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Many species of phytoplankton migrate vertically
near the surface of the ocean, either in search
of light or nutrients. These motile organisms are
affected by ocean waves at the surface. We derive
a set of wave-averaged equations to describe the
motion of spheroidal microswimmers. We include
several possible effects, such as gyrotaxis, settling,
and wind-driven shear. In addition to the well-
known Stokes drift, the microswimmer orbits depend
on their orientation in a way that can lead to
trapping at a particular depth; this in turn can
affect transport of organisms, and may help explain
observed phytoplankton layers in the ocean.
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1. Introduction
Many phytoplankton species, inhabiting lakes and oceans, are motile, an ability that allows them
to migrate vertically in the water column to better exploit light, which is available near the surface,
and to search for nutrients, which are typically more plentiful at depth. While migrating they
must contend with the background fluid motion driven by waves, currents, and turbulence. As
a primary producer of biomass in aquatic ecosystems, phytoplankton supports the aquatic food
web and sequesters carbon. Thus, geophysical processes that affect the vertical migration and
spatial distribution of phytoplankton are fundamental to aquatic ecology and biogeochemistry.

For motile phytoplankton (or more generally, any microswimmers), the interaction with
the background flow occurs via advection due to the velocity field and rotation due to the
velocity gradients, where the latter also involves body shape. This coupling between swimming,
advection, and body rotations has been studied in different contexts and shown to affect the
spatial distributions of microswimmers and alter their vertical migration. In isotropic turbulence,
microswimmers cluster and align nematically with fluid vorticity [1,2]. These results were
extended, showing that the swimming direction also aligns in a polar way with fluid velocity due
to correlations between the velocity field and velocity gradients along microswimmer trajectories,
combined with swimming which breaks the fore-aft symmetry of relative motion with respect to
the flow [3,4]. Microswimmers also show interesting spatial distributions in cellular flows [5–7]
and isolated vortices [8–12] and nontrivial transport effects have been studied in microchannel
flows [13–17]. Recent extensions of this research have begun to consider active control of
transport by mechanisms such as optimal swimming strategies [18–20], biological responses
to hydrodynamic cues [21–23], and mutual interactions of microswimmers in the presence of
background flow [24].

Since upwards vertical migration towards well-lit waters is a common goal, many
phytoplanktonic microswimmers exhibit gravitaxis, i.e. they tend to orient their swimming
direction against gravity, owing to a bottom-heaviness within an uneven body mass distribution.
When combined with flow-induced reorientations, this produces a phenomenon known as
gyrotaxis [25]. Gyrotactic microswimmers display a plethora of behaviour in different flow
conditions [26–28]. In turbulent flows, they form small-scale clusters, fractal distributions,
and sample vertical fluid velocities in shape-dependent ways [3,27,29–33]. Gyrotaxis can also
lead to trapping in high shear [28,34,35], which is one mechanism for the formation of ‘thin
phytoplankton layers’ commonly observed in the field [36,37]. When the fluid acceleration is
comparable to the gravitational one, they respond to the total acceleration and can cluster in high
vorticity regions [30].

Here, we consider the emerging topic of how microswimmers behave in flows with free-
surface effects that are important for light-seeking phytoplankton [38–40]. This parallels recent
work on passive particle transport in surface gravity waves [41–45]. In particular, we extend
previous work in [40], which examined how microswimmers interact with a wavy background
flow, to also consider gyrotactic and settling microswimmers within a more general flow
configuration that includes a wind-driven shear superimposed on surface waves, a situation
typically encountered in oceans [46]. Using a multiscale approach, we analyse the most general
system of negatively buoyant non-spherical gyrotactic swimmers in surface gravity waves with
a wind-driven shear, followed by specific sub-cases that neglect certain aspects. In general, we
find that both gyrotaxis and shear introduce new orientation effects that change the topology
of microswimmer trajectories. Specifically, we observe trajectories where microswimmers are
confined to a particular depth. By considering stability and observability of the trapping
behaviour, we show how the depth at which microswimmers are trapped depends on the balance
of different effects. For example, neutrally buoyant gyrotatic microswimmers in pure waves (no
shear) oscillate about a depth where wave-induced re-orientation and gyrotactic re-orientation
balance and negatively buoyant gyrotactic microswimmers in the same flow field are attracted
to a depth where the upwards swimming component (determined by the orientation dynamics)
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Figure 1. Definition sketch of the problem. (a) A prolate gyrotactic microswimmer swims with velocity Vs along its

symmetry axis; settles with velocity Vg ; and re-orients against gravity with characteristic timescale B. It interacts with

a flow field induced by surface waves of amplitude a and wavenumber k, superposed on a linear shear with shear rate σ.

