
SparkBOOST, an Apache Spark-based

boosting library

Tiziano Fagni (tiziano.fagni@isti.cnr.it)
Andrea Esuli (andrea.esuli@isti.cnr.it)

Istituto di Scienze e Tecnologie dell’Informazione (ISTI)
Italian National Research Council (CNR)

Pisa, Italy

March 3, 2016

Abstract

SparkBOOST is a Java library built over Apache Spark that provides
a distributed implementation of AdaBoost.MH and MP-Boost machine
learning algorithms. These boosting algorithms are known to be very
effective and robust to overfitting in many application domains, e.g. in
natural language processing contexts. SparkBOOST offers to developers
a fast way to scale these algorithms to large scale problems, where one
needs to build classifiers from very large training datasets or simply needs
to quickly classify huge stream of documents. The library can be inte-
grated into custom programs by using a simple API. The SparkBOOST
implementation also provides some command line tools to perform learn-
ing and classification on data sources available in LibSVM format.

1 Introduction

Boosting[2] is a powerful machine learning (ML) technique used to build very
effective models in supervised learning problems. The main idea of boosting
is to build a strong learner by using contributions coming from a committee of
weak learners. In the last years boosting techniques have been used with success
over various applications domains, in particular the algorithms AdaBoost.MH[3]
and MP-Boost[1] have shown very good accuracy as automatic text classifiers on
several benchmarks. One of the main advantages that these boosting algorithms
have over other well-known ML methods, such as Support Vector Machines
(SVMs), is the fact that they actually have no parameters that require fine-
tuning to obtain good performances. This makes boosting algorithms a first-
choice tool in all the cases in which the cost of parameter tuning is not acceptable
because of time or resources limitations.

1

The exponential growth of many social network platforms, and models of
social sharing, of the last years have produced an unprecedented explosion of
data availability (also known as the BIG DATA era). Most of this data could
find application into ML process. Apache Spark[4] is currently one of the leading
open source distributed data processing platform available on the market able
to manage huge quantities of data in this scenario. Spark offers to developers
MLlib, a ML library, but this library is relatively limited in terms of available
algorithms types. In particular, no boosting algorithms are offered. The main
aim of SparkBOOST1 is to fill this gap by providing a Java implementation of
the two boosting algorithms mentioned above on the Apache Spark platform.

2 Library usage

SparkBOOST is provided in the form of a Java library which can be imported
in your own source code. The library also gives to developers a set of command
line tools to quickly train and apply classifiers. The command line tools work
with data sources in LibSVM format.

2.1 Compile the source code

Apache Maven and a Java 8 compiler are required to build the software from its
source code. The following commands will download and build SparkBOOST:

git clone https://github.com/tizfa/sparkboost.git

cd sparkboost

mvn clean

mvn -P shading package

This set of commands will build a software bundle containing all the necessary
Spark libraries. You can find the software bundle in the target subdirectory of
the library root directory.

2.2 Using command line tools

2.2.1 How to build classifiers

SparkBOOST offers to developers or end-users a set of command line tools
to quickly build boosting classifiers and apply them to specific problems. All
command line tools assume that the input data source is available in LibSVM
format2. You can build both multilabel multiclass classifiers or binary classifiers
(use the flag -b to specify this behaviour in the tools).

To build an MP-Boost classifier for a specific dataset file path/to/datasetFile,
use the following commands:

1https://github.com/tizfa/sparkboost
2https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

2

java -cp ./target/sparkboost-0.6-bundle.jar

it.tizianofagni.sparkboost.MPBoostLearnerExe path/to/datasetfile

path/to/modelOutput numIterations sparkMasterName parallelismDegree

where path/to/modelOutput is the output file where the generated classifier
will be saved, numIterations is the number of iterations run by the algorithm,
sparkMasterName is the name of Spark master host (or local[*] to execute
the process using Spark in local mode) and parallelismDegree is the number
of processing units to be used when executing the algorithm.

The command to build an AdaBoost.MH classifier is exactly the same as be-
fore, just using the class AdaBoostMHLearnerExe class instead of the MPBoostLearnerExe
class.

2.2.2 How to classify examples

After learning a classification model, we can classify a test dataset3 using the
command:

java -cp ./target/sparkboost-0.6-bundle.jar

it.tizianofagni.sparkboost.BoostClassifierExe datasetfile

classifierModel outputResultsFile sparkMasterName parallelismDegree

where datasetFile is the input file containing the dataset test examples, classifierModel
is the file containing the previously learned classifier model, outputResultsFile
is the ouput file containing classification results, sparkMasterName is the name
of Spark master host (or local[*] to execute the process using Spark in local
mode) and parallelismDegree is the number of processing units to be used
when executing the algorithm.

