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Abstract: Background: Temporomandibular joint (TMJ) disorders, which affect millions of people
worldwide, have multiple etiological factors that make an accurate diagnosis and effective treatments
difficult. As a consequence, the gold standard diagnostic criteria for TMJ disorders remain elusive
and often depend on subjective decisions. Aim: In this context, the lack of a non-invasive quantitative
methodology capable of assessing the functional physiological state and, consequently, identifying
risk indicators for the early diagnosis of TMJ disorders must be tackled and resolved. Methodology: In
this work, we have studied the biomechanics and viscoelastic properties of the functional masticatory
system by a non-invasive approach involving 52 healthy subjects, analysed by statistical–physics
analysis applied to myotonic measurements on specific points of the masticatory system designing
a TMJ network composed of 17 nodes and 20 links. Results: We find that the muscle tone and
viscoelasticity of a specific cycle linking frontal, temporal, and mandibular nodes of the network play
a prominent role in the physiological functionality of the system. At the same time, the functional state
is characterised by a landscape of nearly degenerated levels of elasticity in all links of the network,
making this parameter critically distributed and deviating from normal behaviour. Conclusions: Time
evolution and dynamic correlations between biomechanics and viscoelastic parameters measured on
the different cycles of the network provide a quantitative framework associated with the functional
state of the masticatory system. Our results are expected to contribute to enriching the taxonomy of
this system, primarily based on clinical observations, patient symptoms, and expert consensus.

Keywords: temporomandibular joint disorder; graph theory; dynamic correlations; stable distributions

1. Introduction

The masticatory system is one of the most important modules in the human anatom-
ical network [1]. It is composed of functional tissues and organs whose main tasks are
food intake, the initial stage of mastication, and digestion. Beyond these main tasks, the
system is also involved in several important aspects, particularly with a high impact on
both physiological and psychological processes, such as emotional expression, speech
articulation, breathing, and body balance [2,3]. In this context, a functional disorder of the
masticatory system can affect various aspects of health and can manifest as muscle pain,
crackling of the temporomandibular joints (TMJs), impaired mobility, clenching of teeth, or
hearing damage. Early studies in this field concerning the influence of dental occlusion on
muscular activity were performed by Hickey et al. in the 1950s [4]. Functional disorders of
the masticatory system can also affect speech sounds [5]. Indeed, the masticatory system
and speech-sound disorders are found together in many dental, orthodontic, laryngological,
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phonetic, and speech therapy studies. Evidence to date indicates a deep interrelationship of
jaw, neck, and trunk muscle activity [6], and it seems that neck muscle contraction is tuned
with the mandibular muscles during mandibular activity [7]. Furthermore, recent research
works have established that masticatory function plays a relevant role in the development
of cognitive activity and decay [8].

2. Objectives and Aims

The taxonomy of the temporomandibular Joint (TMJ) is primarily based on clinical
observations, patient symptoms, and expert consensus, lacking a physical–mathematical
model as a reference. In the realm of muscle functionality and its mechanical properties,
quantitative investigative techniques encompass electromyography (EMG) [9] and ultra-
sonography (USG) [10]. Ultrasonic imaging comprises two distinct modalities: strain and
shear wave elastography [11]. Strain elastography relies on the application of external
pressure to tissues, generating a quantitative stiffness map based on relative distortion
imaging [12]. Nevertheless, this technique is not without limitations, notably in terms of the
potential for object displacement due to applied pressure. To mitigate these issues, shear
wave elastography (SWE) emerged [11]. SWE is a non-invasive method characterised by
ultrafast processes capable of ascertaining the elasticity of diverse tissues [13–16] through
the calculation of shear wave propagation speeds within the tissues [17,18]. In recent devel-
opments, non-invasive portable hand-held devices for myotonometry have been employed
to objectively evaluate muscle spasticity by quantifying tissue displacement in response
to perpendicular compression forces [16,19]. It is noteworthy that the myotonometric
measurements obtained through EMG and USG exhibit strong correlations with the mea-
surements obtained using the MyotonPRO device [20]. The MyotonPRO is a relatively new
portable handheld apparatus that offers a simple and non-invasive means to characterise
the tone, mechanical stiffness, and viscoelasticity of skeletal muscle [21,22]. Its operations
entail the application of a mechanical impulse to the skin, which is subsequently transmit-
ted to the underlying soft tissue and muscle. This impulse provokes a damped natural
oscillation in the muscle, recorded by an accelerometer in the form of an accelerogram [23].
Hence, within this work, we have applied a statistical–physics approach to MytonPRO
measurements, seeking to establish a quantitative framework of the biomechanical and
viscoelastic properties of the masticatory system in its functional state.

