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Abstract. This paper provides a tutorial-style introduction, and a guide,
to the recent advancements in spatial model checking that have made
some relevant results possible. Among these, we mention fully auto-
mated segmentation of regions of interest in medical images by short,
unambiguous spatial-logical specifications. This tutorial is aimed both
at domain experts in medical imaging who would like to learn simple
(scripting-alike) techniques for image analysis, making use of a modern,
declarative language, and at experts in Formal Methods in Computer
Science and Model Checking who would like to grasp how the theory
of Spatial Logic and Model Checking has been turned into logic-based,
dataset-oriented imaging techniques.
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1 Introduction

The topological approach to spatial model checking was introduced in [16,17],
as a fully automated method to verify properties of points in a spatial structure,
such as a graph, or a digital image. The theory of spatial model checking has
its roots in the spatial interpretation of modal logics dating back to Tarski (see
[9] for a thorough introduction to the subject). Spatial properties of points are
related to topological aspects such as being near to points satisfying a given
property, or being able to reach a point satisfying a certain property, passing
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only through points obeying to specific constraints. The Spatial Logic of Closure
Spaces defined in [16] is quite expressive, which has been demonstrated in case
studies ranging from smart transportation [19] to bike sharing [23,18], to medical
image analysis [3,7,8,6]. The arbitrary nesting of spatial properties is the key to
obtain such strong capabilities.

In the tool VoxLogicA, presented in [8], and designed from scratch for image
analysis, logical operators can be freely mixed with a few imaging operators,
related to colour thresholding, texture analysis, or normalization. The tool is
quite fast, due to various factors: most primitives are implemented using the
state-of-the-art imaging library SimpleITK3; expressions are never recomputed
(reduction of the syntax tree to a directed acyclic graph is used as a form of
memoization); operations are implicitly parallelised on multi-core CPUs. Case
studies such as brain tumour segmentation [3,8], labelling of white and grey
matter [7], and contouring of nevi [6] have shown that simple, unambiguous and
explainable logical specifications can compete in accuracy with state-of-the-art
machine-learning based methods4.

So far, however, even if the VoxLogicA approach is meant to be domain-
expert-friendly and the tool itself is quite straightforward to use, applications
of spatial model checking have been confined to a limited group of “initiated”
collaborators. One reason for this is a conceptual gap between the theory of
topological spatial logics for discrete structures, presented in [16,17], and the
technicalities of a full case study such as that of [6], where the most relevant
keywords are dataset, overlay, ground truth, region of interest, etc.

In this paper, we attempt to fill this gap by providing a gentle, hands-on
introduction to the subject of spatial model checking for image analysis. The
intended audience of this paper is two-fold: we aim at reaching both domain
experts in image analysis (who could even be non-programmers, but are willing
to get acquainted with the benefits of declarative analysis, and learn simple
scripting-alike techniques to automatise imaging tasks, based on spatial features
of points or regions) and experts in Formal Methods in Computer Science, and
in particular in model checking, who are able to understand the technical aspects
of VoxLogicA, but need some guidance to gather insights from the ideas behind
its image analysis capabilities.

In Section 2, we introduce the spatial model checker VoxLogicA starting from
the practicalities: how to invoke the tool, the format of input files, visualization
of results, log files, and how to run the tool against a dataset. In Section 3, we
illustrate by examples the core capabilities of spatial-logical reasoning, that is,
the concepts of nearness and reachability. In Section 4, we introduce the use of
VoxLogicA as a method to obtain numbers or Boolean values from whole images,

3 See https://simpleitk.org/.
4 Indeed, it is not the intention of the research line around VoxLogicA to compete

against machine-learning based approaches. Rather, we expect that the two can be
complementary: VoxLogicA specifications can certainly be used to coordinate various
machine-learning based steps in order to obtain procedures that have a degree of
machine-learning based operation, but are still modifiable and explainable.

https://simpleitk.org/
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for instance in order to query datasets to find images satisfying given properties.
In Section 5, we illustrate some slightly more advanced examples of spatial oper-
ators, including distance transform and filtering, via a background segmentation
example. Therein, we also briefly discuss a statistical texture similarity operator.
In Section 6, we provide a brief guide to the related literature, focusing on recent
applications of Spatial Logics in Computer Science, both based on the Spatial
Logics of Closure Spaces proposed in [16,17] and not depending upon it. In Sec-
tion 7, we illustrate the more recent research lines that are being pursued by
the VoxLogicA group, including the use of GPU computing to speed up spatial
model checking, the study of a dataset oriented graphical user interface for the
design of logical specifications, and a freshly designed spatial model checker for
analysing 3D meshes using the Spatial Logic of Closure Spaces.