(b) Definition of the orientation vector p and associated angles ϕ and θ.

balances settling velocity. Overall, these trapping features of the system present new mechanisms
that may contribute to the formation of thin phytoplankton layers in the ocean [36].

The rest of the paper is structured as follows. In section 2 we describe the dynamics combining
the effects of waves, linear shear and gyrotaxis on the swimmer’s mechanics. Section 3 focuses
on specific sub-cases where certain effects are neglected in order to obtain interpretable analytical
solutions. In section 4 we provide a discussion where the results are placed into realistic oceanic
and biological scenarios. Conclusions are provided in section 5.

2. Mathematical model and multiple-scale analysis
We consider axisymmetric ellipsoidal microswimmers whose dynamics of position and
orientation are described by (see figure 1)

ẋ= u+ Vsp− Vgk

ṗ=Ω p+ λ[Sp− (pTSp)p] +
1

2B
[k− (k · p)p].

(2.1a)

(2.1b)

In the first equation, which describes the microswimmer’s velocity, there are three terms on
the right-hand side: fluid transport, swimming, and settling, respectively. The microswimmer
moves with a constant swimming velocity Vs in the direction of its symmetry axis p. The
effect of negative buoyancy is taken into account by adding a constant vertical sinking velocity
vg =−Vgk, with k being the unit vector in the vertical (z) direction. For the main body of this
paper, we assume this simplifed form of the settling velocity, neglecting the dependency of the
settling velocity vector on the microswimmer orientation. For the sake of brevity and because
it captures the main phenomenology, in the main text we consider only 2D dynamics in which
the microswimmer axis p is restricted to the x-z plane and orientation is denoted by the angle
measured relative to the vertical direction (px = sinϕ ; pz = cosϕ), as shown in figure 1. The
dynamics with a more complete 3D model for microswimmer motion with a settling velocity
depending on the orientation of the ellipsoidal body is considered in Appendix B.

The second equation in (1) describes the evolution of the particle’s orientation: the first
two terms come from the classic [47] equation for the rotation of a spheroid in a fluid due
to local velocity gradients (in particular Ω = 1

2 [∇u− (∇u)T ] and S= 1
2 [∇u+ (∇u)T ] are the

local rotation rate and strain rate tensors, respectively), and the last one is the gyrotactic
term describing bottom-heavy microorganisms [27,48] which, in the absence of a flow, orient
themselves against gravity with the characteristic re-orientation time B. The body shape of the
swimmers is parameterized by λ= (AR2 − 1)/(AR2 + 1), where AR is the aspect ratio of the
body, i.e. the ratio of the diameter along the symmetry axis to the diameter perpendicular to that
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direction. Based on this definition λ∈ [−1 , 1], with λ> 0 implying prolate swimmers and λ< 0

oblate ones. We focus on the former shape as it is the most common in aquatic microorganisms.
As for the fluid velocity field, we consider a monochromatic surface gravity wave travelling

in the x direction. Under the assumption of small wave amplitudes and deep water, the velocity
field, which is incompressible and irrotational (i.e. Ω = 0), is a solution of the Euler equations and
given by ux = aωekz cos(kx− ωt)

uz = aωekz sin(kx− ωt),

(2.2a)

(2.2b)

where z ≤ 0 is the vertical domain (where z = 0 denotes the average surface position), a is the
wave amplitude, k is the wavenumber, and ω=

√
gk is the angular frequency.

As a generalization of the simple monochromatic gravity wave, we introduce an additional
shear velocity that represents the effect of wind on the surface velocity and, consequently, on the
underlying fluid layers [46]. A simple model for the shear is given by an exponentially decaying
velocity ux,shear = u0 exp(z/β) where β represents a characteristic depth. In order to simplify the
analytical treatment we linearize the shear profile (for z ≥−β) as

ux,shear = σ(β + z), (2.3)

with σ= u0/β being the shear rate.
In what follows all lengths and times are made dimensionless using k and ω, respectively.

