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Abstract

In the present work we describe a numerical algorithm which gives a measure of
the disorder in particle distributions in two and three dimensions. This applies to
particle methods in general, disregarding the fact they use topological connections
between particles or not. The proposed measure of particle disorder is tested on
speci�c con�gurations obtained through perturbation of a regular lattice. It turns
out that the disorder measure may be qualitatively related to the mean absolute
value of the perturbation. Finally, some applications of the proposed algorithm are
shown by using the Smoothed Particle Hydrodynamics (SPH) method.
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1 Introduction

In recent years a large amount of studies on particle methods have been
developed, these concerning several �elds of Physics, Engineering and
Mathematics. The increasing interest in particle methods has been driven by
their powerful applications and by the attractive mathematical background
on which they rely. The main advantage of particle schemes is that they do
not implement �xed computational grids but use particles as computational
nodes and move them in a Lagrangian fashion. This allows the modeling of
complex dynamics with large deformations of the computational domain.
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Generally, these schemes may be divided in two wide classes: those which use
topological connections between particles (i.e. [1]) and meshless methods (like,
for example, [2,3]). For all these schemes, the attainment and maintenance
of a regular particle distribution is a crucial point, since the particle
disorder may strongly a�ect their accuracy and stability [4,5]. This challenged
many researchers to regularize the particle arrangement through remeshing
or shifting algorithms (see, for example, [6�8]). Notwithstanding the idea
of particle order/disorder is a natural and innate concept, its theoretical
de�nition and quantitative measurement is hard to identify in a clear and
unambiguous manner. This is what we try to address in the present work: we
propose a measure of the particle disorder and check it on a number of test
cases. These have been gathered in two groups: the former one is made by
applications of the disorder measure on di�erent particle distributions while
the latter one contains dynamical test cases obtained by using a Smoothed
Particle Hydrodynamics (SPH) scheme.

The basic idea for the particle disorder measure relies on the de�nition
of two di�erent local distances (that is, distances related to each single
particle). The �rst local distance is simply the minimum distance of a particle
from its neighbor particles. The de�nition of the second local distance is
more complex, since this must account for any directional anisotropy in the
particle distribution. This may be computed by searching the nearest neighbor
particles in di�erent directions and, then, taking the maximum distance all
over them.

By construction, the second distance is greater or equal to the �rst distance.
Hence, we de�ne a local disorder measure as the ratio between half the
di�erence between the second and the �rst distance and their arithmetic mean.
A global disorder measure is obtained as the arithmetic mean of the local
measure all over the particles. If the distribution is regular, the �rst and second
distances coincide all over the computational domain, the local measure is zero
everywhere and so does the global measure (see Section �2). Then, intuitively,
the global measure represents how far the actual particle distribution is from
a regular lattice. In Section �2.1 we heuristically found that it has the same
order of magnitude of the mean absolute error of the particle distribution
with respect to an hypothetical regular distribution. Finally, in Section �3 the
global measure has been applied to study dynamical test cases.

2 The particle disorder measure

Let us consider a particle i at the position ri. In particle methods, the i-
th particle has its own neighbor particles which may be identi�ed through
topological connections (e.g. PFEM) or as particles inside a proper domain
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Fig. 1. Sketch of a generic set of the neighbor particles, Ni (green shaded area), and
of the cone Ci(v̂) with angle 2 θ and axis direction v̂ (red shaded area). The selected
particle is the nearest to the i-th particle inside the cone.

(as, for example, the compact support of the kernel function in SPH). We
denote the set of the neighbor particles to the particle i as Ni (note that Ni

does not include the i-th particle itself). We de�ne the �rst local distance as
follows:

d (i)
m = min

j∈Ni

‖rj − ri‖ , (1)

where rj is the position of the j-th neighbor particle. If Ni is empty, d (i)
m is

set equal to zero. This is an arbitrary choice and it means that we consider
isolated/not-connected particles as a part of disconnected computational
domains.

