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Abstract— The monitoring and control of industrial processes 

often requires the capability to identify particular patterns in a set 

of acquired measurements. One of the most recurrent applications 

consists in the detection of changes and the related minimization of 

false alarms. This requirement is true also when dealing with 

natural systems. The monitoring of a natural resource usually 

involves the identification of a set of parameters, which are 

considered as representative of its underlining processes, in order 

to extract useful information about its current status and its 

expected behavior. This work is focused on the water resources 

destined to the drinkable water distribution, paying attention to 

two particular aspects: i) the need for a suitable metric to detect 

anomalous values in the assessment of water quality indicators; ii) 

the experimentation of a simplified data-driven strategy to 

estimate natural variations of one or more indicators, in order to 

mitigate false alarms. This paper proposes a preliminary 

investigation and a selected case study, in order to exemplify one 

practical implementation of the proposed approach. The possible 

application to a context of low-cost distributed sensors is also 

briefly discussed. 

Keywords— Environmental measurements, data-driven 

modelling, drinking water 

I. INTRODUCTION 

There are currently many applicative frameworks among the 

Instrumentation & Measurement disciplines, in which the real-

time or near-real-time detection of significant changes in a 

process under monitoring represents one of the most demanding 

exercises. The exploitation of a natural resource like water 

represents a particular case, due to the peculiarities of the natural 

process under observation, moreover to the critical aspects 

connected with the quality and quantity of the resource when 

destined to the human consumption.   

Nowadays, in the European Union, in the United States and 

in many other countries, the majority of drinkable water supplies 

rely on groundwater, and this happens at an increasing rate [1, 

2]. This fact introduces a new need for the deployment of in situ 

monitoring instrumentation, to perform a direct observation of 

the natural process at the catchment point and even upstream. In 

this case, the surveillance of the abstracted resource goes beyond 

the mere distribution network and deals directly with the natural 

and/or anthropic processes influencing the availability and 

quality of the water. Such interconnection between the relevant 

parameters characterizing the resource and its surrounding 

environment makes the definition of an optimal sensor 

distribution and the interpretation of the collected data a 

challenging problem, which generated much literature in the 

sector of hydrological measurements [3, 4] as well as in the 

context of water distribution systems [5, 6, 7, 8, 9], which is 

closer to the scope of this paper. It’s also important to note that 

there’s already a well-established literature concerning water 

consumption and the detection of flow anomalies in water 

distribution networks [10, 11]. To probe further the relatively 

limited literature listed here, the interested reader may find many 

additional references in the cited papers. 

In this context, an important and recurrent topic is the 

development of efficient criteria for the detection of anomalies, 

which may be used for raising alarms and/or taking appropriate 

actions (e.g., pump switching, valve operations, automatic 

sampling, etc.). For what regards the threats to the quality of 

water, this concept is generally applicable to a wide range of 

accidents, criminal actions or natural contaminations, and it’s 

also true in front of the recent discussions and projects about 

CBRN (Chemical, Biological, Radiological and Nuclear) threats 

[12, 13, 14].  

In addition to the field instrumentation based on standard 

analytical methods, other promising sensing systems selective to 

particular chemical/biological threats have been proposed [15, 

16, 17], and also non-specific sets of sensors have been 

investigated in the literature, in particular for what regards 

change-detection purposes [18, 19]. These devices are typically 

suggested in the perspective of low-cost distributed sensor 

networks, where the change-detection capability aims at 

covering the broadest possible range of potential threats, and the 

degree of pervasivity is intended to reach even the single water 

tap in a drinkable water network. Non-specific equipment may 

implement a wide variety of sensing techniques, which are 

characterized by different degrees of maturity. A non-exhaustive 

list may include conventional physico-chemical measurements, 



innovative electromagnetic sensing systems [20], and e-tongues 

based on electrochemical, optical and even electro-acoustic 

principles [21, 22, 23]. This aspect is also giving new value to 

traditional and very mature sensing techniques like in the case of 

conductimetry, ion-selective electrodes (e.g., pH, ORP etc.) and 

basic optical methods, which are applied to the context of new 

miniaturized sensors and proposed in applicative projects [24]. 

