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Abstract—This extended abstract is a summary of [4], where
a comparison of two methods for the forward uncertainty
quantification (UQ) of complex industrial problems is presented.
Specifically, the performance of Multi-Index Stochastic Colloca-
tion (MISC) and adaptive multi-fidelity Stochastic Radial Basis
Functions (SRBF) surrogates is assessed for the UQ of a roll-
on/roll-off passengers ferry advancing in calm water and subject
to two operational uncertainties, namely the ship speed and
draught. The CFD simulations needed by both methods are
performed by a multi-grid Reynolds Averaged Navier-Stokes
solver.
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I. INTRODUCTION

SHIP performance depends on design and
operational/environmental parameters. The accurate

prediction of significant design metrics (such as resistance
and powering requirements; seakeeping, maneuverability, and
dynamic stability; structural response and failure) requires
prime-principles-based high-fidelity computational tools
(e.g., computational fluid/structural dynamics, CFD/CSD),
especially for innovative configurations and off-design
conditions. These tools are generally computationally
expensive, making the exploration of design and operational
parameters a technological challenge. Assessing the impact
of the uncertainty which affects the problem parameters on
the output quantities is a typical uncertainty quantification
(UQ) problem.

There is by now a large consensus in the UQ community
on the fact that large-scale, industrially relevant UQ analy-
ses can only be performed by leveraging on multi-fidelity
methodologies, i.e., methodologies that explore the bulk of
the variability of the quantities of interest of the simulation
over coarse meshes (or more generally, computationally in-
expensive models with e.g. simplified physics), and resort to
querying high-fidelity models (e.g., refined meshes or full-
physics models) only sparingly, to correct the initial guess
produced with the low-fidelity models. Several approaches to
this general framework can be conceived, depending on the
kind of fidelity models considered and on the strategy used
to sample the parameter space.

The objective of this work is to assess and compare the
use of two methods from two methodological families for
the forward UQ of complex industrial problems. Specifically,
we consider the Multi-Index Stochastic Collocation method
(MISC, [1], [2]) and an adaptive multi-fidelity Stochastic
Radial Basis Functions method (SRBF [3]), belonging to the

family of multi-level/multi-index methods and kernel-based
surrogates, respectively.

The performance of MISC and SRBF are compared on
the UQ of a roll-on/roll-off passengers (RoPax) ferry sailing
in calm water with two operational uncertainties, specifically
ship speed and draught, the latter being directly linked to
the payload. The estimation of the expected value of the
(model-scale) resistance is presented and discussed. Further
results on standard deviation and probability density func-
tion can be found in the extended version of the work
[4]. Both methods need to repeatedly solve the free-surface
Navier-Stokes equations (i.e. perform CFD simulations) for
different configurations of the operational parameters. The
solutions are obtained by the Reynolds Averaged Navier-
Stokes (RANS) equations solver χnavis [5]–[7], developed
at CNR-INM. Both MISC and SRBF use as fidelity levels
the intermediate grids employed by the RANS solver (which
is a multi-grid solver): these grids are obtained as isotropic
derefinement of an initial coarse grid.

II. FORWARD UNCERTAINTY QUANTIFICATION

Let us consider a single-patch mesh of the computational
domain with non-cubic hexahedral elements of the same size1

and assume that the level of refinement of the mesh along each
physical direction can be specified by prescribing some user-
defined integer values α1, α2, α3; to fix ideas, one can think
e.g. that the size of each element of the mesh scales as 2−α1×
2−α2×2−α3 , but this is not necessary. The three values of αi
are collected in a multi-index α = [α1, α2, α3]; prescribing
the multi-index α thus prescribes the computational mesh to
be generated. If this flexibility is not allowed by the mesh-
generator (or by the problem itself), it is possible to set α1 =
α2 = α3 = α, i.e., controlling the mesh-generation by a
single integer value α. The same philosophy applies also to
multi-patch meshes, where in principle there could be up to
three values αi for each patch. The quantity of interest of the
simulation computed over the mesh specified by α is denoted
by Gα. For the Navier-Stokes equations, this could be either
the full velocity field or a scalar quantity associated to it.

Next, let us assume that the simulation depends on the
value of one or more random/uncertain parameters, say N pa-
rameters collected in the random vector y = [y1, y2, . . . , yN ],
and denote by Γ the set of all possible values of y, and by
ρ(y) the probability density function (PDF) of the random
vector y over Γ. Thus, the primary goal of the forward UQ

1This assumption can be relaxed, but it is kept for simplicity of exposition.
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analysis is to compute an approximation of E[Gα], i.e., of the
expected value of Gα. This quantity is typically computed
by a sampling approach, i.e., the partial differential equation
(PDE) at hand is solved for several possible values of y, and
the results are averaged with some weights:

E[Gα] ≈
J∑
j=1

Gα(yj)ωj . (1)

The simplest averaging scheme is Monte-Carlo, where the
values yj are chosen at random over Γ (according to the PDF
ρ) and ωj = 1/J .