The primary objective of this study is to probe masticatory function by conducting
an exhaustive analysis of the anatomical network encompassing the muscles in the neck
and head region, including those involved in the process of chewing. This analysis aims
to unveil the intricate interactions among anatomical components implicated in chewing,
providing a holistic perspective on the coordination and function of these components. The
transition from a functional to a pathological state is frequently gradual, rendering a clear
demarcation between the two somewhat challenging. Therefore, the second significant
objective of this research study is to introduce the myotonometer (MyotonPRO) as an
innovative tool in the domain of functional masticatory diagnostics. This device is designed
to precisely gauge muscle tension and the elasticity of muscle tissues within the anatomical
network. The joint utilization of the anatomical network model and the myotonometer
represents an advanced approach to obtaining a comprehensive and detailed assessment of
muscle function, with a specific focus on patients afflicted by temporomandibular disorders
(TMDs) or other chewing-related conditions.

Indeed, the development of symptomatic pathological states depends on various
subjective factors, encompassing tissue reactivity as well as the patient’s personality and
physical condition. Irrespective of this pre-existing knowledge, a comprehensive under-
standing of the physiological state is imperative for the detection of deviations, facilitating
the identification of the initial phase of pathology onset. For example, an intrinsic factor
contributing to physiological degeneration within the masticatory system is the aging
process [24–27].
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This foundational knowledge serves as a launchpad for future research endeavours
focused on TMD patients. The objective is to pinpoint potential irregularities or disparities
within the anatomical network and assess their potential linkage to chewing disorders. The
enhancement of this integrated approach can significantly advance the assessment and
management of TMD patients, contributing to the improvement of quality in care offered
to those grappling with these disorders, helping monitor patients during a rehabilitation
phase of masticatory function [28], and, furthermore, intercepting a misknown masticatory
dysfunction in healthy subjects.

3. Materials and Methods

The current work is a cohort study that provides statistical data derived from mea-
surements of muscle tone of the masticatory system conducted on 52 individuals out of
a total of 163 voluntary participants. At the time of the measurements, the volunteers
ages ranging from 20 to 86 years included males (n = 29) and females (n = 23). The par-
ticipants were selected based on the exclusion criteria, which ensured the absence of any
temporomandibular disorders, whether articular, muscular, or any other symptoms related
to the masticatory system [29]. Furthermore, none of these individuals received dental care
during the period in which the measurements were taken or in the 12 months leading up
to them.

The participants consented to participate in this study. Measurements were taken
at rest on both sides of the individuals’ faces on sets of five muscles with masticatory
functionality, some directly implicated in masticatory functionality and others involved in
head and neck movement, which is often associated with and perturbed by masticatory
function [30–32].

The measurements were carried out in specific areas to standardise the procedure
concerning the bony insertion of temporalis, masseter, mylohyoid, platysma, and stern-
ocleidomastoid muscles. As reported and detailed in Figure 1, 20 points were taken into
consideration, corresponding to the muscle areas near their bony insertions.

The MyotonPRO instrument measures the tone, the biomechanical, and viscoelastic
response of the muscle to a brief (15 ms) mechanical impulse (with a force of 0.58 N) on the
skin surface above the muscle [26]. The mechanical deformation of the tissue is delivered by
the device testing end held perpendicular to the skin surface. An integrated 3-axis digital
acceleration sensor recorded the muscle dynamic response, providing an accelerogram
composed of damped oscillations. The analysis of the recorded signal is performed in real
time by an integrated software allowing the extraction of the following five parameters,
namely Am: frequency, F (m = 1); stiffness, S, (m = 2); decrement, D (m = 3); mechanical
stress relaxation time, R (m = 4); and creep, C (m = 5).