One fundamental aspect in the development of contamination 

warning systems is the need to define a metric for a proper 

assessment of anomalies, which has to minimize both false 

alarms and missing detections. This issue is even more severe 

when dealing with a network of inexpensive distributed sensors, 

like those mentioned above. In addition to the observed changes 

due to normal operations in the water distribution network, also 

those variations at source level which happen in the absence of 

contamination events (i.e., in the natural domain) must be taken 

into account and interpreted as baseline-changes. Thus, when 

dealing with parameters characterized by a significant degree of 

natural variability (e.g., due to meteo-climatic conditions or to 

different levels of exploitation), it is appropriate to define 

anomalous values in terms of distance from an expected value. 

The practical application of this concept requires prior 

knowledge about the mechanisms underlining the quality and 

quantity of the resource, including its response to natural or 

anthropic inputs. Such knowledge is typically hard to determine 

with physical approaches, due to the complex nature of the 

processes and to the lack of exhaustive information (e.g. 

geological and geochemical data, etc.), in order to build an 

effective model for this purposes. In this case, system 

identification techniques may deliver models and data-driven 

strategies are often proposed [25]. A well-known example of an 

event detection system for the monitoring of water quality is 

represented by the US EPA CANARY software package [26], 

which bases its data analysis tools on both historical and 

simulated data from multiple sensors. 

Despite the fact that the data-driven approach may look 

particularly attractive, practical operating conditions make it 

often complicated, due to incomplete datasets, missing data or 

too short time series to be representative of the natural variability 

(mostly seasonal) of the observed processes. Thus, the adopted 

approach should be determined on a case-by-case basis, 

according to the available data, the peculiarities of the resource, 

and the characteristics of the distribution network. Moreover, 

since historical data sets are often missing anomalous events, it 

may be reasonable to use a mixed strategy, in which 

contamination scenarios are simulated by simplified physical 

models, in order to create a statistically relevant set of 

contamination examples, suitable to feed a data-driven detection 

algorithm. A similar mechanism is described in [26]. 

In our investigation we made use of the measurements 

collected in few years of monitoring activity, in order to assess 

the preliminary feasibility of both a purely data-driven method 

and of a mixed one. For reasons of brevity, this paper limits its 

scope to one specific experiment, based on a data-driven 

approach. In particular, here we explore the possibility to embed 

a highly simplified model in the measurement strategy, to be 

potentially ported to a light computing system. After describing 

the selected case study and the modelling technique adopted, 

results are briefly presented and discussed, focusing on the 

possible industrial interest (i.e., water utilities) into the 

experimentation and usage of such techniques.     

II. THE SELECTED CASE STUDY 

The experimental dataset used for this work regards the 

alluvial aquifer of the Magra River (Italy). Two distinct 

abstraction sites, next to the villages of Battifollo and Fornola, 

are managed by the local drinkable water distribution company 

(ACAM Acque), which serves the area of La Spezia (about 

150,000 people), on the Ligurian coast. The main clusters are in 

Fornola, which hosts 44 wells grouped in 7 clusters, totalizing 

an abstraction rate of about 900 liters per second. 

Quantitative measurements about the abstraction activity are 

collected by the in situ instrumentation mounted on the wells’ 

clusters and archived by a centralized SCADA. The available 

data comprise the following parameters: hydraulic head (level) 

in reference piezometers, status of the electrical pumps (i.e., 

percentage of running time), and total abstracted water flow. For 

the purpose of this work, daily averages have been taken, being 

the natural variations to be observed relatively slow with respect 

to a daily sampling rate. This work focuses on the longest 

available sequence of validated data, which covers the period 

between 14 December 2010 to 17 October 2016. 

In addition to the archived data acquired by the process 

instrumentation, other field measurements were performed, 

partly with portable instrumentation and partly by laboratory 

analyses. The measured parameters regarded the assessment of 

water quality, including physico-chemical features (e.g., 

conductivity, pH and temperature) and the major dissolved ions. 

These measurements were carried out in various sampling 

points, both inside the city and in the proximity of the clusters, 

with an irregular sampling interval. 

Groundwater in this area is characterized by a remarkable 

seasonal variability [27], connected with rainfall events. In 

particular, the delivered water exhibits a variable degree of 

mineralization, mostly involving two chemical species: SO4 and 

Cl, thus impacting the electrical conductivity and the overall 

quality of the water, as it will be better discussed in section III. 

In addition, water does not undergo any particular treatment, 

which can potentially modify its main physico-chemical 

features before being distributed. Thus, the experimentation 

described in this paper is based on the hypothesis that observed 

(or predicted) variations at source level are significantly 

reflected by the quality of the water at the points of delivery. 