A. Multi-Index Stochastic Collocation

Roughly speaking, MISC is based on using as quadrature
points yj in Eq. (1) the union of several Cartesian grids over
the domain Γ, that are obtained by tensorization of univariate
quadrature rules (which should be chosen according to ρ(y)
for computational efficiency). In the RoPax ferry example
considered in this work, y1, y2, . . . , yN are uniform and
independent random variables and the univariate Clenshaw–
Curtis (CC) quadrature is employed. The quadrature points
for the K-points univariate CC quadrature rule are

tj,K = cos

(
(j − 1)π

K − 1

)
, 1 ≤ j ≤ K,

and the corresponding quadrature weights can be efficiently
computed by fast Fourier transform. Similarly to what done
with the multi-index α for the physical domain, a multi-index
β ∈ NN is introduced, that specifies how many points y will
be used to generate any of the above-mentioned Cartesian
grids. More specifically, after having introduced the auxiliary
function

m(0) = 0, m(1) = 1, m(i) = 2i−1 + 1 for i ≥ 2,

m(β1) CC points are generated for y1, m(β2) CC points are
generated for y2 etc., and the grid obtained by taking the
Cartesian product of the N sets of points thus generated is
considered. Note that this choice of m guarantees that, given
any two multi-indices β1 and β2, the grid obtained using β1 is
contained (nested) in the one obtained using β2 whenever all
components of β1 are smaller or equal than the corresponding
components in β2. This is clearly useful in the context of
adaptive schemes, like the version of MISC that we advocate
in this work. The quadrature weight ωj of each point of the
Cartesian grid is immediately obtained by taking the product
of the corresponding univariate weights.

The approximation of E[Gα] computed over this grid with
Eq. (1) is denoted as Qα,β. Clearly, it would be beneficial
to have both multi-indices α and β with large components,
say α = α? and β = β?, i.e., to average the values of many
PDE solutions over a refined computational mesh. However,
this is typically unfeasible due to computational costs. One
possible remedy is to exploit the fact that a single, highly
refined approximation Qα?,β? can often2 be approximated as
a linear combination of many coarser Qα,β, where whenever
the spatial discretization α is refined, the quadrature level β
is kept to a minimum and viceversa (of course, the combined
cost of computing the set of coarse discretizations should be

2Whenever G(y) is a smooth function with respect to y, i.e., roughly
speaking, small changes in y imply small changes in G(y).

smaller than the cost of the highly refined one). This is in a
nutshell the idea of MISC. In other words, MISC is a classical
multi-level scheme, where most of the statistical variability
of G is explored by solving many PDEs with coarse meshes
(large3 ‖β‖ with small ‖α‖) and then the result is corrected
with a few PDE solutions with refined meshes (large ‖α‖
with small ‖β‖.). In formula,

E[Gα? ] ≈ Qα?,β? ≈
∑

[α,β]∈I

c[α,β]Qα,β, (2)

where c[α,β] are real numbers and I is a collection of feasible
discretizations, designed with the purpose just explained. For
example, I = {α ∈ N3,β ∈ NN : ‖α‖ + ‖β‖ ≤ l},
for some integer value l. A suitable set I can be designed
either a-priori, or on-the-run by adaptive algorithms. In this
contribution we focus on the latter option, see [4].

Note that the tensor quadrature operator Qα,β can be
replaced by a tensor interpolation operator using global
Lagrange polynomials collocated at the CC points and a
formula analogous to Eq. (2) is obtained. The resulting linear
combination of interpolants is used as surrogate model for
Gα (i.e. response surface).