The resulting non-dimensional parameters are the wave steepness α= ak, the dimensionless shear
rate σ′ = σ/ω, the dimensionless shear depth β′ = βk, the swimming number ν = kVs/ω, the settling
number νg = Vgk/ω and the stability number Ψ =Bω. Hereafter, we remove the primes for the sake
of notational simplicity. Equation (2.1) takes the 2D dimensionless form

ẋ= αez cos(x− t) + ν sinϕ+ σ(β + z)

ż = αez sin(x− t) + ν cosϕ− νg

ϕ̇= λαez cos(x− t+ 2ϕ)− 1

2Ψ
sinϕ+

σ

2
(1 + λ cos 2ϕ).

(2.4a)

(2.4b)

(2.4c)

The range of validity of the model in equation (2.4) is −β ≤ z ≤ 0, where the lower limit is
determined by the linearization of the shear and the upper limit is determined by the requirement
that the swimmer remains below the average surface position. In numerical simulations of (2.4),
trajectories are stopped when z is outside the range [−β, 0].

The dynamics of swimmers is characterized by fast oscillations at the surface wave frequency
superposed with a slower trend at a longer timescale. Following the approach of [40], we use a
multiple timescale expansion to remove the fast oscillations by introducing the slow timescale
T = ϵ2t. The magnitude of the parameters are assumed to scale as follows:

α→ ϵα; ν → ϵ2ν; Ψ−1 → ϵ2 Ψ−1; νg → ϵ2νg; σ→ ϵ2σ. (2.5)

From the multiple timescale expansion [49], we obtain the following differential equations for
the T -dependent slow variables (represented by capital letters) as a solvability condition at order
ϵ2 (see Appendix A for details):

∂TX = α2e2Z + ν sinΦ+ σ(β + Z)

∂TZ = ν cosΦ− νg

∂TΦ= λα2e2Z [cos(2Φ) + λ]− 1

2Ψ
sin(Φ) +

σ

2
(1 + λ cos 2Φ).

(2.6a)

(2.6b)

(2.6c)

The first equation in (2.6) describes the horizontal motion and the first term represents the Stokes
drift [50,51] which is always positive (in the direction of the waves) and can be enhanced or
reduced by the other terms, as will be discussed in the following.
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Remarkably, the dynamics of Z and Φ is independent of X , so we can study the two-
dimensional system (Z,Φ) separately. In the plane (Z,Φ) we find two fixed points (Z+, Φ+) and
(Z−, Φ−) given by

Φ± =± arccos(r) (2.7)

where r= νg/ν ≥ 0 is the ratio of the swimming speed to the sinking velocity, and

Z± = 1
2 ln

±√
1− r2 − Ψσ

(
1 + λ

(
2r2 − 1

))
2Ψλα2 (λ+ 2r2 − 1)

 . (2.8)

The existence of the fixed points requires r≤ 1. Indeed if r > 1 (i.e. νg > ν) the swimmers sink
and no fixed point can be reached. Depending on the stablity of the corresponding solution, the
existence of a fixed point can result in an effective trapping of some swimmer trajectories within
a finite depth from the surface. This is the main finding of this work and it will be discussed in
detail in the following sections.

3. Analysis of the fixed points and their stability
In this section, in order to make the results clearer, we study in detail the existence and the nature
of the fixed points in (Φ,Z) in three different limits in which one or more ingredients of the model
is disregarded.

(a) Pure Gyrotaxis
We start by considering the case of a neutrally buoyant (νg = 0, i.e. r= 0), gyrotactic swimmer
(Ψ <+∞) in the absence of shear (σ= 0). In this limit equations (2.6) simplify to

∂TX = α2e2Z + ν sinΦ

∂TZ = ν cosΦ

∂TΦ= λα2e2Z [cos(2Φ) + λ]− 1

2Ψ
sinΦ.

(3.1a)

(3.1b)

(3.1c)

The fixed points (2.7)–(2.8) then become

Φ± =±π/2, Z± = 1
2 ln

[
± 1

2Ψλα2(λ− 1)

]
, (3.2)

and therefore we have only one real fixed point (Z−, Φ−). The stability analysis of this fixed
point gives the eigenvalues η1,2 =±i

√
ν/Ψ , meaning that the fixed point is neutrally stable. For

the fixed point to be of physical relevance, i.e. to be below the water surface (Z < 0), the argument
of the logarithm in equation (3.2) must be smaller than one, implying the observability condition

Ψ >
1

2λ(1− λ)α2
. (3.3)