III. THE PROPOSED DATA-DRIVEN SCHEME 

A. Materials and methods 

Chemical and physico-chemical measurements often 

generate multiple variables, sometimes posing problems of 

dimensionality reduction. This is especially true when dealing 

with arrays of sensors to assess the quality of water [21] or 

electrochemical methods (e.g. voltammetry) generating high 

dimensionality signals [18]. The fundamental idea is to develop 

and test a data-driven modelling scheme based on some kind of 

machine learning, in order to approximate the output 



parameter(s) and determine the expected values, to be compared 

with the actual measurements in a change-detection framework. 

This study focuses on those relatively slow changes that are 

pertinent to the natural domain, thus generating a kind of 

‘moving baseline’. This is a building-block of the whole 

detection system that is comparatively less covered in the 

literature. Other components of the system, like the detection of 

fast variations connected with sudden events and the mitigation 

of false alarms due to network activities (e.g., valves, tanks or 

pumps operations) are outside the scope of this paper. 

The first simplifying action done in this investigation 

consisted in the selection of one single parameter, among those 

measured by the water utility, which may be considered as an 

overall indicator of the quality of water. Given the dataset 

described in section II, the parameter suitable for the purpose of 

this experiment has been individuated in the electrical 

conductivity of the analyzed water. The observed fluctuations in 

the chemistry of water can be briefly justified as follows: a 

highly mineralized (thus highly conductive), deep and almost-

constant groundwater flow, is mixed with a shallow and highly 

variable component, mostly depending on rainfall events 

(poorly mineralized and low-conductivity water). The 

groundwater flow and the piezometric level are related by well-

known hydraulic laws, thus, we can conceive to infer the 

electrical conductivity of the water by observing its level 

variations. Actually, the groundwater level reflects both 

seasonality and exploitation effects, carrying useful information 

about both. Field measurements were performed with a portable 

meter WTW model 340i, configured for simultaneous 

conductivity and pH measurements. 

Electrical conductivity is thus treated as an output variable of 

an empirical I/O model. As a consequence, a piezometric level 

was used as an input variable. In particular, we chose the level 

measured at the wells cluster “C” by a standard down-well 

pressure transducer and recorded by the SCADA system. It is 

important to underline that the approach proposed in this study 

can be applicable also to one or more virtual parameters 

generated by extracting relevant features from a high-

dimensionality space, such as the one generated by non-specific 

sensor systems. 

B. The simplified implementation 

As a general approach, an adaptive system is trained and 

validated on a dataset comprising input and output time series 

derived from archived data. Figure 1 shows a general flowchart, 

which includes multiple I/O parameters, in addition to the cited 

piezometric level hw and electrical conductivity w. Additional 

input parameters may include meteo-climatic measurements, 

water flow rate etc. Additional output parameters can be the 

estimated concentrations of specific chemical species, like Cl 

and SO4 in our case. Figures 1a and 1b show respectively the data 

paths for the training and the simulation phases of a generic 

adaptive algorithm. Details will be given further in this section. 

The modelling strategy used for this investigation undergoes 

few simplifying steps: 

- Under a strong hypothesis of linearity and time-invariance 

(LTI), a phase relationship between input and output 

parameters is defined, and expressed by a constant delay 

- The LTI assumption permits the definition of an impulse-

response and to resort to transformed frequency domains for 

characterizing the system 

- Non-linearity is introduced by means of a Multi-Layer 

Perceptron Neural Network (MLP-NN), used as a non-linear 

approximator 

- The input and output datasets are reduced to a single 

variable, both at the input and at the output. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1a, b. General scheme of the data-driven modelling approach. 

Continuous measurements of electrical conductivity of 

water at selected taps in the city and in the proximity of the 

clusters would represent an ideal dataset for this experiment. 

The dataset used, based on sparse measurements conducted with 

portable instrumentation, is a sub-optimal alternative, which 

requires some pre-processing as described in Figure 2. 