The oscillation frequency characterizes the tone of a muscle and it is measured as
the maximum frequency in the fast Fourier transform spectrum of the accelerogram [33]
with a precision of 1.1%. The biomechanical properties are associated with the stiffness
and the decrement. Dynamic stiffness, S, characterises the resistance of the muscle to the
force that changes its shape. This parameter is calculated as M × amax/∆l, where M is the
mass of the testing end of the myometer, amax is the maximal acceleration of oscillation,
and ∆l is the deformation depth of the muscle mass [34]. The reliability/precision of the
measurement is 3.9%. The decrement directly measures the dissipation of the oscillation
when a tissue recovers the shape after being deformed and is related to muscle elasticity.
It is given by D = ln (a1/a3), where a1 and a3 are the first two positive amplitudes of the
accelerogram. The viscoelastic properties are measured by the relaxation time, R, and the
creep, C (known as number of Deborah). The relaxation time is the time taken by the muscle
to restore its initial shape after external force is removed [35]. It is measured as the time
interval between the maximum displacement of the tissue and the return to its initial shape.
The reliability of the R measurement is 1.5%. Furthermore, the gradual elongation of a
tissue over time when placed under a constant tensile stress is the last extracted quantity,
i.e., creep, C, also known as the Deborah number; it is measured as the ratio of the relaxation
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time, R, to deformation time. The device has been used in the multiscan mode, where one
measurement corresponded to the mean of 3 mechanical taps [21,36].
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Figure 1. Muscle taken into consideration for measurement with the use of MyotonPRO. The coloured
points show the 20 points where measurements have been taken by MyotonPRO on each subject. The
legend describes the five pairs (right (RT) and left (LT)) of tested muscles, divided by colour, and
their corresponding bony insertions, (www.visiblebody.com) as reported in the following list: M.
temporal RT (interacts with) frontal (white); m. temporal RT (interacts with) mandible (white); m.
masseter RT (interacts with) temporal (yellow); m. masseter RT (interacts with) mandible (yellow);
m. mylohyoid RT (interacts with) mandible (green); m. mylohyoid RT (interacts with) hyoid bone
(green); m. platysma RT (interacts with) mandible (black); m. platysma RT (interacts with) clavicle
RT (black); m. sternocleidomastoid RT (interacts with) clavicle RT (red); m. sternocleidomastoid
RT (interacts with) temporal (red); m. temporal LT (interacts with) frontal (white); m. temporal LT
(interacts with) mandible (white); m. masseter LT (interacts with) temporal (yellow); m. masseter LT
(interacts with) mandible (yellow); m. mylohyoid LT (interacts with) mandible (green); m. mylohyoid
LT (interacts with) hyoid bone (green); m. platysma LT (interacts with) mandible (black); m. platysma
LT (interacts with) clavicle (black); m. sternocleidomastoid LT (interacts with) clavicle (red); m.
sternocleidomastoid (interacts with) temporal (red).

Data analysis and visualization have been performed using home-made routines
written in MATLAB R2022b under the Windows 11 operating system.

4. Results

MyotonPRO measurements have been carried out on bone insertion points of the
masticatory musculature, forming an osteon–muscular network schematized in Figure 2.
This network consists of 17 nodes (full circles). The measurements are performed on the

www.visiblebody.com
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points of contact between two nodes that lie on the links. The network is composed of 20
links (l = 1, . . ., 20) grouped in four cycles (cy = 1, . . ., 4) indicated with I, II, III, and IV,
closing on the same mandibular node. The names of nodes and links are tabulated and
shown in Figure 2.
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Figure 2. Temporomandibular muscle network. The nodes and links are indicated by full circles and
tick lines, respectively. The four cycles are indicated by I, II, III, and IV. The list of nodes and links
is also reported. The thickness of the links refers to the measured values of the frequency averaged
across all patients for each link (see Figure 3c, top panel). LT (left); RT (right).
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Figure 3. Maps of link measurements. (a) Measurements of MyotonPRO in each of the 20 links
for each of the 52 healthy patients The horizontal lines delimit the links belonging to cycles I, II,
III, and IV. (b) Probability distributions of measurement maps showing the bimodal distributions
of frequency, stiffness, relaxation, and creep. The bimodal distributions have been modelled as a
mixture of two Gaussians whose mean and proportion values of the two components are reported
in Table 1. The bimodal distribution is not able to fit decrements in data, modelled by a stable
distribution (red line). (c) Averaged values of Am

lp on all 52 patients, giving <Am
l>P = <F>P, <S>P,

<D>P, <R>P, and <C>P (full circles). Each link is represented by a full circle whose colour is the same
as the corresponding link in the graph of Figure 2. The standard deviations of <Am

l>P for all links, l,
are plotted by error bars and represented by shaded areas. PDF (Probability density function); Hz
(Hertz); N/m (N/meter); ms (millisecond).
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Table 1. Proportion and mean of the two Gaussian components used to fit the probability density
function (PDF) of Am with m = 1, 2, 4, 5. F (frequency); S (stiffness); R (relaxation); C (creep).