Since λ=O(1) and, for linear waves, α≲ 0.1 the above expression requires that Ψ =Bω=O(102).
Therefore, depending on the wave frequency, the existence of a fixed point below the water
surface may require a very long gyrotactic relaxation time B. We remark that large values of
B have been observed for chains of gyrotactic cells, see e.g. [52]. In figure 2 we show that the
prediction of the multiple-scale analysis accurately predict the behavior of the full dynamics
obtained by numerical simulation of the original equations (2.4) with λ= 0.6, α= 0.1, Ψ = 103

and ν = 0.01 [53]. Indeed, we observe a family of trajectories centered on the fixed point, the
outtermost of which extend roughly from the surface to a few times Z− in depth. The orbits
starting further away from the fixed point end up crossing the surface and cannot be consistently
treated within our model.
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Figure 2. Numerical simulations for the pure gyrotactic case with Ψ = 103. Lines with different colours represent

trajectories starting from x= 0 at different depths z and at a fixed initial orientation ϕ=−π/2. The blue horizontal line

is the average surface of the fluid. (a) Representation of the neutral fixed point (Φ− =−π/2, Z− =−0.7843) in phase

space. Black lines represent two examples of slow dynamics as average of fast oscillations. (b) Real space representation

of the same trajectories. Waves propagate from left to right, while the swimmers swim in the opposite direction. The closed

orbits in panel (a) correspond to swimmers trapped between two depths below the sea level.
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Figure 3. Attractive fixed point in the gyrotactic case with a settling velocity. The parameter values λ= 0.6, Ψ = 103, r=

0.7 (i.e. ν = 0.01 and νg = 0.007), and α= 0.1 result in Z+ =−1.14. Lines with different colours represent trajectories

starting from x= 0 at a fixed depth z =−5 and different orientations in ϕ∈ [0, 2π]. All trajectories converge to each

other. (a) Dynamics around the fixed point in phase space. (b) Corresponding real space representation. Both the waves’

propagation and swimming are from left to right.

We now consider the horizontal (X) dynamics. The first equation in (3.1) evaluated at the fixed
point (3.2) gives the horizontal velocity

∂TX =
1

2Ψλ(1− λ)
− ν. (3.4)

In general, the swimming direction (with speed ν) is opposite to the Stokes drift (given by the first
term in (3.4)). In the limit of large Ψ , the fixed point moves to large negative Z: the Stokes drift is
negligible and the horizontal motion is dominated by the swimming term. Under the observabilty
condition (3.3), one can show that swimming term in (3.4) dominates also when ν ≥ α2, as in the
example shown in figure 2.
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(b) Gyrotaxis combined with Settling
We now consider the case of negatively buoyant (νg > 0) gyrotactic swimmers (Ψ <+∞), still in
the absence of shear (σ= 0). The equations for the slow variables are still given by (3.1) with the
equation for Z modified to ∂TZ = ν cosΦ− νg , so that the fixed points become Φ± =± arccos r

(as in (2.7)) and

Z± =
1

2
ln

[
±

√
1− r2

2Ψλα2(λ+ 2r2 − 1)

]
, (3.5)

as easily derived from (2.8) for σ= 0. The domain of existence of the fixed points is

(Φ−, Z−)∈R ⇔ 0< r <
√

1
2 (1− λ) (3.6a)

(Φ+, Z+)∈R ⇔
√

1
2 (1− λ)< r < 1. (3.6b)

The eigenvalues associated to the fixed points (Φ−, Z−) are

η1,2 =−r(3− 2r2 + λ)±
√

r2(3− 2r2 + λ)2 − 16Ψ(1− r2)(2r2 − 1 + λ)2

4Ψ(2r2 − 1 + λ)
. (3.7)

It is easily checked that the eigenvalues always have a positive real part and therefore the fixed
point (Φ−, Z−) is unstable. Clearly, in the limit r= 0 the eigenvalues become imaginary and we
recover the results of the previous section 3(a).

The eigenvalues associated to the fixed point (Φ+, Z+) are still given by (3.7) but, in this case,
in the domain of existence the real part of the eigenvalues is negative and therefore (Φ+, Z+) is
stable. The observability condition (i.e. Z+ < 0) is more complicated than in the previous case
since it involves a combination of the parameters Ψ and r, and will be discussed in the context of
numerical simulations below. Figure 3 shows how several trajectories converge, asymptotically
oscillating around a mean depth Z+.