For what regards the conductimetry data, multiple 

measurements performed on the same day are averaged and 

outliers removed. Then, data are interpolated according to a 

piecewise cubic Hermite interpolating polynomial, in order to 

preserve sampled values and the continuity of the first 

derivative. Thus, the time series w(i)RS is obtained after regular 

re-sampling of the interpolated signal. The piezometric time 

series undergoes a bandwidth limitation stage, in order to 

mitigate possible overfitting due to training the NN with the 

w(i)RS signal as a target. In particular, the bandwidth of the 

piezometric signal has been limited to the frequency interval 

containing 99% of the conductimetric signal power. Bandwidth 

limitation is done in the DCT (Discrete Cosine Transform) 

domain [28], a real transform suitable for real and causal signals, 

which exhibits high compaction properties. Filtering in the 

transformed domain is done by using a rectangular window. The 

bandwidth-limited time series is named hw(i)BL. Signals are then 

split into Low-Pass (LP) and High-Pass components, again by 

selecting the low-frequency components in the DCT domain 

with a rectangular window, followed by inverse transformation. 

The residual signals in the time domain represent the High-Pass 

components, as shown in Figure 2. 

b) 

a) 



 
Fig. 2. Data pre-processing. 

Resulting signals (w(i)LP,w(i)HP, hw(i)LP, hw(i)HP) are then 

fed to two dedicated neural networks, for the LP and HP 

components (Figure 3). In particular, the non-linear 

approximation is based on a classical Multi-Layer Perceptron 

Neural Network (MLP-NN) architecture [29, 30], with one 

hidden layer. A non-linear (tansig) firing function was assigned 

to the neurons in the hidden layer and a linear firing function 

was used for the output neuron. The MLP-NN was implemented 

by using the Neural Networks toolbox in MATLAB 2014a. The 

NN input (piezometry data) can be seen in a vectorial form, 

having dimensionality equal to the number of past samples of 

the input parameter plus one:  

𝑯𝒘(𝑖) = [ℎ𝑤(𝑖), ℎ𝑤(𝑖 − 1)… , ℎ𝑤(𝑖 − 𝑃𝑆)]           (1) 

where PS is the number of past samples fed to the input, in 

addition to the current one (the i-th). Two different sets of 

vectors Hw are formed for the LP and HP components (Figure 

3). The output of each MLP-NN is a scalar, representing the 

respective component of the current estimated value of the 

electrical conductivity of the water (w
EST(i) in Figure 3b).  

Multiple NNs have been generated, with a variable number 

of neurons in the hidden layer from 1 to NNMAX. In addition, 

N=10 different nets have been generated per each number of 

neurons, with randomly selected initial biases, weights and 

validation sub-sets. In fact, the dataset was randomly split for 

each run into a training and a validation sub-sets, containing 

85% and 15% of the whole data, respectively. Moreover, the last 

547 days (approximately one year and half) of the whole dataset 

have been kept out of the training exercise as a completely 

independent test set. In this study, the bandwidth of the LP 

signal has been limited to (6 months)-1, NNMAX has been set to 

10, and a total of N∙ NNMAX = 100 neural networks have been 

generated for both the LP and the HP sub-domains. 

 

 

 

 

 

 

 

 

 

 

 Fig. 3a, b. Implementation of the MLP-NN to the processed signals. 

Determination of the number of past samples and of the 

applied time shift is based on assumptions derived by observing 

the cross-covariance between the input and output signals, i.e.: 

𝜑(𝑚) = ∑  [(𝜎𝑤(𝑛 + 𝑚) − 𝜎𝑤𝑛 ) ∙ (ℎ𝑤(𝑛) − ℎ𝑤)]       (2) 

where m is the discrete lag and n spans all the time series. 

Figure 4 shows a plot of cross-covariance relating to the low-

pass components, where m is expressed in days. Here, 

estimations are made by exploiting cross-covariance lobes. In 

particular, the constant time delay is associated to the lag 

corresponding to a maximum of (m), and the number of past 

samples is calculated as a half width of the lobe across m=0 (red 

arrows in Figure 4). In the absence of a rigorous metric for this 

matter, this approach is essentially intended to take into account 

the aliasing of periodic components in the two time series and 

choose long enough sequences for carrying sufficient 

information to the NNs. 

 
Fig. 4. Cross-covariance function calculated for the low-pass components. 

In our case study, the time delay for the low-frequency 

components has been forced positive (1st maximum at m>0, 

vertical line in the picture) due to prior knowledge about the 

behavior of the natural domain, i.e., the seasonal effect on the 

w signal is delayed with respect to hw variations. The time lag 

for the high frequency components, instead, has been left free in 

the absence of prior knowledge. Each NN has been trained and 

b) 

a) 



validated (as briefly shown in Figure 3a) with randomly selected 

sub-sets, stopping each training phase upon decay of the 

validation performance (meaning loss of generalization) or 

when reaching a maximum number of training epochs [31]. This 

strategy generated 10000 combinations between LP and HP 

nets. A selection has been done by applying each pair to the 

independent test set (in the way described in Figure 3b), in order 

to assess and privilege the generalization capabilities of the nets. 