2 Using VoxLogicA: Practicalities

In this tutorial, we will use the command line interface of VoxLogicA5. After
unpacking / installing the tool, running the executable from its full path, with
no arguments, will produce a help message listing the options. VoxLogicA spec-
ifications contain a description of the model to be analysed (essentially, a set of
images of the same size), and a list of properties to be verified. For executing
a specification, only one argument is needed, that is, the specification name, so
the model checker can be run as follows:

/path/to/VoxLogicA input.imgql

In our first examples, we will use the following image of a maze, with green exit,
white corridors, black walls, four coloured square placeholders (cyan, orange,
magenta, blue), and a pink trapdoor.

It is very important to remark that although for simplicity, in this tutorial
we encode all properties of interest as colours (and doing so can be useful in
several situations), real-world examples may require more precise annotation of

5 We use VoxLogicA version 1.0. It can be downloaded from https://github.com/
vincenzoml/VoxLogicA. The example images and files of this paper are available at
the same web site.

https://github.com/vincenzoml/VoxLogicA
https://github.com/vincenzoml/VoxLogicA
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properties of pixels. In medical images, for instance, it is quite common that a
dataset contains, for each case, several separated, possibly overlapping images of
the same size, either Boolean valued, or divided into regions by the use of integer
labels. Such annotations are called regions of interest (ROIs). Indeed, VoxLogicA
can load more than one image by using several load instructions, and thus easily
work with multiple ROIs. Similarly, a dataset may contain more than one “base”
image. For example, a dataset related to brain tumours could contain acquisitions
made with different MRI modalities, which emphasize different aspects of a
patient situation. Analysis methods that can make use of multiple modalities
are called multi-modal. Again, since VoxLogicA can load multiple images in the
same specification, it can be readily used for multi-modal analysis.

2.1 The declarative language ImgQL

The input language of VoxLogicA, namely the Image Query Language ImgQL,
has only five commands:

– load x = "filename.{png,nii,nii.gz,jpg,bmp,...}"

loads an image in one of the supported file formats, and binds its to the (con-
stant) name x. Note that ImgQL is a “pure” language, with no side effects.
Therefore all names are constant, not variables (there is no assignment).

– save "filename.{png,nii,nii.gz,jpg,bmp,...}" expression

saves the result of an expression returning an image6 to a file;
– print "label" expression

prints the result of an expression returning a number, or a boolean value, to
the log file, accompanied by a given label to be easily recognisable;

– let name = expression

where name starts with a lowercase letter, declares a constant; the let con-
struct has two more variants, described below;

– let fname(x1,...,xn) = expression

where fname starts with a lowercase letter, declares a function;
– let OP(x1,...,xn) = expression

where OP consists of uppercase letters and symbols, declares an operator,
which is different from a function only by the syntax used to invoke it.
Unary operators are prefix (e.g. the not/complement operator !x); binary
operators are infix (e.g. the or/union operator x & y); if more than two
arguments are supplied, these are added in square brackets; for instance,
let OP(x,y,z,t) = ... defines the operator OP invoked as x OP[z,t] y;

– import "filename.imgql"

imports a library of let declarations; no other command than let can ap-
pear in an imported file. The file stdlib.imgql located in the same direc-
tory as the VoxLogicA executable is automatically imported. Files are first

6 A VoxLogicA expression may return either an image – which can be Boolean-valued,
number-valued, or have multiple number-valued channels – or a single value, which
can be either a number or a Boolean value. No distinction is made between integer
and floating point numbers; all numbers are treated as floating point internally.
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searched in the same directory as the executable. If the file name contains
no extension and the file is not found, VoxLogicA also attempts to load a
file with the same name and .imgql extension.