To construct the second local measure, we �rst de�ne the right circular cone.
The vertex of the cone is placed on the i-th particle and its axis is identi�ed
by a unit vector v̂. The cone aperture is denoted through 2θ. Then, the cone
is given by:

Ci(v̂)=

{
r ∈ Rd such that

(r − ri)
‖r − ri‖

· v̂ ≥ cos(θ)

}
, (2)

where d indicates the spatial dimension. A sketch of the cone is displayed in
�gure 1. The de�nition of the angle θ is of crucial importance. Speci�cally,
we require that, in the presence of a regular lattice, the cone includes at least
one of the nearest neighbor particles (see �gure 2). In two dimensions only
three regular distributions are possible, namely, the Triangular, the Cartesian
and the Hexagonal one. Among these, the Hexagonal distribution has the
largest angle between two subsequent nearest particles, i.e. 2π/3 radiants.
This suggests that θ has to be larger than π/3. In three dimensions, the only
regular lattice is the Cartesian grid. In this case, we require the cone to be
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Fig. 2. a sketch with the Cartesian tessellation. Left: a cone with large enough value
of θ. Right: a cone with a wrong value of θ.

large enough to include an octant. This corresponds to cos(θ) > 1/
√

3 which,
similarly to the two dimensional case, approximately corresponds to choosing
θ ≥ π/3. The in�uence of θ on the results is analyzed in Section �2.1. In all
the cases, the axis direction v̂ is arbitrary.

After the cone has been de�ned, we select the neighbor particles inside it
and compute the minimum distance from the i-th particle. Then, the cone
is rotated (this corresponds to a rotation of the axis or, equivalently, of the
vector v̂) and the procedure is repeated. In numerical simulations it is not
possible to rotate the cone continuously. For this reason, we select a �nite
number of rotations to obtain a cover of the neighborhood of the particle i.
This strategy in�uences the value of the measure we are going to de�ne but it
does not alter its global properties. This aspect will be examined in-depth in
Section �2.1. For the time being, let us assume that there are k rotations of the
cone or, equivalently, k cones with axes identi�ed by unit vectors v̂k. When
the neighborhood of the i-th particle has been covered, the second distance is
set equal to the supremum of the minimum distances, that is:

d
(i)
M = max

k

{
min

j∈Ni|rj∈Ci(v̂k)
‖rj − ri‖

}
. (3)

A sketch of the procedure is drawn in �gure 3. By construction, this de�nition
allows detecting any eventual anisotropy in the particle distribution and, in
case of a regular lattice, it coincides with d (i)

m . If any of the k cones is empty
(that is, no neighbor particles are inside it), the minimum distance inside it
is set equal to zero. This is done to be consistent with the case in which the
particle i has no neighbor particle at all. In this way, the above de�nitions
imply d

(i)
M = d (i)

m = 0.

By construction, the second distance is greater or equal to the �rst distance.
Hence, we de�ne a local disorder measure as follows:
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Fig. 3. a sketch of the procedure to build the second distance, d
(i)
M . Left: the selected

particle is the nearest inside the cone. Right: the colored particles are the nearest in

each cone. The farthest among them gives d
(i)
M .

λi =



d
(i)
M − d (i)

m

d
(i)
M + d

(i)
m

if d
(i)
M > 0 ,

0 if d
(i)
M = 0 .

(4)

The latter case corresponds to isolated particles. Obviously, we exclude from
the present analysis the eventuality that all (or a great part of) the particles
are isolated. Finally, the global measure of the particle disorder is de�ned as
follows:

Λ =

∑
i λi
N

, (5)

where the summation is performed over all particles and N is the total number
of particles. Since λi ≤ 1, it is Λ ≤ 1 as well. If the particle distribution is
regular, the second and �rst local distances coincide all over the computational
domain. Consequently, λi is zero everywhere and Λ = 0. This means that we
can use Λ as a qualitative measure which indicates how far the actual particle
distribution is from a regular lattice. In the next section, we show that Λ
has the same order of magnitude of the mean absolute error of the particle
distribution with respect to an hypothetical regular distribution.