Cycles F (%) S (%) R (%) C (%) <F> <S> <R> <C>

I 0.32 0.27 0.20 0.20 25.50 636.0 7.17 0.49

II–IV 0.68 0.73 0.80 0.80 15.35 284.4 18.90 1.16

4.1. Measurement Maps Am

All measured parameters (F, S, D, R, and C) for the Np = 52 healthy patients have
been visualised by 2D matrices, Am

lp, shown as colour maps in Figure 3a. Each pixel
(l,p) corresponds to the measure of the parameter Am on a specific link, l, of a specific
patient p. The patients have been sorted by age, while links are numbered counterclockwise
in Figure 2. The link axis has been grouped by horizontal lines in four different cycles
indicated by I, II, III, and IV. The first cycle, I, groups links from l = 1. . .4 and shows higher
values for frequency (m = 1) and stiffness (m = 2) in comparison with all the remaining links.
Correspondingly, it assumes smaller values for relaxation time (m = 4) and creep (m = 5).

Thus, upon this early inspection, the cycle I seems to play a peculiar role in the
muscular network. The decrement (m = 3) shows a quite different behaviour; indeed, it
assumes fluctuating values without any clear dependence on the cycles. To quantify this
different behaviour, we have computed the probability density function, PDF, for each
map Am. The results (Figure 3b) show a bimodal distribution for F, S, R, and C (Am with
m = 1, 2, 4, and 5, respectively), which is well modelled by a mixture of two Gaussians.
The first Gaussian, given by the lower PDF values in F and S, corresponds with F and S
values measured on the II, III, and IV cycles, while the second Gaussian corresponds to
higher values of F and S measured on the first cycle, I. The opposite behaviour is found for
the viscoelastic R and C parameters. The proportion and the mean of the two Gaussian
components in the F, S, R, and C measurements are reported in Table 1.

On the other hand, the PDF of decrement cannot be modelled by using a mixture of two
Gaussian. It has been fitted by a stable distribution, deviating from Gaussian behaviour
and characterised by a longer asymmetric tail. Stable distributions have been applied
to several dynamical processes occurring in complex systems with functional disorder
characterised by an energy landscape deriving from configurations with nearly degenerate
competing levels. These systems constitute a hot topic in the last few decades in several
fields, such as biology [37,38], chemistry [39,40] and material science [41,42]. A basic and
relevant consequence is the emergence of anomalous phases and unpredictable properties
as occurs in quantum matter [43–45]. The different distributions of our measurements
can also be appreciated by averaging each Am matrix on all 52 patients for each link,
l, giving <Am

l>p=(1,...Np) = <F>P, <S>P, <D>P, <R>P, and <C>P shown in the five plots
of Figure 3c. The larger frequency and stiffness for the first cycle, alongside the larger
viscoelastic properties of creep and relaxation time of the II, III, and IV cycles, are well
depicted. At the same time, <D>P assumes competing slightly different values in the four
cycles. These competing values produce a more complex and dynamic landscape of muscle
elasticity in comparison with muscle tone, stiffness, and viscoelasticity.

4.2. Cycle Dynamics: Exponential Growth and Decaying of Am
cy Measurements

The different values of Am in links belonging to the different cycles suggest studying
the time evolution of the four cycles in our measurements, as shown in the plot of the
cycle average Am

cy as a function of the age of patients (Figure 3). We observe a stretched
exponential growth in A1

cy = Fcy and A2
y = Scy, while the viscoelastic A4

cy = Rcy and A5
cy =

Ccy show a stretched exponential decay in the same range. We have modelled our data by
using the following stretched exponential equations:

Am
cy(t) = km

cy

(
1− e−(t/τm

cy)
γm

cy
)

(1)
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where km
cy is a constant, τm

cy is a characteristic time, and γm
cy is the stretching exponent

relative to the measurement m on the cycle cy. Similarly, the stretched exponential decay of
viscoelastic quantities is given by