2.2 Loading and saving models

We shall first demonstrate load and save constructs. We will load our maze
image, and save an output image only containing its routes, that is, the white
area. Below, the specification is shown on the left, and the result on the right.
In white, the pixels satisfying the whole specification, which as we shall see (and
purely coincidentally, in this example) are the white pixels of the input image.

load img = "maze01.png"
let corridor = (red(img) =. 255) &

(green(img) =. 255) & (blue(img) =. 255)

save "output/example01.png" corridor

The load instruction binds to name img the image contained in the input file.
The save instruction saves to the output file the result of an expression (we have
bound the expression to the name corridor, but that would not be necessary
in principle; the expression could have directly appeared as an argument of the
save instruction). Throughout this tutorial, we save all our output files in a
directory named “output”. This is convenient, but indeed not mandatory; the
file would be saved in the current working directory if no path was supplied. If
output directories are specified, these are automatically created if not existing.

Let us analyse the definition of corridor, aimed at selecting only the white
pixels in the image. First let us look at the sub-expression red(img) =. 255.
The expression red(img) takes as parameter the image img, and returns an
image consisting in only the red component of the image (similarly, there are
functions green and blue for the other two components of the RGB colour
space). Since the input file is a 8-bits-per-channel image, the result of red(img)
is a number-valued image, having the same width and height of the original one,
containing a numeric value between 0 and 255 in each pixel. Note that the Vox-
LogicA type system does not distinguish between integers and floating points.
Internally, all numbers are 32-bits floating point in order to guarantee precision
of the analysis. The infix operator =. takes on its left a number-valued image i,
and on its right a number n. As in some scientific computation languages, the
dot in an operator is on the side of numbers, whereas “matrices” (in our case,
images) do not have a dot. The result is a Boolean-valued image, containing
in each pixel at coordinates (x, y) the value true if the value of i at the pixel
(x, y) is equal to n. Similarly, there are operators >. (greater than a value),
>=. (greater or equal than a value) and so on. The infix operator & is logi-
cal conjunction (“and”) (similarly, there is a disjunction operator | (“or”), and
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negation ! (“not”)). The operator & takes as input two Boolean-valued images,
and returns a Boolean-valued images which, pixel by pixel, contains the conjunc-
tion of the corresponding values. Therefore the meaning of the whole expression
(red(img) =. 255) & (green(img) =. 255) & (blue(img) =. 255) is to
return a Boolean image that has value true only on the white pixels (all the
three components have maximum value).

Since the save instruction requires a Boolean valued image to be saved in
the png format, which only allows integer values, the truth values are encoded
as 0 for the value false and 255 for the value true. This is to ease visualisation
of the verification results, as it corresponds to using the colour black for false
and white for true, as it is clearly visible in the resulting image.

Finally, sometimes it is easier to visualise results by super-imposing them on
the original image. For this, the overlayColor function of the standard library
can be of help. It takes as arguments an “overlay” Boolean-valued image (to
be super-imposed in a colour), a “background” image (which will be rendered
“below” the super-imposed layer), and three colour components, red, green and
blue. It returns an image having the pixels coloured in the same way as “back-
ground” on the pixels where “overlay” is false, and in the colour specified by
the three colour components on the pixels where “overlay” is true. In the ex-
ample below, we super-impose in red the expression denoting corridors, on top
of our base maze image. In order to do so, we define a single-argument function
named view that shows its only argument in red, and will be reused later.

let view(x) = overlayColor(x,img,255,0,0)

save "output/example02.png" view(corridor)

2.3 Anatomy of VoxLogicA logs

The log of our first analysis is reported below (path names have been edited).

[ 84ms] [info] Parsing input...
[127ms] [info] Preparing computation...
[157ms] [info] Importing file "/path/to/stdlib.imgql"
[167ms] [info] Loading file "/path/to/maze01.png"
[205ms] [warn] image maze01.png has 4 color components per voxel.

Assuming RGBA color space (CMYK is not supported).
[241ms] [info] Starting computation...
[242ms] [info] Running 10 tasks
[292ms] [warn] saving boolean image to example01.png;

value ’true’ is 255, not 1
[296ms] [info] Saving file "/path/to/output/example01.png"
[334ms] [info] ... done.
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The log has three columns. The first one contains the time at which each
message has been printed (relative to the start of the program). The second
column contains the severity level of the message, which can be “informative”,
“warning”, “failure”, or “user” for messages issued using the print instruc-
tion. The third column contains the message itself. Among the many possi-
ble messages, the number of tasks (in this case, 10) can be useful to estimate
the complexity of a formula. It is however worth emphasizing that the num-
ber of tasks that will be executed is not directly proportional to the number
of subformulas, but rather to the number of unique subformulas. The model
checking engine of VoxLogicA never computes expressions twice, so the same
number of tasks are obtained e.g., by writing f(expression1,expression1)

or let x = expression1 and then f(x,x). The number of unique expressions
depends on reduction of the given formulas to the core primitives of VoxLogicA
(which can be listed using the --ops command line option).