Before proceeding to the analysis, we would like to stress a further point. No
hypothesis has been done on the set of neighbor particles, meaning that the
measure Λ is well posed whatever the form of Ni. Speci�cally, the de�nition
of Ni only depends on the numerical scheme under consideration.

5



2.1 Tests on irregular particle distributions

In this section we use Λ to measure the disorder on irregular particle
distributions. These have been obtained by superimposing a random noise
(Gaussian or Uniform) on regular distributions (Hexagonal, Cartesian and
Triangular in two dimensions and Cartesian in three dimensions) characterized
by a mean particle distance equal to ∆x. The random noise has zero mean
and mean absolute value equal to εr ∆x. Speci�cally:

εr =
1

N

∑
i

‖ri − r̂i‖
∆x

, (6)

where r̂i indicates the particle position on the regular grid. This parameter
represents the mean absolute relative error with respect to the regular grid. As
shown in the sequel, εr can be easily correlated with the measure of disorder
and, therefore, it is preferred to a characterization based on the variance of
the random noise (as done, for example, in Vacondio et al. [9]). Incidentally,
we observe that the variance is not constant but depends on εr because of the
assignment on this parameter. This is explained in details in appendix A. The
results shown in the sequel have been obtained by using a squared domain
with about 6400 particles (the number of particles slightly varies according to
the tessellation under consideration).

The analysis of the measure Λ is made by varying the angle θ and the number
of cones (see Section �2). As explained in the previous section, the directions
of the cone axes are completely arbitrary since we just need to cover the
neighborhood of the i-th particle. In any case, we prefer to give a recipe to set
these directions in a simple and reliable way. Let us consider k cones centered
on the i-th particle. The axis of the �rst cone is de�ned by using the direction
given by the i-th particle and its closest neighbor particle. In two dimensions
the remaining (k − 1) directions are selected by dividing the two-dimensional
space in k identical sectors. For what concerns the three dimensional space,
the possibility of choosing the remaining directions in a �regular� way is
limited to few speci�c cases. For example, the axis directions may be chosen
as the vertexes of regular polyhedra centered on the i-th particle. This leads
to k = 4, 6, 8, 12, 20 according to the adopted polyhedron (e.g., tetrahedron,
octahedron, cube, icosahedron or dodecahedron).

The �rst three plots of �gure 4 display the behavior of the measure Λ applied
to two-dimensional regular grids perturbed by a Gaussian noise (εr = 0.1). The
error bars represent the variance of the local measure λi. We vary both the
number of cones and the angle θ. In all the cases the increase of the number of
cones generally corresponds to a slight increase of Λ even if the discrepancies
rapidly decrease as the angle becomes larger and larger. Speci�cally, for values
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Fig. 4. The measure Λ applied to two-dimensional regular grids and to a Cartesian
three dimensional grid perturbed by a Gaussian noise (εr = 0.1). The angle θ is
measured in degrees.

of θ that are su�ciently large, the measure Λ seems to approach a plateau.
This �asymptotic� value of Λ has an order of magnitude which is comparable
to the error εr (plotted as the abscissa) and this means that Λ may be
used as a qualitative measure for the particle disorder. Similar behavior has
been observed in three dimensions (see the bottom right panel of �gure 4).
These results maintain almost identical by using a Uniform noise instead of a
Gaussian noise. Incidentally, we recall that Λ is well posed only for θ > π/3
(see previous section) and this motivates the large discrepancies observed in
�gure 4 when θ < π/3.

