
Changing Software in a Changing World:
How to Test in Presence of Variability,

Adaptation and Evolution?

Antonia Bertolino1 and Paola Inverardi2

1 ISTI–CNR, Pisa, Italy
antonia.bertolino@isti.cnr.it

2 University of L’Aquila, L’Aquila, Italy
paola.inverardi@univaq.it

Abstract. Modern software-intensive and pervasive systems need to be
able to manage different requirements of variability, adaptation and evo-
lution. The latter are surely related properties, all bringing uncertainty,
but covering different aspects and requiring different approaches. Test-
ing of such systems introduces many challenges: variability would require
the test of too many configurations and variants well beyond feasibility;
adaptation should be based on context-aware testing over many pre-
dictable or even unpredictable scenarios; evolution would entail testing
a system for which the reference model has become out-of-date. It is
evident how current testing approaches are not adequate for such types
of systems. We make a brief overview of testing challenges for changing
software in a changing world, and hint at some promising approaches,
arguing how these would need to be part of a holistic validation approach
that can handle uncertainty.

Keywords: Adaptation and evolution · Context-aware software · Soft-
ware variability · Testing changing software

1 Introduction

Nowadays software is ubiquitous and governs our lives interacting with smart
objects and other software systems that increasingly pervade our surrounding
environment. We got used to require that software -be it working from our
portable device or in the public front office we ask or in a newly bought home
appliance- reacts promptly to satisfy our requests. We even expect that it is
capable to face unforeseen circumstances and events or even more that it can
anticipate our future needs.

Under pressure of tackling continuous changes that can potentially occur
in many ways, software systems themselves change continuously. For instance,
they can be Systems-of-Systems (SoS) emerging from the on-the-fly dynamic
composition of services, or they can perform self-repair after a problem, or their
components can be substituted at runtime.

bertolino
Font monospazio
This is authors' version of this paper, which is published by Springer,
with DOI: 10.1007/978-3-030-30985-5_5



2 A. Bertolino, P. Inverardi

Consequently, a traditional view of the software lifecycle as involving three
main stages: specification, coding (even if by model-driven transformations), and
testing is not adequate anymore.

In the software engineering literature, the problem of handling change has
been addressed along different research threads. One thread regards software
product line (PL) research. In the past two decades huge progress has been done
with methodologies and tools that can model and manage variants of products
within one family. By adopting a PL approach, developers can a-priori define
points of variations and acceptable alternative solutions for differing instantia-
tions of a broad software architecture. Such notion of change, which is referred
to as variability, has been a main research focus of Stefania Gnesi for several
years: in her work she has shown that variability can be formally described [2],
or even extracted a posteriori from the requirements [16]. More recently, the no-
tion of Dynamic Software Product Line (DSPL) has emerged [23], which delays
the decision of variations to runtime and extends the scope of variability.

On another thread, researchers have investigated approaches to engineer soft-
ware systems that can adapt to intervening events and situations. Such ap-
proaches generally adopt variations of the MAPE (Monitor, Analyze, Plan, Exe-
cute) model [24], i.e., the system needs to sense the context and be able to react
accordingly. Self-adaptation refers to systems that autonomously can decide how
to change themselves so to ensure continuous service.

Similar to adaptation is the notion of evolution: whereby adaptation is gen-
erally referred to as a reactive change triggered by changes in the external world,
evolution is rather conceived as a proactive attitude towards change. An evolving
system aims at continuously improving itself and providing enhanced services. It
must be able to change its goals and behaviour so to provide a service that can
satisfy novel requirements. Indeed, placing change in the center of the software
process is recognized as the only way to prevent software aging [33].

Although focusing on different facets of change, the notions of variability,
adaptation and evolution share several challenges and requirements. They all
make it difficult for a software developer to analyse a system and take decisions
on it. By stretching somehow the term, in the context of this work we will refer to
this difficulty in understanding or predicting a system behaviour as uncertainty.
We use this term to imply that we cannot know what to expect from a system,
because it can take too many possible configurations (variability), or can adapt
to context (adaption), or can change its goals (evolution). Indeed, following [21],
uncertainty can be defined as the difference between the amount of information
required to perform a task and the amount of information already possessed.