2.4 Working with datasets

One of the major issues related to image analysis using declarative languages is
how much ad-hoc is resulting specification is. On the other hand, the work in
[3,7,8,6] has been successful in carrying out complex imaging tasks, such as brain
tumour or nevus segmentation, because “success” is measured against a reason-
ably large dataset, proving generality of the proposed specification. To the best
of our knowledge so far, declarative specifications work best against homogeneous
datasets7. So are, for instance, 3D Magnetic Resonance Images (MRI) obtained
using specific MRI modalities, such as the MRI-FLAIR8 used in [8]. Among
many common features, all MRI-FLAIR brain images have a dark background,
the cerebrospinal fluid is dark, and the tumour area is always hyper-intense.
Indeed such constraint may be relaxed, and effective analysis methodologies can
be developed on datasets that are partitioned into a number of different, but
homogeneous classes, as it happens in [6].

Currently, there is no built-in facility in VoxLogicA to work with datasets,
and extract useful information (such as, for instance, performance scores that
ought to be optimized). Specifications are meant to be run against single cases.
This could be the subject of future improvements to the tool, but currently,
it is just easier to resort to an external tool orchestrating several runs of the
model checker by replacing file names according to patterns that are defined
based on the dataset. For instance, a script for datasets of the Brain Tumour
Segmentation challenge [30] is provided in the VoxLogicA repository, and can be
readily adapted to datasets with different naming conventions.

7 In this respect, we consider our work still as the beginning of a research line, and we
cannot predict if, for instance, novel logical operators will enable the development
of very general specifications that operate on inhomogeneous domains.

8 Fluid-attenuated Inversion Recovery. See e.g. Wikipedia contributors, ”Fluid-
attenuated inversion recovery,” Wikipedia, The Free Encyclopedia, https://en.
wikipedia.org/w/index.php?title=Fluid-attenuated inversion recovery

https://en.wikipedia.org/w/index.php?title=Fluid-attenuated_inversion_recovery
https://en.wikipedia.org/w/index.php?title=Fluid-attenuated_inversion_recovery
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3 Topological properties and reachability

We shall now expand our specification in order to illustrate the use of reachability
formulas. First of all, we declare a bunch of constants, to simplify the specifica-
tion by identifying the various coloured squares (which could be thought of as
points of interest, or as actors willing to move in the maze), the corridors, the
walls, and the exit.

let rgbcol(r,g,b) =
(red(img) =. r) & (green(img) =. g) & (blue(img) =. b)

let corridor = rgbcol(255,255,255)
let exit = rgbcol(0,255,0)
let trapdoor = rgbcol(255,128,128)

let cyan = rgbcol(0,255,255)
let orange = rgbcol(255,128,0)
let magenta = rgbcol(255,0,255)
let blueSq = rgbcol(0,0,255)

let all = cyan | orange | magenta | blueSq

For reachability properties, we will employ the operator ∼>. A pixel p satisfies
a ∼> b if there is a path starting in p and ending in a point satisfying b, such
that all points of the path satisfy a9. Let us now find the pixels belonging to the
corridors from which the exit can be reached. These are the pixels from which a
path can be drawn traversing the corridors, until a pixel which is adjacent to
the exit is found. The property of being adjacent to the exit can be expressed
using the near operator, denoted by N in ImgQL. Thus, the points from which
an exit can be reached are represented by the expression freeCorridor below.

let freeCorridor = corridor ∼> (N exit)

save "output/example04.png"
view(freeCorridor)

Additionally, we can identify the points of interest from which an exit can
be reached passing through corridors, by chaining two reachability properties10.
Indeed, only the cyan and blue squares are coloured in red.

9 This is a variant of the ρ operator used in [8], the difference being that with ρ, the
extremes of the path do not need to satisfy a.