The above analysis suggests that it is not necessary to use a large number
of cones but it is preferable (and computationally more convenient) to use
few cones with a large enough angle. Then, in both two and three dimensions
we choose 8 cones and θ = 7π/18 (that is, θ = 70◦). Some examples of the
behavior of the measure Λ with θ = 7π/18 are drawn in �gure 5 as function
of the noise εr. These plots con�rm that Λ is comparable to εr and that the
measure is only slightly in�uenced by the increase of the number of cones.
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Fig. 5. The measure Λ with θ = 70◦ applied to two-dimensional regular grids and to
a Cartesian three dimensional grid perturbed by a Gaussian noise.

3 Applications

In the following sections we show some useful applications of the proposed
measure of spatial disorder. We use the Smoothed Particle Hydrodynamics
scheme (SPH hereinafter) since this is one of the most widespread particle
methods in the �uid-dynamics community. In its standard form, the SPH
scheme relies on the assumption that the �uid is weakly-compressible and
barotropic. Speci�cally, the SPH equations read:
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

Dρi
Dt

= − ρi
∑
j

(uj − ui) · ∇iWij Vj

Dui

Dt
= − 1

ρi

∑
j

(pj + pi)∇iWij Vj + f i +
µ

ρi

∑
j

πij∇iWij Vj

Dri
Dt

= ui pi = c20 ( ρi − ρ0 )

(7)

where ρi, Vi, pi are respectively the density, the volume and the pressure of the
i−particle while ri and ui are its position and velocity. Here, Wij is a weight
function (also known as kernel function) which accounts for the interactions
with the neighbor particles. The kernel function depends on ‖rj − ri‖ and
has a compact support which automatically de�nes the set Ni. The radius of
the compact support is proportional to a reference length, h, which is called
smoothing length. Speci�cally, we choose a Wendland kernel with a support
radius equal to 2h = 4 ∆x. The symbol ∇i denotes the di�erentiation with
respect to ri and f i is the body force at the position ri. Finally, symbols ρ0 and
c0 indicate the reference density and sound velocity (assumed to be constant).
For computational reason, it is common practice in the weakly-compressible
SPH solvers not to use the physical sound velocity but, conversely, to impose c0
to be at least one order of magnitude greater than the maximum �ow velocity,
that is, c0 ≥ 10 maxi ‖ui‖. This assumption ensures the density variation to
remain below 1%.

The viscous e�ects are modeled through the formulation proposed by
Monaghan and Gingold [10]. The dynamic viscosity is denoted through µ
while the kinematic viscosity is ν = µ/ρ0. The argument of the viscous term
is:

πij = K
(uj − ui) · (rj − ri)

‖rj − ri‖2
, (8)

where K = 2 (n + 2) and n is the number of spatial dimensions. Under
the assumption that the �uid is incompressible, this term approximates the
Laplacian of the velocity �eld (see, for example, [11]). For what concerns the
time step, this is chosen as the minimum over three di�erent reference times
which represent the viscous, the advective and the acoustic time scales. These
are respectively:
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Fig. 6. The Packing Algorithm applied to a periodic �uid domain with an inner
irregular body (L/∆x = 40). Left: initial con�guration. Right: packed con�guration.

∆t1 = 0.125
h2

ν
, ∆t2 = 0.25 min

i

√
h

‖ai‖
,

∆t3 = 2.2 min
i

(
h

c0 + ‖ui‖+ hmaxj|πij|

)
, (9)

where ai is the particle acceleration.

3.1 The Packing Algorithm

In the present section we use the Λ-measure to study the behavior of an
algorithm speci�cally conceived to initialize the particle positions for SPH
simulations, i.e. the Particle Packing Algorithm proposed in [15]. In fact, a
generic initial particle con�guration usually induces some errors in the SPH
pressure gradient operator. Speci�cally, this operator is not null even when the
pressure �eld is constant. Such an issue leads to the generation of an initial
particle resettlement and spurious noise which a�ect both the velocity and the
pressure �eld. The Packing Algorithm displaces the �uid particle in order to
minimize such an error and gives an initial con�guration which is optimal for
the SPH simulations. Generally, the con�guration obtained after the use of
the packing algorithm is very regular and homogeneous. The model equations
of the Packing Algorithm are obtained from the SPH equations by assuming
a constant pressure �eld and dropping the continuity equations (see [15] for
more details).