Am
cy(t) = Bm

cy + km
cye−(t/τm

cy)
γm

cy
(2)

where Bm
cy is the baseline value and km

cy is a constant value. All the parameters, including
Bm

cy, km
cy, τm

cy, and γm
cy for each cycle, cy, and each MyotonPRO measured quantity, m,

are tabulated and shown in Figure 4. The km
cy is larger for the first cycle, indicating that the

final value reached with late age is always larger in the first cycle for Fcy(t) and Scy(t), while
it is smaller in the same cycle for the decaying viscoelastic Rcy(t) and Ccy(t).
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Figure 4. Growing, decaying, and competing cycles in muscle networks. Measurements of My-
otonPRO in each cycle as a function of the age of the 52 healthy patients are shown. Values of fit
parameters extracted by Equations (1) and (2) are also tabulated. We note that, after 25 years, the
parameters’ evolution shows a saturation-like behaviour after τ values. Hz (Hertz); N/m (N/meter);
ms (millisecond).

A different behaviour is observed in the A3
cy = Dcy(t) evolution. Here, the decrement

grows in the first cycle, while it decays in the other cycles. The characteristic time, τm
cy, is

around 20 ± 1 years for all cycles in frequency (m = 1) and biomechanical muscle evolution
(m = 2, 3). In the decay of viscoelastic evolution, the characteristic time, τm

cy, assumes lower
values of around 13 ± 1 years. The stretching exponent (γm

cy) is 1 for all Am
cy in the II, III

and IV cycles, while it is 3 for the first cycle (cy = 1). Thus, the growth of tone and stiffness,
as well as the decay of viscoelastic relaxation time and creep, are faster in the first cycle. In
this way, we have well characterised model lines describing the physiological evolution of
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our system that can serve as references for measurements in non-healthy patients. This will
allow for the assessment of disorder degrees at different ages as new diagnostic tools.

4.3. Correlation Matrix Analysis of MyotonPRO Measurements

In order to investigate how the complex dynamics of decrement affect the normal
behaviour of the other muscle properties, we have performed a correlation study between
the Am

lp matrices. We first calculated the Pearson correlation coefficients between Am maps,
given by

cm,m′ = corr2(Am, Am′) =
∑l ∑p

(
Am

lp −Am
)(

Am′
lp −Am′

)
√(

∑l ∑p

(
Am

lp −Am
)2
)(

∑l ∑p

(
Am′

lp −Am′
)2
) (3)

where m and m′ = 1, . . ., 5. Each Pearson correlation coefficient is a measure of the linear
association between two variables, Am and Am′ . It ranges from −1 to 1, where −1 indicates
a perfect negative correlation, meaning as one variable increases, the other decreases;
a value of 0 indicates no correlation, meaning the variables do not move together; and
a value of 1 indicates a perfect positive correlation, meaning as one variable increases,
the other also increases. The results are shown in Table 2. Strong positive correlations
occur between frequency and stiffness (C23 = C32 = 0.96) and between relaxation time
and creep (C45 = C54 = 0.99). Consequently, frequency and stiffness have high negative
correlations with both relaxation time (C14 = C41 = −0.93, C24 = C42 = −0.95) and creep
(C15 = C51 = −0.91, C25 = C52 = −0.93).

Table 2. Correlation coefficients, Cm,m′ , between Am maps calculated by Equation (1). The green cells
highlight the different lower values of the C3,m′ coefficients involving decrement.

Frequency Stiffness Decrement Relaxation Creep

Frequency 1 0.96 0.23 −0.93 −0.91
Stiffness 0.96 1 0.25 −0.95 −0.93

Decrement 0.23 0.25 1 −0.28 −0.19
Relaxation −0.93 −0.95 −0.28 1 0.99

Creep −0.91 −0.93 −0.19 0.99 1

Lower absolute values of correlation coefficients, indicated by the green cells in Table 2,
have been found between decrement (m = 3) and the other parameters (m = 1, 2, 4, 5). Indeed,
we find lower positive correlations between decrement and both frequency (C31 = C13 = 0.23)
and stiffness (C32 = C23 = 0.25) as well as higher negative correlations between decrement
and both viscoelastic relaxation time (C34 = C43 = −028) and creep (C35 = C53 = −0.19).