10 The reader should now pause, and understand (even by experimenting) why actually,
two reachability properties are needed.
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let freeSquares = all ∼> N freeCorridor

save "output/example05.png"
view(freeSquares)

Now consider our maze as if it was an abstract model of an emergency sce-
nario. A person, who could be in one of the cyan, blue, or orange spots holds the
key to the pink trapdoor, and ought to go there, open the trapdoor and rescue
a person in the magenta spot, then reach the exit. Let us try to express it using
the ∼> operator. There could be more than one way of doing so. Our proposal is
a chain of nested reachability properties. Indeed, only the cyan square satisfies
the specification.

let rescuer = (cyan | blueSq | orange)
∼> N (corridor ∼>

(N (trapdoor ∼>
N (corridor ∼>

N (magenta ∼>
N ((corridor | trapdoor) ∼>

N exit ))))))

save "output/example06.png" view(rescuer)

4 Global properties and Region Calculi

VoxLogicA has a number of global operators, among which those that can com-
pute the maximum and minimum of the values where a specific Boolean-value
image is true, or that can compute the volume (number of pixels) of a Boolean-
valued image. The results of such operators can be inspected using the print
instruction, having a syntax similar to that of the save instruction.

For instance, the volume of the corridors (if useful for any purpose), the
number of pixels of the whole image, and the ratio between the two, can be
computed and displayed in the log as follows (below, tt is the Boolean operator
“true”, which holds at any pixel):

print "corridors volume" volume(corridor)
print "image volume" volume(tt)
print "corridors / total volume" volume(corridor) ./. volume(tt)

[258ms] [user] image volume=1048576.0
[274ms] [user] corridors volume=786307.0
[275ms] [user] corridors / total volume=0.7498807907



10 V. Ciancia, G. Belmonte, D. Latella, M. Massink

Typically, such values are then collected by a script – for instance, when running
VoxLogicA against a dataset as explained in Section 2.4 – and eventually used
for statistical purposes. A simple application of the volume operator is to check
whether, in a given image, there exists a point having a given property, by
checking whether the volume of the pixels satisfying that property is greater
than 0. For instance, in order to check whether there are any “rescuers” in an
image of a maze, we can do as follows:

let exists(x) = volume(x) .>. 0
print "existsRescuer" exists(rescuer)

[545ms] [user] existsRescuer=true

By the above, VoxLogicA can also be used as a method to query datasets of
images in order to identify those that satisfy specific requirements. For instance,
a real-world scenario could be that of using the procedure for brain tumour
segmentation described in [8] in a dataset of patients, in order to identify cases
with particularly large brain tumours, or e.g., where the tumour is very close
to the cerebellum. Similarly, the nevus segmentation procedure of [6] could be
turned into a method to identify patients with nevi having specific characteristics
(e.g. ratio between border and surface, etc.). The position paper [5] further
elaborates on this idea.

Expanding on global operators, the paper [20] demonstrated that the classical
binary operators of the family of Region Calculi can be defined in ImgQL. More
precisely, given two regions, it is possible to check whether such regions are
disconnected, externally connected, equal, partially overlapping, or if one is a
tangential or non-tangential proper part of the other.

The operators of the region calculus have been implemented in a VoxLog-
icA library, consisting in the file RegionCalculus.imgql residing in the same
directory as the VoxLogicA executable. Users can load such library by writing:

import "RegionCalculus.imgql"

Recall that also the standard library "stdlib.imgql", which is automati-
cally imported, resides in the same directory. It can be useful for the reader to
inspect these two files, in order to learn about the pre-defined derived operators,
and how they can be defined using the basic primitives of VoxLogicA.

5 Advanced topics: background removal, distance,
filtering, texture similarity

In this section, we illustrate a slightly more advanced example, making use of
reachability and the built-in border predicate to remove the background from a
coloured image. Such method is actually used in [8] to remove the background
from the dataset of brain images employed therein and identify the area con-
taining the brain. In passing, we will illustrate a kind of “filter” pattern used
to smoothen images in order to remove non-essential details, using the built-in
distance transform operator.



A Hands-on Introduction to Spatial Model Checking using VoxLogicA 11

We will use the image on the left below, depicting three coloured plastic discs
laying on a grey surface; note that although the background is quite uniform,
it is not just made of a single colour, due to illumination. Our example will be
aimed at “masking” the background from the image, by colouring it in green, in
order to obtain the image on the right. Note that the exercise does not require
to colour in black the parts of the background that are inside the smaller holes
of the three coloured discs, which therefore remain grey.