To show the behavior of the packing algorithm and its relations with the
particle disorder measure, we consider two test cases: a squared �uid domain
with periodic boundaries of length L and the same domain with an inner
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Fig. 7. The Packing Algorithm with and without the solid body for L/∆x = 40.
Top panel: evolution of Λ. Bottom panel: error on the pressure gradient. Here, p0 is
the reference pressure �eld and h is the reference length for the kernel support(also
known as smoothing length). The ordinate axis shows the number of iterations of
the Packing Algorithm.

irregular solid body (see �gure 6). In both the cases, the particles are initially
set on a Cartesian grid perturbed by a random noise (εr = 0.25, see Section
2.1) and the packing algorithm is used to attain a stable con�guration. As
expected, in the �rst case we obtain a regular con�guration (speci�cally, we
obtain back a Cartesian grid). Conversely, the presence of the solid body leads
to a �nal con�guration which is not perfectly regular (see the right panel of
�gure 6) even if it is characterized by a small value of Λ. This is shown in
�gure 7 where the evolution of Λ is displayed along with the L2-error on
the pressure gradient operator. In both the cases the error rapidly converges
to zero, ensuring that the �nal particle con�guration is stable (that is, it is
not a�ected by a further particle resettlement). Conversely, the evolution of
disorder measure is quite di�erent. In fact, the presence of the solid body
implies that Λ does not converge to zero, even though its asymptotic value is
quite small (Λ ' 10−2). This is an important point since it means that the
SPH admits stable particle con�gurations even though such con�gurations are
not perfectly regular.

3.2 Disorder and SPH Interpolation

Before proceeding to the analysis, it is interesting to draw some connections
between the particle disorder and the SPH interpolation.

11



All SPH schemes rely on a smoothing procedure that, at the continuum,
allows for a representation of functions and/or di�erential operators through
convolutions integrals. Speci�cally, the di�erential operators are moved from
the physical variables to the kernel function Wij through integration by parts.
At the discrete level, the convolution integrals are represented by convolution
series, as done, for example, for the velocity divergence in the continuity
equation of system (7).

The accuracy of the smoothing procedure depends on the particle distribution
and may dramatically degrade as the particle disorder increases (see, for
example, [5,12�14]). Quinlan et al. [5] were the �rst to obtain analytical
estimates of the smoothing errors as function of the particle disorder.
Unfortunately, their analysis mainly apply to one-dimensional problems, since
in two and three dimensions it was not clear how the compact support of Wij

could be partitioned into analytically convenient sub-volumes assigned to each
particle. In this context, the disorder measure can be pro�tably used to link
the particle disorder to the accuracy of the smoothing procedure, disregarding
the number of spatial dimensions. In the following part, we give a brief example
of a possible application.

Er [f ] Er [∇f ]

Fig. 8. Relative errors in the smoothing procedure for Cartesian (squared symbols)
and Triangular grids (triangular symbols). Left: smoothing of a linear function.
Right: SPH gradient of a linear function.

Let us consider a linear function in the (x, y)-plane, namely f = 3x+ 2 y, and
de�ne:

〈f〉i =
∑
j

fj Wij Vj , 〈∇f〉i =
∑
j

(fj − fi)∇iWij Vj . (10)

Similarly to section 2.1, we consider a regular lattice (Cartesian and
Triangular) perturbed by a Gaussian noise (εr = 0, 0.05, 0.1, 0.15, 0.2, 0.25).
The volumes Vj are assumed to be constant, since we observed that their
variation according to the lattice perturbation only leads to negligible
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Er [f ] Er [∇f ]