As for the horizontal dynamics, once the attractive fixed point (Φ+, Z+) is reached, the motion
is given by

∂TX =

√
1− r2

2Ψλ (λ− 1 + 2r2)
+ ν
√

1− r2. (3.8)

In the domain of existence of the fixed point, both terms in (3.8) are positive, and therefore in this
case the Stokes drift is enhanced by swimming.

(c) Pure Shear
We now consider a neutrally buoyant (νg = 0), non-gyrotactic swimmer (Ψ →∞) in a velocity
field characterized by waves with a linear shear (σ ̸= 0). From (2.6) the equations are

∂TX = α2e2Z + ν sinΦ+ σ(β + Z)

∂TZ = ν cosΦ

∂TΦ= λα2e2Z [cos(2Φ) + λ] +
σ

2
(1 + λ cos 2Φ).

(3.9a)

(3.9b)

(3.9c)

The system has two fixed points, which can be obtained from (2.8) for r= 0 after taking the limit
Ψ →∞, given by Φ± =±π/2 and

Z∗ =
1

2
ln

[
σ

2λα2

]
. (3.10)

The observabilty condition Z∗ < 0 in the existence domain requires that

0<σ≤ 2λα2 . (3.11)

The stability analysis for the fixed point (−π/2, Z∗) leads to the eigenvalues η1,2 =±i
√

νσ(1− λ)

for (−π/2, Z), i.e. a neutral fixed point, while (π/2, Z∗) is unstable since η1,2 =±
√

νσ(1− λ).
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Figure 4. Fixed point in the case with shear only. We use σ= 10−3, β = 100, λ= 0.6, α= 0.1, and ν = 0.01, which

results in Z ≃−1.24. Lines with different colours represent trajectories starting from x= 0 at different depths with a fixed

initial orientation ϕ=−π/2. (a) Dynamics around the fixed point in the phase space representation. (b) Corresponding

trajectories in real space. The waves’ direction is from left to right. The mean velocity is left to right despite the swimmer’s

upstream orientation, as in this particular case transport is dominated by shear.

Thus, the dynamics in the plane (Φ,Z) is qualitatively similar to the case of pure gyrotaxis
discussed in Section 3(a), as shown in figure 4 (to be compared with figure 2). We remark that
for typical values λ= 0.6 and α= 0.1, the observability condition becomes σ≤ 0.012 which, as
we will see, is a number compatible with values observed in the ocean.

The horizontal dynamics at the neutral fixed point is in this case given by

∂TX =
σ

2λ
− ν + σ

(
β + Z∗) (3.12)

with Z∗ given by (3.10). The Stokes drift (first term in (3.12) is proportional to the shear. Since in
the model of the shear we assume |Z| ≤ β, the last term is also positive, while the swimming
contribution is negative, i.e. opposite to the direction of waves and the shear. The resulting
horizontal motion depends on the parameters and can be either upstream or downstream as in
figure 4. We remark that this result is consistent with the multiple scale analysis in which ν and σ

are both second order terms: their relative magnitude controls the sign of the horizontal velocity.

4. Discussion
The analysis in the previous sections has been carried out in dimensionless variables. We now
discuss the applicability of our results in the context of realistic values for the dimensional
parameters. Figure 5 summarizes the different cases discussed in the paper. The wave steepness
and the particle elongation are fixed respectively to α= 0.1, which is a reasonable value for linear
waves as used in our model, and λ= 0.6, which corresponds to AR= 2 and is in the range of
typical values for gyrotactic microorganisms [35]. All plots refer to the analytical solutions for the
depth Z∗ of the fixed point (stable or neutral) varying one or more parameters in the different
limits discussed in Section 3. The range of wavenumbers k is chosen to be in the range of values
typical of wavelengths encountered in the ocean [54]. Recall that physically one must have Z∗ < 0,
which corresponds to the observability condition z∗ <−a in dimensional form with an oscillating
surface.

The pure gyrotactic case is described in figure 5(a), where the depth of the fixed point
equation (3.2) is plotted as a function of the wavenumber and the gyrotactic orientation time
B. The plot shows that, for typical values of k, negative values of z∗ are obtained for large values
of B, outside the the typical range (of a few seconds) cited in the literature [21,55]. For example,
the case discussed in figure 2 with k= 1m−1 corresponds to B ≃ 300 s and a depth of the fixed
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Figure 5. Depth of the fixed points as a function of the parameters in the different regimes for α= 0.1 and λ= 0.6.