4.3.1. Pairwise Patient–Patient and Link–Link Correlations of MyotonPRO
Measurements Am

The different distribution of decrement values across the different cycles of the network
produces lower correlations between decrement and the other measured parameters. To
deepen this aspect, we have calculated the Pearson pairwise correlation coefficients between
each pair of patients (p, p′) in the different MyotonPRO maps, Am (m = 1, 2, 4, 5). As a
result, we obtain patient–patient cross-correlation matrices, cm,m′

p,p′ :

cm,m′
p,p′ = corr

(
Am

lp, Am′
lp′
)

=
∑Nl

l=1

(
Am

lp −Am
p

)(
Am′

p′l −Am′
lp′

)
√

∑Nl
l=1

(
Am

lp −Am
p

)2
∑Nl

l′=1

(
Am′

l′p′ −Am′
p′

)2
(4)
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where Am
l =

Np
∑

p=1
Am

lp/Np, m, and m′ = 1, . . ., 5, and p = 1, . . ., Np. The colour cross-correlation

maps in Figure 5a highlight, once again, the different dynamics of the decrement. Indeed,
while the cross correlation maps with m, m′ = 1,2,4,5 appear quite homogeneous, the corre-
lation maps involving the decrement with m or m′ equal to 3 show patterns characterised
by stronger discontinuities. When m = m′, cm,m

p,p′ is a symmetric matrix made by the pair-
wise linear correlation coefficient between the same measured parameter, m, for different
patients, p and p′. Its main diagonal, where p = p′, is thus composed of Np elements equal
to 1 since it represents the correlation of a measurement of a parameter for a patient with
the same parameter measured in the same patient. As one gets away far from this diagonal,
following the dashed arrows in the symmetric maps of Figure 4a, the mean of the diagonal
elements is expected to change for dynamic systems. Thus, to describe analytically how
each symmetric map, cm,m

p,p′ , changes, we have calculated the 1D autocorrelation function,
ACF, by the mean values of the diagonals of each cm,m

p,p′ matrix:

ACF(m, p) =

{
1

Np− j

Np−j

∑
i=1

Cm(pi, pi+j
)}

j=0,...,Np−1

(5)
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Figure 5. Patient–patient and link–link map correlations in masticatory muscle network. (a) Cor-
relation maps, cm,m′

p,p′ , where each pixel (p,p′) is calculated by Equation (4). (b) Autocorrelation
function, ACF(m,p), calculated by Equation (5), for each measurement correlation map, cm,m

p,p′ .
The ACF frequency, stiffness, relaxation time, and creep are represented by black squares, circles,
diamonds and triangles, respectively; the ACF of decrement corresponds to the red circles. The
continuous lines in the ACF panel are the best fitted curve obtained by modelling data with the
decaying stretched exponential of Equation (6). (c) Correlation maps, cm,m′

l,l′ , where each pixel (l,l′)
is calculated by Equation (7). The zones delimited by the black thick lines represent cycles I, II, III,
and IV. (d) Autocorrelation function, ACF(m,l), calculated by Equations (4) and (5), respectively, for
the symmetric correlation maps, cm,m

l,l′ . ACF (AutoCorrelation Function).
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We can now observe that its behaviour decreases for successive diagonals running,
as indicated by the dashed arrows in the symmetric maps of Figure 4a, corresponding to
the increasing age of the patient. The ACFs for each cm,m

p,p′ map are shown by different
symbols in the upper panel of Figure 5b. The specific decay of the ACF is used to quantify
the specific dynamic of the process. Also, in this case, we have modelled the ACF’s decay
by using the stretched exponential function:

ACF(m, p) = b + (a− b)e−(p/p0)
β

(6)

Here, the decay occurs as a function of the number, p, of patients, corresponding
with their age; thus, p0 is related to a characteristic age for the correlation decay of the
measured parameter. The stretching exponent, β, is a shape parameter characterizing the
degree of deviation from an exponential function and the fastness of the decay, b is the
baseline, and (a − b) is defined as the contrast and indicates the strength of the decay. These
parameters, for all measurements, m, are reported in Table 3, while the best fitted curves
are shown by the thick lines in Figure 5b. We note how decrement correlation decay is
stronger since its contrast, a − b, is larger; at the same time, it has a stretching exponent
near to 1, lower than 1.8, found for the decay of the other parameters. Thus, the decrement
correlation decay is stronger and slower. Finally, we observe that the characteristic age for
the correlation decrement decay is 50 years, which is lower than the characteristic age of the
other parameters’ correlation decay. Indeed, patient–patient correlations decay at 60 years
in frequency and stiffness, while decay between these correlations occurs at 70 years in
viscoelastic creep and relaxation time.