Fig. 9. Relative errors in the smoothing procedure of a linear �eld (left) and of its
gradient (right). The particle distributions have been extracted from the evolution
of the Taylor-Green vortex described in Section 3.3 (L/∆x = 50 and 50 neighbour
particles). Lines connects points at subsequent instants of the evolution.

corrections to the values of 〈f〉i and 〈∇f〉i. Finally, we compute the relative
errors with respect to the analytic solutions, that is:

Er [f ] =

∑
i |〈f〉i − fi|∑

i |fi|
, Er [∇f ] =

∑
i ‖〈∇f〉i −∇fi‖∑

i ‖∇fi‖
. (11)

Figure 8 displays the behaviour of the relative errors as functions of Λ by
varying the number of neighbours. Remarkably, in all the cases the errors
depend almost linearly on the disorder measure, this con�rming a strong
correlation between such quantities.

Apart from this, it is interesting to repeat the above analysis with particle
distributions obtained directly from SPH simulations. In e�ect, these are not
completely random but depend on the �uid dynamics (i.e., on the speci�c
problem at hand) and on a self-ordering mechanisms that acts during the
evolution. Such a mechanism is similar to that at the basis of the packing
algorithm ([15] and Section 3.1) and tends to rearrange particles in order
to minimize the errors in the pressure gradient (see, for example, [16]).
Despite this, the resulting particle distribution not always corresponds to a
minimization of the particle disorder (this has been shown, for example, in the
upper panel of �gure 7).

To better describe such a phenomenon, we interpolated the linear �eld and
its gradient on the SPH distributions obtained during the evolution of the
Taylor-Green vortex described in Section 3.3. At the initial instant, the �uid
particles are positioned on a regular Cartesian lattice. Figure 9 displays the
relative errors by using a Wendland kernel with 50 neighbour particles. The
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lines connects together points at subsequent instants of the evolution.

During the initial and �nal stages of the evolution, the disorder measure
maintains small (i.e., Λ ≤ 0.15) while the interpolation errors are much smaller
than those shown in �gure 8 for the Gaussian noise. Speci�cally, they maintain
below 1% for both the linear �eld and its gradient. This behaviour suggests
that the SPH succeeds in rearranging particles and minimizing the smoothing
errors. Note that the interpolation errors increase almost linearly with Λ.

This behaviour drastically changes when the disorder exceeds a certain
threshold values (Λ > 0.2 in �gure 9). In this case, the SPH self-ordering
mechanism proves to be ine�ective and the interpolation errors suddenly
increase up to values that are comparable with those displayed for the
Gaussian noise (see �gure 8). In such a range we may �nd con�gurations
characterized by similar values of Λ but with very di�erent interpolation
errors. These variations discriminate the cases where the SPH self-ordering
mechanism succeeds or not.

Then, in practical simulations it is not always possible to draw a strong
correlation between the disorder measure and the interpolation errors like
that displayed for the random Gaussian noise. In any case, small values of Λ
(e.g. Λ < 0.15) seem to guarantee the accuracy of the SPH discrete operators.

3.3 Taylor-Green vortex

In the present section we consider the Taylor-Green vortex (the analytic
solution may be found in [17]). Speci�cally, we consider a patch of four vortexes
(see the top left panel of �gure 10) with Reynolds number Re = 2πLU/ν = 400
(here L is the reference length and U is the maximum initial velocity).

Figure 10 shows some sketches of the evolution of the vorticity �eld (left
panels) and of the local measure λi. The �uid particles are initially positioned
on a Cartesian grid and λi is zero everywhere as required. During the evolution,
because of the Lagrangian nature of the SPH, the �uid particles tend to
clump along the stream lines, leading to large values of λi (see the middle
panels of �gure 10). As we shall discuss later in the paper, such an anisotropic
particle con�guration may lead to large errors in the numerical solution (see,
for example, [5,8,18,19]). In any case, for longer times the particles resettle on
a more regular con�guration (bottom middle panels of �gure 10) and, �nally,
the vortexes are damped by the action of the �uid viscosity. During these
stages, the values of the local measure decrease and the particle distribution
becomes more and more regular.