The task we are interested here is validation of systems that change. Systems
for which at the moment of validation complete information is lacking either
because it is unknown or because it is too large. In fact, we started by saying
that software systems are pervasive and thus we cannot underestimate the need
to ensure a reliable behaviour, notwithstanding changes. However, what does
it mean to test a system that exposes variability, adaptation or evolution, and
which approaches can be applied are still open research questions.



How to Test in Presence of Variability, Adaptation and Evolution? 3

In this opinion paper, we first overview current views of variability, adap-
tation and evolution, including their shared definitions and most common ap-
proaches (Section 2). Then, we discuss the challenges descending for testing such
type of systems and hint at promising approaches (Section 3). Conclusions and
possible research directions conclude the paper (Section 4).

2 Many dimensions of change

As discussed in the introduction modern systems are subject to a number of
potential changes during their life time. Those changes cannot always be antic-
ipated or it might not be convenient to anticipate all of them. This introduces
levels of uncertainty in the predictable behavior of the system. In the follow-
ing we analyze the three dimensions of changes we have earlier introduced to
understand what are the potential sources of uncertainty.

2.1 Changing software

Software needs to be able to change. Variability is the dimension that character-
izes the software that shall encompass the possibility of designing alternatives
in the systems, that will be solved only before execution, either statically via a
configuration step, or dynamically by providing the necessary information. No
matter how variability is resolved, it introduces in the validation step of the
development process the need to deal with the system’s strong degree of non-
deterministic behaviors. When explicitly introduced in the software life cycle [25,
3], variability can help reducing the uncertainty by constraining the behavioral
analysis into well defined boundaries. However such boundaries can still permit
an extremely large search space of potential configurations, like it may happen
in the Software Product Line context, thus retaining in practice a degree of un-
certainty in the final system behavior. In the past years an extensive research
thread contributed by Stefania Gnesi and co-authors has proposed different be-
havioral expressive models able to compactly represent such search spaces [6,
5, 40], however verification of such systems has not yet reached the maturity of
being routinely used in a development process.

2.2 Changing world

Software needs to be sensitive to the changes that the world around it encom-
passes. Both adaptation and evolution respond, in different ways, to this need.
Adaptation refers to the ability of a software system to react in presence of
changes of context that may compromise the system behavior, either qualita-
tively or quantitatively. It is a change that the system needs to undergo not
to compromise the compliance of its behavior with respect to the requirements
[26]. It typically appears concerning quantitative properties, e.g., degradation
of performance due to unexpected high workload. It is associated with the so
called self-* properties and autonomic systems [30] and, as already mentioned, it



4 A. Bertolino, P. Inverardi

is often implemented through possibly multiple feedback loops. Adaptation may
let the system acquire completely new behaviors not foreseen at design time,
which is even more evident nowadays with the increasing adoption of learning
techniques. How to accomplish adaptation by maintaining system’s correctness
is a challenge that has received a large deal of attention in the research commu-
nity and has also motivated the need to move part of the development artifacts
at run time (e.g., models at run time) [31].

Evolution has been traditionally the last step in the software life cycle coupled
with maintenance. Traditionally it was considered for long living systems that
might need to change in order to meet new emerging requirements from users,
operating system platform producers, machine changes. In such context the pace
of change allowed to integrate the evolution step in the ordinary software life
cycle with relatively little effort. For example, traceability issues all along the
development phases were required [15] as well as regression test emerged in the
validation step. Modern software systems are instead experiencing a fast twist
in pace due to the speed of changes both in terms of user expectation and in
terms of technological upgrades. In this respect the difficulties of evolution are
exacerbated. One main issue concerns the problem of keeping the consistency
among the different models of a system (i.e., co-evolution), notably requirements,
architecture and code implementation [32].