2.3 Java API

The following in an example of how to use the SparkBOOST API to train and
apply a classifier to data.

A learner is prepared by setting its Spark context and the iteration and
parallelism parameters:

JavaSparkContext sc = ... // Spark context to use;

// Create and configure AdaBoost.MH learner. For MP-Boost, just use the

class

// MPBoostLearner.

AdaBoostMHLearner learner = new AdaBoostMHLearner(sc);

learner.setNumIterations(numIterations);

learner.setParallelismDegree(parallelismDegree);

3It does not matter if the model has been built with MP-Boost or AdaBoost.MH learner,
they share the same format for classification models.

3

If the training data is saved in LibSvm format in a file, the file can be passed
directly to the learner:

// Build a new classifier. Here we assume that the training data is

available in

// the input file which is written in LibSvm format.

BoostClassifier classifier = learner.buildModel(inputFile, labels,

binaryProblem);

Other sources of data can be provided in input as an RDD with Multilabel-
Point items:

// Or you can prepare yourself the training data by generating an RDD

with items

// of type MultilabelPoint...

JavaRDD<MultilabelPoint> trainingData = ...

// and then train the classifier.

BoostClassifier classifier = learner.buildModel(trainingData);

The learned models are saved and loaded using Spark DataUtils methods:

// Save classifier in outputModelPath using any valid syntax

// allowed by Spark/Hadoop.

DataUtils.saveModel(sc, classifier, outputModelPath);

// Load boosting classifier from disk.

classifier = DataUtils.loadModel(sc, outputModelPath);

A model can be applied to test data from a file in LibSvm format or from
an RDD with MultilabelPoint items:

// Classify documents contained in "testInputFile", a file in libsvm

format.

ClassificationResults results = classifier.classify(sc, testInputFile,

parallelismDegree, labels, binaryProblem);

// or classify documents available in an RDD.

JavaRDD<MultilabelPoint> rdd = ...

results = classifier.classify(sc, rdd, parallelismDegree);

// Print results in a StringBuilder.

StringBuilder sb = new StringBuilder();

sb.append("**** Effectiveness\n");

sb.append(results.getCt().toString() + "\n");

sb.append("********\n");

for (int i = 0; i < results.getNumDocs(); i++) {

int docID = results.getDocuments()[i];

int[] labels = results.getLabels()[i];

int[] goldLabels = results.getGoldLabels()[i];

sb.append("DocID: " + docID + ", Labels assigned: " +

Arrays.toString(labels) + ", Labels scores: " +

4

Arrays.toString(results.getScores()[i]) + ", Gold labels: " +

Arrays.toString(goldLabels) + "\n");

}

3 Conclusion

We have presented SparkBOOST, an open source Java library, built over
Apache Spark, that provides a distributed implementation of two popular boost-
ing ML algorithms. Using Apache Spark under the hood, the library allows to
easily scale the algorithms to big data contexts. Programmers can integrate
SparkBOOST into their workflow by using the simple Java API or by using
the provided command line tools.

References

[1] A. Esuli, T. Fagni, and F. Sebastiani. MP-Boost: A Multiple-Pivot Boost-
ing Algorithm and Its Application to Text Categorization. In F. Crestani,
P. Ferragina, and M. Sanderson, editors, String Processing and Information
Retrieval, number 4209 in Lecture Notes in Computer Science, pages 1–12.
Springer Berlin Heidelberg, Oct. 2006.

[2] R. E. Schapire. Nonlinear Estimation and Classification, chapter The Boost-
ing Approach to Machine Learning: An Overview, pages 149–171. Springer
New York, New York, NY, 2003.

[3] R. E. Schapire and Y. Singer. Boostexter: A boosting-based system for text
categorization. Machine Learning, 39(2):135–168.

[4] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster computing. In Proceedings of the
9th USENIX Conference on Networked Systems Design and Implementation,
NSDI’12, pages 2–2, Berkeley, CA, USA, 2012. USENIX Association.

5

	Introduction
	Library usage
	Compile the source code
	Using command line tools
	How to build classifiers
	How to classify examples

	Java API

	Conclusion