Figure 11 displays the evolution of the global measure Λ for increasing spatial

14



Fig. 10. The Taylor-Green vortices. Right plots: evolution of the vorticity �eld. Left
plots: evolution of the local measure λi.
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Fig. 11. The Taylor-Green vortexes. Evolution of Λ for increasing spatial resolutions.

Fig. 12. The Taylor-Green vortexes initialized by using the particle packing algorithm
described in [15]. Left panel: the vorticity �eld. Right panel: the local measure λi.

resolutions. The initial peaks correspond to the maximum particle clumping
along the stream lines while the subsequent decrease is associated with the
particle resettlement. It is interesting to note that the SPH is converging to the
analytic solution (this is shown in the �nal part of the present section) but the
measure Λ is not decreasing any more. In any case, Λ approaches a converged
solution as well. Further, for long times Λ tends to an asymptotic value which is
sensibly di�erent from zero (i.e. Λ ' 0.1). At this stage the �uid is practically
motionless. This means that a converged and stationary SPH simulation does
not necessarily display a perfectly uniform particle distribution, even though
the global and local disorder is generally very small. This behavior has been
already observed by Monaghan [2] and by Lind et al.[8].

In the last part of the analysis, we repeat the simulation with L/∆x = 50 by
using the particle packing algorithm to initialize the particle positions. The
initial instant is displayed in �gure 12. In this case, the λi-�eld is not perfectly
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Fig. 13. The Taylor-Green vortexes. Evolution of Λ with and without the use of the
particle packing algorithm.

Emax [u]

Fig. 14. The Taylor-Green vortexes. The maximum global error on the velocity �eld
with and without the use of the particle packing algorithm.

zero even though its variations are smaller than 0.1. The evolution of the
global measure is shown in �gure 13. Since the use of the packing algorithm
eliminates the particle resettlement, the initial peak of Λ disappears. Apart
from this, the long-time evolution of the two cases is almost identical even if the
accuracy of the simulation increases when the packing algorithm is adopted.
This is brie�y displayed in �gure 14 where the maximum global error on the
velocity �eld is shown for di�erent resolutions. Speci�cally, we consider:

Emax [u] = max
t
‖u− uan‖1/Umax (12)

where uan is the analytic solution, ‖ · ‖1 is the L1-norm and Umax is the
(analytic) maximum velocity at the initial time.
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Fig. 15. Oscillating drop. Initial (right plot) and �nal instant (left plot) of the
evolution. The dashed lines indicate the analytic solution of the free surface
(R/∆x = 100).

3.4 Oscillating drop under a central conservative force �eld

In the present section we consider a two-dimensional �uid drop evolving under
the action of a central conservative force �eld, −B2 r, where B is a dimensional
parameter. The �uid is inviscid (i.e. µ = 0) and the drop is initially circular
with radius R. The drop evolves periodically as an oscillating �uid ellipse,
according to the following law:

u = A(t)x

v = −A(t) y ,
(13)

where the solution for A(t) is given in [20]. It is simple to show that the global
dynamics depends on the ratio A(0)/B, which, in the following simulations,
is set equal to 1.

The present test case is used to show a further interesting application of
the disorder measure: we inspect how di�erent formulations of the same
numerical scheme may lead to di�erent particle distributions. In this speci�c
case, the standard SPH scheme described in section �3 is compared with a
di�usive variant, namely the δ-SPH scheme. This scheme contains a di�usive
term inside the continuity equation which helps to reduce the spurious high-
frequency noise which generally a�ects the pressure �eld. More details may be
found in Antuono et al. [21].

Figure 15 displays the initial and the �nal instant of the evolution obtained by
using the δ-SPH scheme and the analytic solution of the free surface (dashed
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Fig. 16. Oscillating drop. Comparison with the analytic solution for the ellipse
semi-axis, b(t).