It appears evident that for modern software systems, validation in the pres-
ence of variability, adaptation and evolution needs to take into account a certain
degree of uncertainty as anticipated in [20]. Referring to the introduced notion
of uncertainty, this means that at the moment these systems are validated, de-
velopers do not possess the (complete) information about the systems that the
validation step may require. In the following we will discuss how the change
dimensions impact on testing and consider some research challenges we foresee
in validating software in presence of uncertainty due to changes.

3 Testing software that changes

In this section we reflect on the implications brought by change on the software
testing discipline. We start by sketching a theoretical framework on which the
aims and foundations of software testing are laid. Then we analyse the challenges
posed by uncertainties deriving from each of the three kinds of change discussed
in the previous section. We conclude by pointing at some promising directions
emerging from the literature for addressing the challenges.

3.1 Software testing foundations in light of change

As defined by Bertolino in [7], software testing consists of the dynamic verifica-
tion of the behavior of a program on a finite set of test cases, suitably selected
from the usually infinite executions domain, against the specified expected be-
havior.



How to Test in Presence of Variability, Adaptation and Evolution? 5

This definition highlights the main concerns in software testing, in particular
that we need a strategy to select a feasible set of test inputs and that we must
be able to compare the test output against an expected behaviour, a.k.a. the
oracle problem [4].

In the early 80’s, a framework providing a theoretical foundation of software
testing was proposed by Gourlay [22]. The framework established a mathematical
relation among sets of specifications S, programs P and tests T, and defined
the oracle as an ok predicate over a test t ∈ T , a specification s ∈ S, and
a program p ∈ P . More formally, Gourlay’s framework defined a theoretical
predicate corr(p, s) over specifications and programs implying that a program
p is correct with respect to a specification s, and postulated that ∀p ∈ P,∀s ∈
S,∀t ∈ T, corr(p, s) ⇒ ok(t, p, s).

More recently, Staats and coauthors [38] revisited Gourlay’s framework, and
introduced a set O of test oracles (in place of the unique oracle ok), whereby a
test oracle o is a predicate over programs and tests; they defined a new corrt
predicate over tests, program and specifications that holds if and only if when
running test t, specification s holds for program p.

However, neither Bertolino’s definition for software testing, nor Staats and
coauthors’ revisited version of Gourlay’s theoretical framework consider explic-
itly that a program, and/or its input domain and/or its expected behaviour (i.e.,
oracle), can change and how the derived uncertainty can impact testing validity
and effectiveness.

Indeed, variability, adaptation and evolution clearly affect the notion of test-
ing, and we claim that in presence of change the theoretical framework for testing
should be revised to cope with the uncertainty they bring.

In presence of variability, not only we need to select a finite set of test cases,
but also we need to select a set of configurations among those implied by the
variation points.

In presence of adaptation, a test case should include a test input but also
the context in which the test is executed, and the program itself becomes a
function of the context. As a consequence, also the very concept of correctness
of a program with respect to a specification may change depending on context.

In presence of evolution, again the correctness relation between a program
and the specification becomes relative, in this case because specification can
proactively change.

Therefore, we leave as a challenging task for future work a revision of test-
ing theory as formulated in [22] and in [38] to take into account change and
uncertainty.

3.2 Testing challenges ahead

In front of a rich literature addressing the design and management of changing
systems, research on how such systems should be tested is still lacking. For
example, focusing on adaptation, in 2009 Salehie and Tahvildari [35] affirmed
that testing and assurance are probably the least focused phases, and there
are only few works addressing this topic. Concerning variability, in 2014 Galster



6 A. Bertolino, P. Inverardi

and coauthors observed that it is “studied in all software engineering phases, but
testing is underrepresented” [19]. Fortunately today this situation seems to be
changing, and several works appear addressing efficient approaches to variability
testing, such as, e.g., [27, 1].

The testing challenges implied by change in the three forms that we distin-
guish have been studied in the literature generally along separate threads. It
is rarely the case that the three dimensions of change have been considered in
holistic way.