(a) Pure gyrotactic case (Sec. 3(a)). Negative values of z∗ requires large values of B. (b) Gyrotactic and settling case

(Sec. 3(b)) with wavenumber k= 0.1m−1. Large negative values of z∗ are obtained for large values of B and r close

to one. (c) Gyrotactic and settling case (as in (b)) with r=0.9 as a function of k. The depth is a non-monotonic function of

k with a absolute minimum (maximum depth) that is dependent on B: greater B implies deeper depth. (d) Shear case

(Sec. 3(c)) as a function of wavenumber and shear intensity.

point z∗ ≃−0.8m. In this case, the Stokes drift velocity in (3.4) is O(1) cm s−1, much larger than
typical swimming velocities. Thus, there is no trapping behaviour for neutrally buoyant gyrotactic
organisms swimming in waves without shear with realistic re-orientation times.

We now consider the case of sinking gyrotactic microswimmers. Figure 5(b) displays the depth
z∗ of the fixed point as a function of B and r= Vg/Vs at fixed wavenumber k= 0.1m−1. Even
considering large values of B, a negative value of z∗ requires r=O(1), i.e. a settling velocity Vg
close to the swimming speed Vs. This is not common in swimming microorganisms, since motility
is often assumed to evolve as a way to escape sinking through the water column. For example,
Chlamydomonas reinhardtii swims with speed 50–70µm/s−1 while its sedimentation speed is only
2.5µm/s−1 [55]. Figure 5(c) shows the depth of the fixed point as a function of k for two values
of B (at fixed r= 0.9). Remarkably, the position of the fixed point is non-monotonic in k and the
position of the minimum value depends on the value of B.

Finally, we discuss the case of swimmers in waves with a shear, in the absence of gyrotaxis and
sedimentation. Figure 5(d) shows the depth of the fixed point z∗ as a function of the wavenumber
k and the shear rate σ. The observability condition in this case requires small values of the shear
rate σ ≲ 10−2s−1 which are common in the ocean [56]. In this case, confinement at a few meters
below the surface is compatible with realistic values of the parameters. Using the parameters of
figure 4, with a wavenumber k= 0.2m−1, the horizontal motion (3.12) is dominated by the shear
term and the swimmer moves downstream.
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5. Conclusions
In this paper we have studied the dynamics of elongated microorganisms swimming in the flow
produced by water waves and a linear shear. We have investigated in detail how the interplay
of swimming and flow leads to trapping of the microswimmers below the water surface. The
analysis has been done by exploiting the multiple scale analysis, extending the work by [40],
complemented by numerical simulations in kinematic flows. In general, our results demonstrate
that the combination of swimming and flow (and/or gravity) can produce trapping but this
process depends on the details of the physical and biological parameters. In particular, we
have found that the presence of a shear (in combination with waves) close to the surface is
essential to produce confinement with realistic values of the parameters. This is promising finding
with regards to how the mechanisms discussed above could lead to the production of ‘thin
phytoplankton layers’ since wind-generated shear will often accompany locally generated waves.

Future investigations should consider more realistic models of the microswimmers (e.g.
including some randomness in the swimmer behavior) and of the velocity field, beyond the
kinematic model for linear waves, as for example in the case of nonlinear waves where fluid
accelerations may also become comparable to gravity requiring a more complete model of
gyrotaxis [30]. Furthermore, it would be very interesting to study the problem of swimmer-water
wave interaction by means of laboratory experiments with real microswimmers to see the degree
of agreement with this simple model.

Appendices

A. Multiple Scale Analysis
We start from (2.4) with parameters rescaled according to (2.5) and multiple times (t, T = ϵ2t)


∂tx+ ϵ2∂T x= ϵαez cos(x− t) + ϵ2ν sinϕ+ ϵ2σ(β + z)

∂tz + ϵ2∂T z = ϵαez sin(x− t) + ϵ2ν cosϕ− ϵ2νg

∂tϕ+ ϵ2∂Tϕ= λϵαez cos(x− t+ 2ϕ)− ϵ2
1

2Ψ
sinϕ+ ϵ2

σ

2
(1 + λ cos 2ϕ).

(A 1)

together with a perturbative expansion of the variables [49]

x= x0 + ϵx1 + ϵ2x2 + ...

z = z0 + ϵz1 + ϵ2z2 + ... (A 2)

ϕ= ϕ0 + ϵx1 + ϵ2ϕ2 + ...

