analysis of simple models where energy transfer takes place exhibits the well-known Spitzer-
Härm diffusive behavior in the collisional regime. Also, the transition from collisional to ballistic
behavior was observed as the equivalent mean free path of the particles increased. This transition
can be compared with the one observed with a kinetic treatment limited to considering 4
moments of the distribution function [4; 5]. In the present “toy-model”, no distinction is made
between thermal and suprathermal particles. A perspective of this work could be to introduce
this ingredient to investigate flux-limiter formulations that are used when thermal particles are
collisional and suprathermal particles are ballistic.

Acknowledgements
This work supported by the ANR project ESPOIR and by the European Communities under the
contract of Association between EURATOM and CEA, was carried out within the framework
of the European Fusion Development Agreement. The views and opinions expressed herein do
not necessarily reflect those of the European Commission.

References
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