Concerning variability, this has been mostly addressed in the domain of soft-
ware Product Lines. The systematic survey in [12] distinguishes two main re-
search interests, namely the PL features and the PL products. Along the first
one, testing aims at verifying all feature interactions by testing all variations
across all dimensions. The second one concerns the actual testing of the prod-
ucts members of a family. In both cases, the great challenge is to manage the
huge number of potential test cases, which can increase exponentially with the
PL features.

The testing challenges stemming from adaptation have been characterised
by Siqueira and coauthors [37], who made a systematic survey of literature.
They list several general challenges, among which: the exponential growth of the
number of configurations to be tested; the difficulty of anticipating environment
changes when testing on a large-scale multi-vendor system; the problem to keep
traceability between the requirements and the test cases due to the changing
characteristics; the arduousness of simulating realistic contexts and workloads
due to unpredictability and unclear system boundaries.

Evolution is the dimension of change that has been more extensively ad-
dressed in the software testing literature, because it corresponds in a sense to
the classical problem of regression testing. Strictly speaking, regression testing
concerns the re-testing of previously tested software to verify that changes do
not cause previously successfully passed test cases to fail. In recent work, the
step of “test suite augmentation” within regression testing process is attracting
more emphasis: it refers to creating new test cases specifically addressing the
changed behaviour of the evolving software [36]. However, proposed test suite
augmentation approaches are mostly code-based, and they do not scale up to
consider the complexity of modern evolving systems. The challenges in testing
evolving software include finding black-box approaches that can consider depen-
dencies among concurrently running processes, as addressed for instance in [41],
as well as dependencies from context changes, as described in [34].

Moreover, a challenge that we see as shared by all three types of change
concerns the difficulty of setting an oracle, be it automated or even manual. If
we accept that the software behaviour may change because of context adaptation,
or evolution of requirements, how can we discern whether an observed behaviour
that is not as we would have expected at a given moment is a failure, or is rather
a correct deviation because of a change?

When a test is executed we need a way to decide whether a test is successful
or fails. However, if we consider the testing of a changing software program P ,



How to Test in Presence of Variability, Adaptation and Evolution? 7

one issue is that since the system has evolved or has assumed very different
forms, we cannot have a readily available reference model to act as an oracle.
Even assuming that an oracle is available, for example from a specification, we
have to take into account that due to evolution the specification Spect that was
available at time t may become invalid in later time. So, if at time t′ > t we
observe that P is not compliant with Spect, what can we deduce? Is it because
the system has evolved (in good way) and hence we need to also evolve Spec?
Or instead it is because there is a failure in P behaviour?

In other words, in presence of changing systems, when an observed behaviour
is not compliant with the oracle, how can we decide whether it is for good
(hence the Spec we referred to is obsolete and, e.g., a new specification should
be mined [18]), or for bad (the system has evolved in unacceptable way or some
failure has occurred)?

3.3 Promising testing techniques

Based on our overview of how the foundations of testing software that changes
differ from those laid down for “traditional” testing, it is clear that we need
to find completely novel approaches to testing software in light of the uncer-
tainty brought by dynamic adaptation and evolution, and of the huge number
of possible configurations to test due to variability.

In this section we overview some recent techniques that could be adapted to
deal with change in all its three forms.

A natural approach to address the lack or obsolescence of models that can
be referred as test oracle or even for test generation is that of mining the model
from the program, in particular from the traces obtained by test executions.
This is the idea outlined in the anti-model based testing proposal by Bertolino
et al. [10], even though at the time it was aimed at testing applications when a
model is not available. Later on, the idea is further developed by Kanstrén et
al [28], who used the term observation-based modeling.

Another promising research avenue is the one to identify so-called “core rela-
tives” [39], which are defined as pieces of code exhibiting “similar” behavior, even
though structurally different and producing different outputs. Such techniques
could be usefully adapted in testing changes.