At order zero, ϵ0, (A 1), gives

∂tx0 = 0 =⇒ x0 =X(T )

∂tz0 = 0 =⇒ z0 =Z(T ) (A 3)

∂tϕ0 = 0 =⇒ ϕ0 =Φ(T ) ,

i.e. zero-order solutions are function of the slow time T only.
At the order ϵ1 we have

∂tx1 = αeZ cos(X − t)

∂tz1 = αeZ sin(X − t) (A 4)

∂tϕ1 = αλeZ cos(X + 2Φ− t).
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Notice that the integral on t over [0, 2π] of the right-hand side of each equation (A 4) vanishes
(which is the solvability condition) and therefore the solutions are [40]

x1 =−αeZ sin(X − t)

z1 = αeZ cos(X − t) (A 5)

ϕ1 =−αλeZ sin(X + 2Φ− t).

Finally, at the order ϵ2 we have

∂tx2 + ∂TX = α2e2Z + ν sinΦ+ σ(β + Z)

∂tz2 + ∂TZ = ν cosΦ− νg (A 6)

∂tϕ2 + ∂TΦ= α2λe2Z [cos(2Φ) + 2λ sin2(X − t+ 2Φ)]− 1

2Ψ
sinΦ+

σ

2
(1 + λ cos 2Φ).

At this order, by averaging (A 6) over one period, we obtain the nontrivial solvability
conditions (2.6).

B. 3D model with orientation dependent settling
We now introduce two extensions which improve the mathematical model. The first one is to
consider a three-dimensional model, in which the orientation of the swimmers is parametrized
by the two angles (θ, ϕ) and therefore

p= (sin θ sinϕ, cos θ, sin θ cosϕ) . (A 1)

The second modification is a more realistic model for the settling velocity which depends on the
orientation of the ellipsoidal body:

vg =−vs
[
k̂ + (vsr − 1)(k̂ · p)p

]
, (A 2)

where vs is the settling velocity in quiescent fluid in the highest drag orientation (i.e. symmetry
axis perpendicular to gravity for prolate spheroids and symmetry axis parallel to gravity for
oblate spheroids), and vsr is the relative increment of this velocity in the case of lowest drag
orientation (and thus vsr > 1). For prolate spheroids we have (see, e.g., [57])

vs =
3S
√

1
λ − 1

32λ

[
2
√

λ(1 + λ) +
√
2(5λ− 1) arcsinh

(√
1 + λ

1− λ
− 1

)]
(A 3)

vsr =−
2
√

2λ(1 + λ) + 2(3λ+ 1) arcsinh
(√

1+λ
1−λ − 1

)
√

2λ(1 + λ) + (5λ− 1) arcsinh
(√

1+λ
1−λ − 1

) , (A 4)

where S =
(ρp−ρ)d2

pgk

18µω and µ is the dynamic viscosity, ρ is the fluid density, ρp is the particle’s
density, dp is the particle diameter. Note that both vs and vsr are dimensionless.

The complete model reads:

ẋ= αez cos(x− t) + ν sinϕ sin θ − vs(vsr − 1) cosϕ sinϕ sin2 θ

ẏ= ν cos θ − vs(vsr − 1) cosϕ cos θ sin θ

ż = αez sin(x− t) + ν cosϕ sin θ − vs[1 + (vsr − 1) cos2 ϕ sin2 θ]

ϕ̇= λαez cos(x− t+ 2ϕ)− 1

2Ψ

sinϕ

sin θ

θ̇= λαez cos θ sin θ sin(x− t+ 2ϕ) +
1

2Ψ
cos θ cosϕ.

(A 5a)

(A 5b)

(A 5c)

(A 5d)

(A 5e)
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It is again possible to obtain the slow time equations using a multiple scale analysis. Neglecting
the equations for X and Y , that are independent of the others, one obtains

∂TZ = ν cosΦ sinΘ − vs[1 + (vsr − 1) cos2 Φ sin2 Θ]

∂TΦ= λα2e2Z(λ+ cos(2Φ))− 1

2Ψ

sinΦ

sinΘ

∂TΘ= λα2e2Z cosΘ sinΘ sin(2Φ) +
1

2Ψ
cosΘ cosΦ.

(A 6a)

(A 6b)

(A 6c)

From the third equation we note that a solution is cos θ= 0 and so θ= π/2. Based on the analysis
of the 2D case, we expect that a pair of fixed points is on the xz-plane. We remark that θ= π/2 is
also the stable orientation for neutrally buoyant, non-swimmers [58]. Using θ= π/2 in (A 6) we
obtain the equation for the fixed points as

ν cosΦ− vs[1 + (vsr − 1) cos2 Φ] =0

λα2e2Z(λ+ cos(2Φ))− 1

2Ψ
sinΦ=0.