B. Stochastic Radial Basis Functions

An alternative methodology to MISC is based on the esti-
mation of the quantities of interest by numerical quadrature
applied to a multi-fidelity SRBF surrogate model. Given a
training set T = {yi, G(yi)}Ji=1, the RBF prediction (i.e.
response surface) is (here) based on a power function kernel
and reads

f (y, τ) =

K∑
j=1

wj ||y − cj ||τ , (3)

where wj are unknown coefficients, cj are K points in Γ
called RBF centers, and τ ∼ unif[τmin, τmax] is a tuning
parameter. The prediction G̃ (y) is computed as the expected
value (approximated by Monte-Carlo) of f over τ [8]:

G̃ (y) = E [f (y, τ)]τ ≈
1

Θ

Θ∑
i=1

f (y, τi) , (4)

where Θ is the number of Monte-Carlo samples for τ .
The choice of cj and the computation of wj depend on

the number of centers K chosen. If K is set to be equal to
the training set size, cj are chosen as the sampling points
and wj are determined by imposing exact interpolation at the
training points (f(yi, τ) = G(yi)), i.e., by solving Aw =
f , with w = {wj}, aij = ||yi − cj ||τ and f = {G(yi)}.
Otherwise, K can be chosen to be smaller than the training
set size: in this case, the centers cj are chosen by k-means
clustering and the coefficients wj are determined through a
least-squares regression by solving w =

(
ATA

)−1
ATf . In

this case, multiple K can be tested, with the optimal K chosen
by minimizing a leave-one-out cross-validation metric. Using
the latter approach is beneficial in case the training data are
affected by noise.

The uncertainty UG̃ (y) associated with the SRBF pre-
diction is quantified by the 95%-confidence band of the
cumulative density function of f(y, τ), evaluated using a
Monte-Carlo sampling over τ .

3‖ · ‖ denotes the Euclidean norm.
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Fig. 1. RoPax ferry: hull form.

The multi-fidelity approximation is adaptively built as
follows, see [4]. Extending the definition of the surrogate
training set to an arbitrary number of M fidelity levels as
{Tα}Mα=1 = {yj , Gα(yj)}Jαj=1, the multi-fidelity approxima-
tion ĜM (y) of GM (y) reads

ĜM (y) ≈ G̃1(y) +

M−1∑
i=1

ε̃i(y), (5)

where ε̃i(y) is the inter-level error surrogate model with
an associate training set Ei = {(y, Gi+1(y) − Ĝi(y)) |y ∈
Ti+1 ∩Ti}. Note that Eq. (5) does not require nested training
sets.

The uncertainty of the final metamodel ĜM , UĜM , can
be assessed with an “ANOVA-like” formula, inspired by the
decomposition in Eq. (5). Upon having evaluated UĜM , the
multi-fidelity surrogate is updated adding a new training
point y∗ where the UĜM is the largest (single-objective
maximization problem). The fidelity to be used to this end is
again chosen by a maximization criterion: more specifically,
the uncertainties of each fidelity are evaluated at y∗, and
rescaled by the corresponding computational cost. The fidelity
with the largest ratio is chosen, and the corresponding model
is evaluated, see [9].

Finally, numerical quadrature is used on the SRBF surro-
gate model to estimate the expected value of the quantity of
interest E[ĜM ]. More specifically, E[ĜM ] is approximated
using a multivariate midpoint rule, with a full-factorial sam-
pling over the SRBF prediction with S samples, as

E[GM ] ≈ E[ĜM ] ≈ 1

S

S∑
j=1

ĜM (yj). (6)

III. PROBLEM DESCRIPTION

The problem addressed in this work is the forward UQ
analysis of the model-scale resistance (RT ) of a RoPax ferry
in straight ahead advancement, subject to two operational
uncertainties y = [U, T ], namely the advancement speed (U )
and the draught (T ), uniformly distributed within the ranges in
Tab. I. The RoPax ferry is characterized by a length between
perpendicular at nominal draught (LPP) of 162.85 m and a
block coefficient CB = 0.5677 (see Fig. 1). The parametric
geometry of the RoPax is produced with the computer-aided
design environment integrated in the CAESES® software, de-
veloped by FRIENDSHIP SYSTEMS AG, and made available
in the framework of the H2020 EU Project Holiship. The
analysis is performed at model scale with a scale factor equal
to 27.14. The main dimensions and the operative conditions
are summarized in Tab. I.

The hydrodynamic performance of the RoPax ferry is
assessed for each [U, T ] configuration by the RANS code

χnavis developed at CNR-INM [5]–[7]. It is based on a finite
volume scheme, with variables collocated at the cell centers.
Turbulent stresses are taken into account by the Boussinesq
hypothesis, with the Spalart-Allmaras turbulence model. Free-
surface effects are taken into account by a single-phase level-
set algorithm. Wall-functions are not adopted, therefore the
wall distance y+ = 1 is ensured on the wall. The numerical
solutions are computed by means of a full multi-grid–full
approximation scheme (FMG–FAS), with four grid levels,
each obtained from the next finer grid with a coarsening ratio
equal to 2, along each curvilinear direction. In the FMG–
FAS approximation procedure, the solution is computed on
the coarsest grid level first. Secondly, it is approximated on
the next finer grid and the solution is iterated by exploiting all
the coarser grid levels available with a V-Cycle. The process
is repeated up to the finest grid level. For the present UQ
problem all the four grid levels are used; to note, the number
of grid volumes ranges from 5.5M for the finest grid, down
to 11K for the coarsest one.