A well established approach for software testing within some specific domain
where deriving an oracle is extremely difficult is metamorphic testing : this ap-
proach was introduced in the late 90’s [13], and has been applied in several
contexts and to solve various problems [14]. Metamorphic testing is based on a
set of properties that must hold between different executions of the tested sys-
tem: these necessary properties are called the metamorphic relations. Therefore,
even if we do not know what is the expected correct result for an execution,
we can compare the outputs across different executions against the expected
relations, and detect possible failures when the properties are not fulfilled.

We see several interesting ways in which metamorphic testing naturally ap-
plies to the case of testing changing software. For example, where sensible, we
could define a set of necessary relations to be maintained across adaptation or



8 A. Bertolino, P. Inverardi

evolution, and perform metamorphic testing based on such relations to verify if
the software continues to keep the necessary properties. In presence of variabil-
ity, metamorphic relations could be used to express common features within a
family of products.

Yet another potential direction to explore could be to raise the level of ab-
straction at which the testing is conducted, and perform the testing of the model
and not of the implementation, as proposed by Briand and coauthors [11]. The
authors proposed to deal with uncertainty by associating appropriate probabil-
ity distributions to the model elements. A more detailed and complex approach
should be conceived to be able to consider all dimensions of variability, adapta-
tion and evolution.

From the field of deep learning systems, we could also adopt the concept of
surprise adequacy testing [29]: the authors propose that for testing these systems
where we cannot know the exact correct outputs, we could expect that what we
observe in operation can be different from what we observed during training,
but not too much different: they say that the “surprise” we observe must not
be too big. We could apply a similar concept for testing in operation a changing
system: we establish some “surprise” distances we can admit in operation, and
test accordingly.

Inspired by the Proteus framework by Fredericks and Cheng [17], a test plat-
form for changing software should support the adaptive generation of test plans
including a core set of test cases that must be satisfied even after change, and
an additional set of test cases aiming at testing possible adaptations/evolutions.
The former should be based on invariant properties that could be tested applying
metamorphic testing between source test cases before change, and follow up test
cases after change. The latter would require test suite augmentation: we could
perform observation-based testing and assess the mined model against a defined
degree of surprise, i.e., distance we can tolerate.

4 Perspectives for research

As we discussed, testing software in presence of change opens a number of chal-
lenging research directions. Notwithstanding, testing remains indispensable, as
for such dynamic systems we cannot assume the availability of valid reference
models or test suites. On the contrary, we have to deal with uncertainty and
the only fact is the behaviour we observe. Because of this, we cannot adopt
traditional model-based testing techniques, and need to adapt approaches for
anti-model based testing or observation-based modeling or model testing.

An appropriate approach for testing in presence of change should handle
change in its three identified dimensions, which should be considered in combi-
nation, scaling up further the complexity of the task.

We have overviewed some promising research directions for testing changing
software in a changing world. As we cannot rely on the availability of an oracle,
we have suggested to adapt metamorphic testing principles for testing changing
software but still guaranteeing a core set of invariant properties. In combination



How to Test in Presence of Variability, Adaptation and Evolution? 9

we also suggested the opportunity to adapt a notion of surprise-based testing
for test suite augmentation.

We have only scraped the surface of the tackled problem, though: for exam-
ple, we did not discuss when and how testing should occur. For sure monitoring
software behaviour is essential, but what would be a proper trigger for mov-
ing from passive testing, to proactive? We would need to introduce proper test
governance policies [9].

Moreover, we did not discuss the challenges behind reproducing the context
of a changing world within which the testing should occur. As this could be too
costly or even infeasible, several authors have suggested to perform the testing
in production (e.g., [8]), but this poses many new challenges.

For sure many other challenges exist and many new research avenues could
be identified. The aim of this paper was not that of providing an exhaustive
survey of issues and opportunities, but rather that of depicting a preliminary
understanding of the problem difficulties and outlining promising directions for
tackling them.

Acknowledgements

This work has been partially supported by the GAUSS national research project
(MIUR - PRIN 2015, Contract 2015KWREMX).