(A 7a)

(A 7b)

The first equation gives two real solutions for the angle Φ

Φ± =± arccos(A), where A=
1−

√
1− 4q2(vsr − 1)

2q(vsr − 1)
(A 8)

and q= vs/ν. The associated values of Z are:

Z± =
1

2
ln

(
±

√
1−A2

2Ψλα2 (λ− 1 + 2A2)

)
. (A 9)

The existence domain and the physical observability condition (i.e. whether Z < 0) of these fixed
points are not trivial, but it can be shown that they never coexist in the same range of parameters
and, where they exist, they are both negative (i.e. below the sea level, thus observable).

We can conclude that the 3D case is a natural extension of the 2D one. Indeed, despite the
different form of the settling velocity, the fixed points qualitatively agree with the results in section
3(b). One can also note that in the formal limit vsr → 1 (A 9) reduces to (3.5) once the identification
vg = vs is made and vsr and vg are considered as independent on λ.

Acknowledgements. NP acknowledges support from the US National Science Foundation (CBET-2211704
and OCE-2048676). FMV, GB and FDL acknowledge support by the Departments of Excellence grant (MIUR).
FMV, GB and FDL are indebted to M. Onorato for numerous fruitful discussions.

References
1. Zhan C, Sardina G, Lushi E, Brandt L. 2013 Accumulation of motile elongated micro-

organisms in turbulence. J. Fluid Mech. 739, 22. (10.1017/jfm.2013.608)
2. Pujara N, Koehl M, Variano E. 2018 Rotations and accumulation of ellipsoidal microswimmers

in isotropic turbulence. J. Fluid Mech. 838, 356. (10.1017/jfm.2017.912)
3. Borgnino M, Gustavsson K, De Lillo F, Boffetta G, Cencini M, Mehlig B. 2019

Alignment of Nonspherical Active Particles in Chaotic Flows. Phys. Rev. Lett. 123, 138003.
(10.1103/PhysRevLett.123.138003)

4. Borgnino M, Boffetta G, Cencini M, De Lillo F, Gustavsson K. 2022 Alignment of elongated
swimmers in a laminar and turbulent Kolmogorov flow. Phys. Rev. Fluids 7, 074603.
(10.1103/PhysRevFluids.7.074603)

5. Torney C, Neufeld Z. 2007 Transport and Aggregation of Self-Propelled Particles in Fluid
Flows. Phys. Rev. Lett. 99, 078101. (10.1103/PhysRevLett.99.078101)

6. Khurana N, Blawzdziewicz J, Ouellette NT. 2011 Reduced Transport of Swimming
Particles in Chaotic Flow due to Hydrodynamic Trapping. Phys. Rev. Lett 106, 198104.
(10.1103/PhysRevLett.106.198104)

http://dx.doi.org/10.1017/jfm.2013.608
http://dx.doi.org/10.1017/jfm.2017.912
http://dx.doi.org/10.1103/PhysRevLett.123.138003
http://dx.doi.org/10.1103/PhysRevFluids.7.074603
http://dx.doi.org/10.1103/PhysRevLett.99.078101
http://dx.doi.org/10.1103/PhysRevLett.106.198104


13

royalsocietypublishing.org/journal/rspa
P

roc
R

S
oc

A
0000000

..................................................................

7. Khurana N, Ouellette NT. 2012 Interactions between active particles and dynamical structures
in chaotic flow. Phys. Fluids 24, 091902. (10.1063/1.4754873)

8. Sokolov A, Aranson IS. 2016 Rapid expulsion of microswimmers by a vortical flow. Nat.
Commun. 7, 11114. (10.1038/ncomms11114)

9. Berman SA, Buggeln J, Brantley DA, Mitchell KA, Solomon TH. 2021 Transport
barriers to self-propelled particles in fluid flows. Phys. Rev. Fluids 6, L012501.
(10.1103/PhysRevFluids.6.L012501)

10. Berman SA, Mitchell KA. 2020 Trapping of swimmers in a vortex lattice. Chaos 30, 063121.
(10.1063/5.0005542)

11. Arguedas-Leiva J, Wilczek M. 2020 Microswimmers in an axisymmetric vortex flow. New J.
Phys. 22, 053051. (10.1088/1367-2630/ab776f)
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