As a first step, the most obvious thing to do is to apply a threshold on the
red, green and blue components of the image, in order to separate the grey areas,
in which all the three components have a high value at the same time, from the
coloured areas, where some components are predominant.

load i = "three_coloured_items.png"

let greyish =
(red(i) >. 120) & (green(i) >. 120) &
(blue(i) >. 120)

let view(x) = overlayColor(x,i,0,255,0)
save "output/greyish.png" view(greyish)

We have again defined a view function, this time showing our results in green
in order to maximise contrast. Note that the threshold we have used works quite
well, but still leaves some fuzzy margin near to the lower-right corner of the image
(where the background is darker). Moreover, quite obviously, also the inner part
of the holes in the coloured discs has been selected by the threshold. Finally, we
note that there are small areas that are not captured by the threshold, mostly,
close to the border of the discs, and the purple disc also contains some noise, due
to some grey shadows in the picture. Such issues are clearly visible, for instance,
by zooming in on the relevant areas, as done below.
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In order to exclude the “inner” points from our selection (inner parts of
the holes and green points in the purple disc), the built-in predicate border of
VoxLogicA can be of help. Such predicate is true only at the borders of an image.
This means the area where border is true is only 1 pixel wide, and would not
be clearly visible in a picture. So we have an excuse to illustrate the distance
transform operator, since it can be use to thicken the border and visualise it
more clearly. Later, we will use the same operator for smoothening.

The distance transform pdt(x) is an imaging primitive that, given a Boolean-
valued image x, returns a number-valued image where each pixel p contains the
numeric value of the Euclidean distance of p from the points where x is true. This
is defined as the minimum of the distance of p from any point where x is true. To
be more precise, below we use the so-called “positive” distance transform, which
is zero on the points where x is true (hence the “p” in pdt). In image formats
that have a notion of physical dimension of pixels, the distance is expressed in
millimetres; otherwise, the distance unit corresponds to the width of a pixel.

let normalise(x,v) =
(x /. max(x)) *. v

save "output/pdt.png"
normalise(pdt(border),255)

To ease visualization of the result, we defined the function normalise(x,v),
dividing the value of the image x in each pixel by the maximum value, so that
the maximum in the result is 1; then by multiplying it by v, the maximum
becomes v. When saving, we let v take the value 255 which is the maximum
representable value in an 8-bit grayscale image11. Visually, the resulting image
is dark in areas very close to the border, whereas pixels that are far from the
border are coloured in more intense shades of white. By applying a threshold on
the distance transform, we can visualize the border by “thickening it” as follows.

let thickBorder = pdt(border) <. 30

save "output/thickBorder.png"
view(thickBorder)

11 In order to avoid issues related to overflow and low precision of 8-bit integers al-
together, VoxLogicA can save images in the nifti format. Such format can use
floating point values in pixels (and can also represent multi-dimensional images, for
instance 3D MRI or CAT medical images). See https://nifti.nimh.nih.gov/.

https://nifti.nimh.nih.gov/
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Now that it is clear what the border predicate does, we can return to our
background segmentation specification, and identify those greyish areas that
touch the border, in order to separate them from the inside of holes and the
noisy result of the threshold operation on the purple disc-

let greyishTouchBorder =
greyish ∼> border

save "output/greyishTouchBorder.png"
view(greyishTouchBorder)

The resulting image is quite close to the result we have in mind, but not there
yet. There is noise in the result, both on the lower-right corner of the image, and
close to the border of the discs, as we already noted. In order to remove noise,
very often in imaging some form of smoothening is used, as illustrated below.

let distgeq(x,y) = x .<= pdt(y)
let distleq(x,y) = x .>= pdt(y)
let flt(x,a) = distleq(x,distgeq(x,!a))
let dualSmoothen(x,a) =

flt(x,a) | (!flt(x,!a))

let smooth =
dualSmoothen(10,greyishTouchBorder)

save "output/filtered.png" view(smooth)

We define the flt(x,a) function with two arguments, a number x and a
Boolean-valued image a. The idea is that the area where a is true is first shrunk,
by only keeping the points that lay at a distance greater or equal than x from
its complement !a, and then enlarged by taking the points that lay at a distance
less or equal than x from the “shrunk” image. The initial shrinking eliminates
areas that are smaller in radius than x, whereas enlarging the result “fills” the
resulting holes.