References

1. Al-Hajjaji, M., Thüm, T., Lochau, M., Meinicke, J., Saake, G.: Effective product-
line testing using similarity-based product prioritization. Software & Systems Mod-
eling 18(1), 499–521 (2019)

2. Asirelli, P., Ter Beek, M.H., Gnesi, S., Fantechi, A.: Formal description of variabil-
ity in product families. In: 2011 15th International Software Product Line Confer-
ence. pp. 130–139. IEEE (2011)

3. Autili, M., Benedetto, P.D., Inverardi, P.: A hybrid approach for resource-
based comparison of adaptable java applications. Sci. Comput. Pro-
gram. 78(8), 987–1009 (2013). https://doi.org/10.1016/j.scico.2012.01.005,
https://doi.org/10.1016/j.scico.2012.01.005

4. Barr, E.T., Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: The oracle problem
in software testing: A survey. IEEE transactions on software engineering 41(5),
507–525 (2014)

5. ter Beek, M.H., Damiani, F., Gnesi, S., Mazzanti, F., Paolini, L.: On the
expressiveness of modal transition systems with variability constraints. Sci.
Comput. Program. 169, 1–17 (2019). https://doi.org/10.1016/j.scico.2018.09.006,
https://doi.org/10.1016/j.scico.2018.09.006

6. Beohar, H., Varshosaz, M., Mousavi, M.R.: Basic behavioral models for
software product lines: Expressiveness and testing pre-orders. Sci. Com-
put. Program. 123, 42–60 (2016). https://doi.org/10.1016/j.scico.2015.06.005,
https://doi.org/10.1016/j.scico.2015.06.005



10 A. Bertolino, P. Inverardi

7. Bertolino, A.: Software testing. In: P. Bourque, R.D. (ed.) SWEBOK Guide to the
Software Engineering Body of Knowledge Trial Version, chap. 5, pp. 69–86. IEEE
CS, Los Alamitos, CA (2001)

8. Bertolino, A., Angelis, G.D., Kellomaki, S., Polini, A.: Enhancing service federa-
tion trustworthiness through online testing. IEEE Computer 45(1), 66–72 (2012).
https://doi.org/10.1109/MC.2011.227, https://doi.org/10.1109/MC.2011.227

9. Bertolino, A., Polini, A.: Soa test governance: Enabling service integration test-
ing across organization and technology borders. In: 2009 International Conference
on Software Testing, Verification, and Validation Workshops. pp. 277–286. IEEE
(2009)

10. Bertolino, A., Polini, A., Inverardi, P., Muccini, H.: Towards anti-model-based
testing. In: In Proc. DSN 2004 (Ext. abstract. pp. 124–125 (2004)

11. Briand, L., Nejati, S., Sabetzadeh, M., Bianculli, D.: Testing the untestable: Model
testing of complex software-intensive systems. In: Proceedings of the 38th In-
ternational Conference on Software Engineering Companion. pp. 789–792. ICSE
’16, ACM, New York, NY, USA (2016). https://doi.org/10.1145/2889160.2889212,
http://doi.acm.org/10.1145/2889160.2889212

12. do Carmo Machado, I., Mcgregor, J.D., Cavalcanti, Y.C., De Almeida, E.S.: On
strategies for testing software product lines: A systematic literature review. Infor-
mation and Software Technology 56(10), 1183–1199 (2014)

13. Chen, T.Y., Cheung, S.C., Yiu, S.M.: Metamorphic testing: a new approach for
generating next test cases. Tech. rep., Technical Report HKUST-CS98-01, Depart-
ment of Computer Science, Hong Kong (1998)

14. Chen, T.Y., Kuo, F.C., Liu, H., Poon, P.L., Towey, D., Tse, T.H., Zhou,
Z.Q.: Metamorphic testing: A review of challenges and opportunities. ACM
Comput. Surv. 51(1), 4:1–4:27 (Jan 2018). https://doi.org/10.1145/3143561,
http://doi.acm.org/10.1145/3143561