Table 3. Fit parameters of ACF(m,p) modelled by Equation (6).

M Measurement Contrast β p0 Age (y)

1 Frequency 0.028 1.85 42 60
2 Stiffness 0.028 1.85 43 60
3 Decrement 0.265 1.05 33 50
4 Relaxation 0.050 1.85 48 70
5 Creep 0.040 1.85 48 70

Now, we move to study the different dynamics of decrement by cross-correlation
matrices, cm,m′

l,l′ , calculated for all healthy patients, p, in each pair of links, l, l′, as follows:

cm,m′
l,l′ = corr

(
Am

lp, Am′
l′p
)

=
∑

Np
p=1

(
Am

lp −Am
l

)(
Am′

l′p −Am′
l′

)
√

∑
Np
p=1

(
Am

lp −Am
l

)2
∑

Np
p′=1

(
Am′

l′p′ −Am′
l′

)2
(7)

where Am
p = ∑Nl

l=1
Am

lp/Nl, m, m′ = 1, . . ., 5, and l, l′ = 1, . . ., Nl.
The cm,m′

l,l′ maps shown in Figure 5c give, in this case, the pairwise linear cross-
correlation coefficients between link l in Am

lp matrix and link l′ in Am′
l′p. We observe that

this link–link correlation decay is quite different from the decay in the patient–patient
correlation map, cm,m′

p,p′ , described in Figure 5b. In this case, the 1D autocorrelation
function is given by

ACF(m, l) =

{
1

Nl − j

Nl−j

∑
i=1

Cm(li, li+j
)}

j=0,...,Nl−1

(8)

It shows quite different line shapes (see Figure 5d). In particular, the decrement ACF
(full red circles) shows a stronger and faster decay. Furthermore, we observe that in the
link–link cross correlation maps between decrement and the other quantities, the links
belonging to cycle I show an opposite tendency in comparison with the other remaining



Life 2023, 13, 2107 11 of 15

cycles II, III, and IV, where we receive negative correlations c1,3
l,{1,..,4}, c2,3

l, {1,..,4}, c4,3
l, {5,..,20},

and c5,3
l, {5,..,20}; on the opposite side, c1,3

l, {5,..,20}, c2,3
l, {5,..,20}, c4,3

l, {1,..,4}, and c5,3
l, {1,..,4} are

positive. The decrement symmetric matrix presents negative correlations c3,3
{1,..,4},{5,..,20}

and c3,3
{5,..,20},{1,..,4}. Thus, also from the above correlation analysis, a peculiar role of cycle I

in the muscular network is apparent.

4.3.2. Correlations between Network Cycles of MyotonPRO Measurements

To further quantify the prominent role and the different dynamics of the first cycle,
we have first averaged the links in the measurement maps, Am, for each patient in the four
cycles I, II, III, and IV (cy = 1, 2, 3, 4) and then we have extracted i) the Pearson coefficient
Cm

cy,cy′ between Am
cy and Am

cy′ matrices and ii) the Pearson coefficient Ccy
m,m′ between

Am
cy and Am′

cy matrices:
Cm

cy,cy ′= corr2 (Am
cy, Am

cy ′ ) (9)

Ccy
m,m ′= corr2 (Am

cy, Am′
cy) (10)

Coefficients Cm
cy,cy′ tell us how a measurement of a cycle is correlated with another

cycle in the same measurement Am. Coefficients Ccy
m m ′ describe how a measurement,

m, of a cycle is correlated with another measurement, m′, for the same cycle. The results
are shown by clustergrams in Figure 6. A clustergram is composed of a heat map of the
correlation matrix (Cm

cy,cy′ and Ccy
m,m′ , where the rows and columns are sorted in the order

suggested by the hierarchical clustering). This allows for the grouping of various subsets of
the cycles that are highly correlated within the subset, as highlighted by a dendogram.
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Figure 6. Heat map with dendrogram of coefficients (a) Cm
cy,cy’, calculated by Equation (8) and

(b) Ccy
m,m’ calculated by Equation (9). The Pearson coefficients are reported also reported. F (fre-

quency); S (stiffness); D (decrement); C (creep); R (relaxation).