Based on the grid refinement ratio chosen, a normalized
computational cost for the α-th grid level is estimated as:

cost(α) = 8α−1 (7)

with α = 1, . . . , 4. In the FMG-FAS scheme the computation
on the α-th grid level involves computations on all the coarser
meshes. However, with the estimation in Eq. (7), only the cost
of the highest-fidelity level samples is taken into account,
i.e. the computations on the coarser grids are considered
negligible.

IV. NUMERICAL RESULTS

The performance of MISC and SRBF is assessed in terms
of the estimation of the expected value of RT . Fig. 2 shows
the convergence of the expected value of RT versus the com-
putational cost. MISC and SRBF converge towards similar
estimates. MISC achieves a good estimate already with low
computational cost, whereas at later iterations, corresponding
to computational cost above 1000, its behavior worsens;
conversely SRBF gives a more stable estimate.

The response surfaces for the resistance obtained by the
two methods are shown in Fig. 3. The response surface of
MISC is very irregular and this can be attributed to the
numerical noise which affects the CFD simulations (due to
the fact that the solver is an iterative method which stops
as soon as a prescribed tolerance is met), in particular the
ones on the coarsest grid. As the overall idea of MISC is to
solve most PDEs on the less expensive grids and building the

TABLE I
MAIN GEOMETRICAL DETAILS AND OPERATIVE CONDITIONS OF THE

ROPAX FERRY (MODEL SCALE 1 : 27.14).

Description Full Scale Model Scale
Length b. perp. (LPP) 162.85 m 6.0 m
Beam (B) 29.84 m 1.0993 m
Block coefficient (CB) 0.5677 0.5677
Nominal disp.(∇) 19584.04 m3 0.9996 m3

Nominal draught (Tn) 7.10 m 0.261660 m
Draught range (T ) [7.812, 6.391] m [0.236, 0.288] m
Speed range (U ) [6.173, 13.376] m/s [1.185, 2.567] m/s
Froude range (Fr) [0.154, 0.335] [0.154, 0.335]
Reynolds range (Re) [0.908, 1.968] · 109 [0.642, 1.392] · 107



UQ@DIITET/CNR, October 1st-2nd 2020, Rome, Italy

Fig. 2. Convergence of the expected value of RT versus computational cost.
For the sake of readability, we plot the results for MISC starting with the
4th iteration. The first three iterations correspond to computational cost 1,
12, and 14, and give poor results.

Fig. 3. Response surfaces at the final iteration: MISC (left), SRBF (right).

surrogate model with Lagrangian (hence exact) interpolation,
the presence of numerical noise turns out to be problematic
for this method. On the contrary, SRBF suffers the numerical
noise of the CFD outputs until the exact interpolation is
imposed (i.e. iteration 8 - figure not shown for brevity,
see [4]), whereas for later iterations the use of regression
improves the quality of the surrogates by smoothing the
response surface and filtering out the numerical noise.

Fig. 4 displays the points in the parameter space selected
by MISC and SRBF at the final iteration. At the beginning
the MISC algorithm explores more in advancement speed
direction (figure not shown for brevity, see [4]), suggesting
a stronger dependence of the quantity of interest on the
advancement speed rather than on the draught. Points ex-
ploring the direction of the draught are added only at later
iterations. Until iteration 8 (exact interpolation only), the
sampling performed by SRBF explores the domain extrema
and starts to cluster samples in two zones among U = [7, 8.8]
m/s (figure not shown for brevity, see [4]), since the numerical
noise negatively affects the prediction uncertainty of the inter-
polating SRBF. Switching to the least-squares approximation
and filtering out the noise prevents an excessive clusterization
of the samples at the successive iterations. Indeed, the SRBF
samples are fairly spread over the domain.

Fig. 4. Points in parameter space at the final iteration: MISC (left), SRBF
(right). Note that every point required on gridMi is required also on all the
grids with lower refinement level.

V. CONCLUSIONS

The results suggest that both methods give fairly accurate
results at reasonable computational cost. MISC could be pre-
ferred when only limited data sets are available, whereas for
larger data sets a slight preference may be cast for SRBF, due
to its robustness to noise. Future research will address more
complex test cases (larger number of uncertain parameters
and more realistic conditions, such as regular/irregular waves)
possibly validating the results against benchmark values.
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