15. Cleland-Huang, J., Gotel, O., Hayes, J.H., Mäder, P., Zisman, A.: Soft-
ware traceability: trends and future directions. In: Proceedings of the on
Future of Software Engineering, FOSE 2014, Hyderabad, India, May 31
- June 7, 2014. pp. 55–69 (2014). https://doi.org/10.1145/2593882.2593891,
https://doi.org/10.1145/2593882.2593891

16. Fantechi, A., Ferrari, A., Gnesi, S., Semini, L.: Requirement engineering of software
product lines: Extracting variability using nlp. In: 2018 IEEE 26th International
Requirements Engineering Conference (RE). pp. 418–423. IEEE (2018)

17. Fredericks, E.M., Cheng, B.H.: Automated generation of adaptive test plans for
self-adaptive systems. In: Proceedings of the 10th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems. pp. 157–168. IEEE
Press (2015)

18. Gabel, M., Su, Z.: Testing mined specifications. In: Proceedings of
the ACM SIGSOFT 20th International Symposium on the Founda-
tions of Software Engineering. pp. 4:1–4:11. FSE ’12, ACM, New
York, NY, USA (2012). https://doi.org/10.1145/2393596.2393598,
http://doi.acm.org/10.1145/2393596.2393598

19. Galster, M., Weyns, D., Tofan, D., Michalik, B., Avgeriou, P.: Variability in soft-
ware systemsa systematic literature review. IEEE Transactions on Software Engi-
neering 40(3), 282–306 (2014)

20. Garlan, D.: Software engineering in an uncertain world. In: Proceedings of the
FSE/SDP workshop on Future of software engineering research. pp. 125–128. ACM
(2010)



How to Test in Presence of Variability, Adaptation and Evolution? 11

21. Giese, H., Bencomo, N., Pasquale, L., Ramirez, A.J., Inverardi, P., Wätzoldt, S.,
Clarke, S.: Living with uncertainty in the age of runtime models. In: Bencomo,
N., France, R., Cheng, B.H.C., Aßmann, U. (eds.) Models@run.time: Foundations,
Applications, and Roadmaps. pp. 47–100. Springer International Publishing, Cham
(2014). https://doi.org/10.1007/978-3-319-08915-7 3

22. Gourlay, J.S.: A mathematical framework for the investigation of testing. IEEE
Transactions on software engineering (6), 686–709 (1983)

23. Hallsteinsen, S., Hinchey, M., Park, S., Schmid, K.: Dynamic software product
lines. Computer 41(4), 93–95 (2008)

24. IBM White Paper: An architectural blueprint for autonomic computing (2006)
25. Inverardi, P., Mazzanti, F.: Experimenting with dynamic linking with ada.

Softw., Pract. Exper. 23(1), 1–14 (1993). https://doi.org/10.1002/spe.4380230102,
https://doi.org/10.1002/spe.4380230102

26. Inverardi, P., Tivoli, M.: The future of software: Adaptation and dependability. In:
Software Engineering, International Summer Schools, ISSSE 2006-2008, Salerno,
Italy, Revised Tutorial Lectures. pp. 1–31 (2008). https://doi.org/10.1007/978-3-
540-95888-8 1, https://doi.org/10.1007/978-3-540-95888-8 1

27. Jakubovski Filho, H.L., Ferreira, T.N., Vergilio, S.R.: Preference based multi-
objective algorithms applied to the variability testing of software product lines.
Journal of Systems and Software 151, 194–209 (2019)

28. Kanstrén, T., Piel, E., Gross, H.G.: Observation-based modeling for model-based
testing. Technical Report Series TUD-SERG-2009-012 (2009)

29. Kim, J., Feldt, R., Yoo, S.: Guiding deep learning system testing using surprise
adequacy. arXiv preprint arXiv:1808.08444 (2018)

30. Kounev, S., Lewis, P.R., Bellman, K.L., Bencomo, N., Cámara, J., Dia-
conescu, A., Esterle, L., Geihs, K., Giese, H., Götz, S., Inverardi, P., Kephart,
J.O., Zisman, A.: The notion of self-aware computing. In: Self-Aware Com-
puting Systems., pp. 3–16 (2017). https://doi.org/10.1007/978-3-319-47474-8 1,
https://doi.org/10.1007/978-3-319-47474-8 1