In previous work, the flt function is usually applied to a Boolean-valued
image, in order to remove noise in the area where the image is true. In this ex-
ample, however, both the part of greyishTouchBorder which has value true and
that having value false may be noisy. Therefore, we define the dualSmoothen

function that applies the flt function both to an image and to its complement,
and combines the two results. To aid the intuition, the reader may think that
the dualSmoothen function enlarges flt(x,a) by adding to it whatever point
p that is removed from its complement !a in the expression flt(x,!a). Tech-
nically, this is done by adding to it any point in !flt(x,!a) (which includes
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both the points p in the above situation, and the points that are already in
flt(x,a)). Zooming in demonstrates the combined effect of selecting only the
part of greyish that touches the border, and of the dual smoothening. The
result is shown on the right, against the image greyish, reported on the left,
for comparison.

Finally, the remaining “holes” near to the border can be filled as follows.

let final = smooth | ((!smooth) ∼> border)

save "output/final.png" view(final)

A very similar method has been successfully employed for 3D MRI-FLAIR
dataset in the brain tumour case study of [8]. More advanced techniques can be
used, involving, for instance, the statistical texture similarity operator, presented
in [3,8]. The texture similarity operator associates to each pixel p a similarity
score between −1 and 1, relating an area with a given radius r around p to
a target region, denoted by a Boolean-valued image, by comparing the k-bins
histograms of the area around p, and of the target region, using a method called
cross-correlation. For instance, the background segmentation method employed
in [6] finds the areas of the image that have a texture similar to the area close to
the border. We refer the reader to the cited papers, and only show a similarity
map obtained using such method, where darker areas are less similar to the area
near to the border.

let similar(x,r,k) =
crossCorrelation(r,

intensity(i),intensity(i),
x,min(intensity(i)),

max(intensity(i)),k)

let simMap =
similar((pdt(border) <. 3),30,4)

save "output/texture.png"
normalise(simMap +. 1,200)
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The function similar(x,r,k) computes the similarity score with respect to
a target region (Boolean valued image) x, with radius r and number of bins k. We
report the full definition of similar for the reader to return to it, after studying
the topic in more detail. We just note that we use a very low number of bins (k =
4) and a high radius (r = 30) in order to obtain a quite coarse-grained analysis,
which yields a good similarity map for background segmentation purposes (the
similarity map is meant to be thresholded just like we did with the red, green
and blue components of the image in the beginning). Finally, observe that we
normalise values between −1 and 1, therefore we add the value 1 to each pixel12.

6 Related work

As we already mentioned, the VoxLogicA approach stems from topological spa-
tial logics. The reader interested in the theoretical developments behind this
fascinating topic should consult the Handbook of Spatial Logics [1], containing
several monographic chapters on selected topics in the field.

The development of SLCS in [16] has spawned a few research lines. The work
in [32,33,4,31] proposes the Signal Spatio-temporal Logic (SSTL) that combines
the analysis of continuous signals through the Signal Temporal Logic with the
topological spatial operators of SLCS. In [34], SSTL has been used for specify-
ing spatio-temporal patters in the context of particle-based simulation, as part
of a statistical spatio-temporal model-checking approach, following the method
described in [18]. The results presented in [35] introduce a spatio-temporal logic
for bigraphs, inspired by [24], and use the tool topochecker presented in [15]
for verification. The recent work in [2] demonstrated that SLCS formulas can be
interpreted in a fully distributed way, for monitoring purposes across a network.
The research line started in [14] aims at providing a categorical generalisation of
modal logics with reachability, based on hyperdoctrines, covering many examples
such as fuzzy sets, algebraic structures, coalgebras, and also known cases such as
Kripke frames and probabilistic frames. The study of model-based equivalences
(such as bisimulation) and minimisation algorithms that are correct and com-
plete with respect to logical equivalence of the Spatial Logic of Closure Spaces
has been recently pursued in [21,22,27]. In [10], some of the authors of this paper
co-authored an effort towards model checking of continuous space, by re-using
the continuous semantics of SLCS given in [17] in the restricted, computation-
friendly setting of models based on polyhedral valuations, which are triangulated
to form simplicial complexes. As an application, 3D meshes can be loaded and
analysed using methods similar to those that have been illustrated in this tu-
torial. Also the recent work in [28] interprets SLCS on simplicial complexes;
the focus therein is not on defining a notion of reachability which is compatible
with the definition of [17]; rather, the authors exploit simplicial complexes as
a description of relations between data, and the chosen accessibility relations
between simplexes reflect such choice.