Cm
cy,cy′ , as shown in Figure 6a, has a positive result, indicating positive correlations

between Am measurements in all cy cycles, except for the decrement (m = 3), where the first
cycle is negatively correlated with the other cycles. Stronger positive correlations occur
between the lateral cycles in creep, where cm

24 = cm
42 > 0.86. Ccy

m m ′ are shown in Figure 6b.
Equal dendrograms with similar heat maps are found for cycles II, III, and IV. Here, Ccy

m m ′

is positive between F, S, and D (m,m′ = 1, 2, 3) and between R and C (m,m′ = 4, 5), while
it is negative between R and C and F, S, and D. This clustering changes in cycle I, where
negative correlations occur between F and D.
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5. Discussion

We have studied the masticatory system in its functional state by using myotonic
measurements on specific points drawing a muscular network. This network is composed
of 17 nodes and 20 links grouped in four cycles closing on the mandibular node. Myotonic
measured parameters are frequency, F, stiffness, S, decrement, D, relaxation time, R, and
creep, C. They characterise the tone (F) as well as the biomechanical (S, D) and viscoelastic
(R and C) properties of the system. The state of the system has been represented as a matrix,
Am, (visualised as a colour map) for each measured parameter, m = F, S, D, R, C, where
a specific element Am

lp provides the measured parameter of the link, l, in the patient, p.
In this way, statistical physics has been used to characterise the functional state of the
system and to describe its evolution with age. All measured maps have shown a bimodal
distribution due to the different values measured for the first cycle, I, with respect to the
other (II, III, and IV) cycles, except for the decrement, which assumes nearly competing
values on all links, giving rise to a stable distribution typical of nonlinear and metastable
phenomena. Indeed, the decrement (inversely proportional to the elasticity) seems to be
a critical parameter of the masticatory musculature, while the first cycle might play a
prominent role in its functionality. The time evolution analysis of our data clustered in the
four cycles shows a clear stretched exponential growth of F and S for all cycles, but the first
cycle shows a faster growth. Similarly, we find a decay of C and R for all cycles, with a
faster decay in the first cycle. The decrement behaviour is quite different, confirming the
critical nature of elasticity in the functionality of the masticatory system. Indeed, it decays
in the first cycle, while, at the same time, it increases for the other (II, III, and IV) cycles at
the same rate.

The peculiar role of cycle I and the critical behaviour of decrement comes clearly
from the matrix cross-correlation analysis. While tone and stiffness, as well as relaxation
and creep, are highly correlated, the decrement shows lower correlations, positive with F
and S and negative with C and R. The pairwise patient–patient correlations appear quite
homogeneous between F and S as well as between C and R, while, in the case of decrement,
a non-homogeneous pattern arises. The pairwise cross-correlation homogeneity and their
forming pattern are related to the dynamics of the system. This dynamic has been charac-
terised by calculating the 1D autocorrelation function, ACF, indicating a stronger decay
dynamic of correlations for the decrement. Furthermore, this decay occurs earlier for the
decrement, around the 50th year, while the decay characteristic time of the biomechanical
properties F and S is around the 60th year and the viscoelastic R and C decay occurs later
towards the 70th year. The partial link–link correlation matrices confirm the stronger decay
of the 1D autocorrelation function of the decrement and the peculiar behaviour of the links
belonging to the first cycle.

6. Conclusions

In summary, we have defined a quantitative evolutive trend of the functional TMJ
system based on statistical–physics modelling of myotonic measurements performed on
52 healthy patients. Our modelling highlights the importance of the first cycle in the
functionality of the masticatory system and the critical nature of the decrement parameter.
Additionally, it provides an understanding of the system’s dynamics and the correlations
between the different measured parameters. This model could offer deeper insights into
the understanding and classification of temporomandibular disorders by investigating the
extent of deviation from the physiological trend in measurements performed in non-healthy
patients. Indeed, the taxonomy of the temporomandibular joint (TMJ) is primarily based on
clinical observations, patient symptoms, and expert consensus [29,46]. Thus, a significant
gap exists in this taxonomy due to the absence of a physical–mathematical model. Despite
the complexity of TMJ disorders, involving biological, psychological, and social factors,
we believe that methodologies based on quantitative models could significantly enhance
the current taxonomy and contribute positively to this field, improving the diagnosis and
treatment of muscular disorders in the masticatory region.
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