The best net was chosen by minimizing a performance index 

(PI), defined as the Euclidean distance between two vectors:  

       

          (3) 

where j and k are indexes to the j-th and k-th neural networks 

generated in the LP and HP sub-domains, respectively; NETj,k is 

a scalar (w
EST(i) in Figure 3b), obtained by applying the j-th and 

k-th MLP-NNs to the input vector 𝑯𝒘(𝑖); Ntest is the number of 

samples in the test set. 

IV. RESULTS 

The results shown in this section were obtained according to 

the modelling strategy and under the strong simplifications 

described in the section above. 

A performance matrix was generated after applying the 

100x100 network combinations to the independent test set, 

producing the results shown in Figure 5. Acronyms NNLP and 

NNHP used in the picture are equivalent to the indexes j and k 

in eq. (3). The absolute maximum (that is, the minimum of the 

PI matrix) is shown in the picture inside the dashed circle. 

 
Fig. 5. 3D plot of the performance matrix. Note the –Log scale for 

representation purposes. 

The best performing combination according to the assessed 

metric has been chosen, and applied to the independent test set. 

Figure 5 illustrates the model outputs (red line) versus 

conductivity measurements at their sampling times (black 

crosses). The x-axis represents the sequential day number inside 

the test set. This data sub-set has undergone the same pre-

processing of the whole dataset as shown in Figure 2, and 

resulting ℎ𝑤(𝑖) time series have been fed to the selected 

combination of  networks. 

As specified in the past sections of this paper, the water 

conductivity dataset was irregularly sampled in the time 

domain. Further uncertainty is introduced by the sparse and 

almost random measurement locations, which can reflect the 

effect of some particular features of the network (e.g. tanks 

operations and different water ages at different taps). In addition 

to instantaneous alterations of water quality, network operations 

may alter those delays that, in this first simplified approach, 

have been assumed as constant. Despite that, if compared to the 

performance of a change-detection scheme based on the 

distance of each sample w(i) to the average value in the test set 

𝜎𝑤
test, the approach defined in this study is still advantageous. 

In fact, by applying a distance threshold equal to one standard 

deviation of the w(i) series, the number of “false alarms” given 

by this detection scheme would go down to 7 from the 13 given 

by the mere distance from the average value. In case of using 

twice the standard deviation as a threshold, false alarms would 

be completely eliminated. All the considerations above are 

referred to the independent test set. 

 
Fig. 5. Model output vs. conductivity measurements (independent test set). 

The red line shows the model output, the black crosses indicate the target 
measurements at their sampling times. 

A significant improvement to the method may consist in 

installing online tap-mounted sensors, making periodic 

calibrations to them and embedding the measurements taken at 

calibration times in the training datasets. This would enhance 

the adaptation of the non-linear approximators to the process. 

V. CONCLUSIONS 

This paper describes the development of an experimental 

technique to process water quality measurements in a change-

detection scheme. In this particular context, modelling exercises 

are essential tools in order to support the detection of those 

process alterations that can be symptoms of potential threats. 

Data-driven techniques are already offered in the literature for a 

wide range of applications, such as the identification and 

prediction of possible scenarios, the optimization of 

𝑃𝐼𝑗 ,𝑘 =   𝑁𝐸𝑇𝑗 ,𝑘(𝐻𝑤(𝑖)) − 𝜎𝑤(𝑖) 
2

𝑁𝑡𝑒𝑠𝑡

𝑖=1

 



measurement schemes, and the estimation of output values. In 

this context, this work discusses a preliminary experience in the 

application of a simple embeddable building-block for a change-

detection scheme, in the context of a water distribution network 

fed by a groundwater resource. 

The encouraging results obtained in the simplest 

configuration (single input and output parameters) gives the 

perspective to use the same approach with more complete 

configurations, where multiple input variables may take into 

account both network operations and the peculiarities of each 

selected tap due to its position in the network. 

Next step may consist in the experimentation with online 

sensors distributed on the net, calibrated and validated on a 

regular basis, in order to enhance and better evaluate the 

performance of the proposed approach. 
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