31. de Lemos, R., Garlan, D., Ghezzi, C., Giese, H., Andersson, J., Litoiu, M., Schmerl,
B.R., Weyns, D., Baresi, L., Bencomo, N., Brun, Y., Cámara, J., Calinescu, R.,
Cohen, M.B., Gorla, A., Grassi, V., Grunske, L., Inverardi, P., Jézéquel, J., Malek,
S., Mirandola, R., Mori, M., Müller, H.A., Rouvoy, R., Rubira, C.M.F., Rutten, É.,
Shaw, M., Tamburrelli, G., Tamura, G., Villegas, N.M., Vogel, T., Zambonelli, F.:
Software engineering for self-adaptive systems: Research challenges in the provision
of assurances. In: Software Engineering for Self-Adaptive Systems III. Assurances -
International Seminar, Dagstuhl Castle, Germany, December 15-19, 2013, Revised
Selected and Invited Papers. pp. 3–30 (2013). https://doi.org/10.1007/978-3-319-
74183-3 1, https://doi.org/10.1007/978-3-319-74183-3 1

32. Mens, T., Serebrenik, A., Cleve, A. (eds.): Evolving Software Systems. Springer
(2014). https://doi.org/10.1007/978-3-642-45398-4, https://doi.org/10.1007/978-
3-642-45398-4

33. Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S., Hirschfeld, R., Jazayeri, M.:
Challenges in software evolution. In: Proceedings of the Eighth International Work-
shop on Principles of Software Evolution. pp. 13–22. IWPSE ’05, IEEE Computer
Society, Washington, DC, USA (2005). https://doi.org/10.1109/IWPSE.2005.7,
https://doi.org/10.1109/IWPSE.2005.7

34. Nanda, A., Mani, S., Sinha, S., Harrold, M.J., Orso, A.: Regression testing in the
presence of non-code changes. In: 2011 Fourth IEEE International Conference on
Software Testing, Verification and Validation. pp. 21–30. IEEE (2011)



12 A. Bertolino, P. Inverardi

35. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research chal-
lenges. ACM transactions on autonomous and adaptive systems (TAAS) 4(2), 14
(2009)

36. Santelices, R., Chittimalli, P.K., Apiwattanapong, T., Orso, A., Harrold, M.J.:
Test-suite augmentation for evolving software. In: 2008 23rd IEEE/ACM Interna-
tional Conference on Automated Software Engineering. pp. 218–227. IEEE (2008)

37. Siqueira, B.R., Ferrari, F.C., Serikawa, M.A., Menotti, R., de Camargo,
V.V.: Characterisation of challenges for testing of adaptive systems. In:
Proceedings of the 1st Brazilian Symposium on Systematic and Auto-
mated Software Testing, SAST 2016, Maringa, Parana, Brazil, September
19-20, 2016. pp. 11:1–11:10 (2016). https://doi.org/10.1145/2993288.2993294,
https://doi.org/10.1145/2993288.2993294

38. Staats, M., Whalen, M.W., Heimdahl, M.P.: Programs, tests, and oracles: the foun-
dations of testing revisited. In: Proceedings of the 33rd international conference on
software engineering. pp. 391–400. ACM (2011)

39. Su, F.H., Bell, J., Harvey, K., Sethumadhavan, S., Kaiser, G., Jebara, T.: Code
relatives: detecting similarly behaving software. In: Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering.
pp. 702–714. ACM (2016)

40. Varshosaz, M., Beohar, H., Mousavi, M.R.: Basic behavioral mod-
els for software product lines: Revisited. Sci. Comput. Program.
168, 171–185 (2018). https://doi.org/10.1016/j.scico.2018.09.001,
https://doi.org/10.1016/j.scico.2018.09.001

41. Yu, T.: Simevo: Testing evolving multi-process software systems. In: 2017 IEEE
International Conference on Software Maintenance and Evolution (ICSME). pp.
204–215. IEEE (2017)