12 We do not normalise the result to the maximum representable value 255, but just
to 200, to make the lighter areas grey, which is more prominent on white paper.
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Furthermore, without claiming to be exhaustive, we cite a few approaches
to logic-based spatio-temporal analysis that are not directly related to SLCS.
In [25] spiral electric waves—a precursor to atrial and ventricular fibrillation—
are detected and specified using a spatial logic and model-checking tools. The
formulas of the logic are learned from the spatial patterns under investigation
and the onset of spiral waves is detected using bounded model checking. In
the logical language SpaTeL [26], space is hierarchically divided in quadrants,
and complex logic formulas, in the form of quad-trees, are built using machine
learning methods. In [29], the authors define a logic language grounded on a
chemical-based coordination model. Logic formulas are evaluated in a distributed
manner by using an inference procedure which verifies them against the current
global state of the system, checking whether the emergent global behaviour obeys
to the required properties.

7 Outlook

We hope that reading this tutorial up-to here has not only initiated the reader to
the basics of Spatial Model Checking and VoxLogicA, but has also raised some
interest in the ongoing developments that will soon become relevant additions
to the landscape of instruments devoted to spatial model checking. Currently,
the VoxLogicA group is pursuing a few major research lines.

First and foremost, the immediate interest of the group is in advancing the
healthcare related applications of Formal Methods and Spatial Model Checking
in particular. Besides identifying new promising case studies, and improving the
existing results, the integration, to some degree, of Machine Learning methods
into logical specifications is an interesting scientific challenge. This could be
used, for instance, to calibrate numeric parameters, or to accomplish some basic
imaging tasks using Machine Learning, and coordinate them using explainable
logical specifications to obtain more refined, complex results.

Very relevant for, but not limited to, the healthcare applications is the de-
velopment of a dataset-oriented user interface that can leverage studies on the
cognitive load on users (see e.g. [11]) in order to make logic-based analysis sim-
pler to develop and more effective.

The natural setting in which such a user interface can be used is that of inter-
active development of logical specifications against training datasets. Currently,
even if VoxLogicA is quite fast (often requiring no more than a few seconds
to complete the analysis of a single case), running an analysis against a whole
dataset is a batch (non-interactive) process. The progress on the implementation
of spatial model checking on GPUs [12,13] may lead to a dramatic improvement
in this respect.

Another way to reduce the computational cost of analysis is by making the
models to be analysed smaller. The study of minimization algorithms up-to
logical equivalence may be a key advancement in this direction [21,22].

Also relevant in so called “future healthcare” is the study of novel imaging
modalities based on 3D meshes (instead of pixels / voxels); in the same vein, ar-
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tificial vision and augmented reality applications are already starting to appear,
especially in surgery. The work in [10] is the starting point of an effort in the
direction of bringing the spatial analysis capabilities of VoxLogicA to the realm
of 3D meshes. We note in passing that the applications of such methods are
definitely not limited to the domain of healthcare, as 3D modelling is pervasive
in several fields of modern Computer Science and its applications.

It is not difficult to imagine that a language such as ImgQL (dubbed a
“query language” from its inception) could be useful as a true query language
for datasets of images (think e.g. of the large radiological “Picture Archiving
and Communication Systems (PACS)” that are nowadays in use in hospitals).
One may be interested, for instance, in finding all the patients having a brain
tumour of a particularly large size, or where the tumour may be too close to a
specific organ at risk. In a recent position paper [5] some preliminary ideas are
sketched in more detail.

Finally, we mention that, even though everything that was described in this
paper is based on purely spatial analysis, the VoxLogicA group already has
expertise in spatio-temporal modelling and logical specifications, through the
tool topochecker, which was in a sense a predecessor to VoxLogicA but still has
unique spatio-temporal verification capabilities (see [15,24,19,23,18]). Indeed, it
is a planned future development to add such capabilities to VoxLogicA.
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