Fig. 17. Oscillating drop. The local measure λi during the early stages of the
evolution (R/∆x = 100).

lines). The overall comparison is very good and it is further con�rmed in
�gure 16, where the δ-SPH solution is compared with the analytic solution
for the ellipse semi-axis, b(t). No spurious numerical damping is observed,
this con�rming the reliability of the δ-SPH for inviscid problems, at least
in a limited time range. Despite this, the particle disorder is small but not
negligible (see �gure 17 and the left plot of �gure 18). This is consistent with
the results observed in sections 3.1 and 3.3: the convergence of the considered
SPH schemes does not imply that the particle distribution is perfectly regular.
It seems that, below a certain value of Λ, the particle disorder plays a minor
role and the considered SPH schemes compensate somehow the interpolation
errors. This is an important issue and will be the subject of future inspections.

The evolution of the local measure is displayed in �gure 17. Since at the initial
instant the particles are on a Cartesian grid, λi is identically null inside the
�uid bulk and it is slightly larger than zero just along the free surface because
of the local nonuniform distribution. Then, due to the drop stretching, the
distance among the particle rows increases and λi increases as well (see the
second panel of �gure 17). At a certain moment, the particles close to the free
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Fig. 18. Oscillating drop. The evolution of Λ (left plot) and of the pressure at the
origin (right plot) for the standard and δ-SPH.

Fig. 19. Oscillating drop. Comparison between the time stepping of the δ-SPH and
of the standard SPH

surface start resettling and such a resettlement rapidly propagates all over
the �uid domain (third and fourth panel of �gure 17). This phenomenon has
been described in [16] and corresponds to a drastic reduction of the particle
disorder and to a consequent decrease of λi.

The evolution of the global measure Λ is shown in the left plot of �gure 18.
Apart from the initial instants (which are clearly dominated by the particle
stretching and resettlement), the comparison between the δ-SPH and the
standard SPH clearly proves that the former one is characterized by a more
regular particle distribution. This has a crucial in�uence on the accuracy of
the simulation, as shown in the right plot of �gure 18 where the time history
of the pressure at the origin is displayed for both the SPH schemes. Here, the
standard SPH scheme is a�ected by a spurious high-frequency noise while the
δ-SPH scheme provides a smooth pressure pro�le and a good agreement with
the analytic solution. Through the formulae in equation (9), the increased
regularity and accuracy of the numerical solution also re�ects on a larger time
stepping of the δ-SPH in comparison to the standard SPH (see �gure 19).
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Fig. 20. three-dimensional oscillating drop. Sketches of the evolution and contour
zones of the pressure �eld (R/∆x = 50). The solid lines represent speci�c sections
of the analytic free surface.

3.4.1 Extension to three dimensions

The two-dimensional solution provided in the previous section can be easily
extended in three dimensions. In this case the drop evolves like a spheroid,
according to the following law:


u = −A(t)x

v = −A(t) y

w = 2A(t) z ,

(14)

and the solution for A(t) is given in [20], as well. Similarly to the two-
dimensional case, the global dynamics depends on the ratio A(0)/B (where
B is the coe�cient of the central conservative force �eld). In the following
simulations, this ratio is set equal to 1.

Figure 20 shows some snapshots of the evolution along with the contour zones
of the pressure �eld obtained by using the δ-SPH scheme. For graphical
reasons, only half of the �uid domain is displayed while the solid lines
represent speci�c sections of the analytic free surface. The circular drop
initially stretches along the vertical direction in form of a prolate spheroid
(left panel of �gure 20), reaches the maximum elongation (central panel) and,
then, shrinks to form an oblate spheroid (right panel of the same �gure). In
all the cases, the numerical solution is in a good agreement with the analytic
solution for the free surface.

The procedure used to build the disorder measure Λ can be straightforwardly
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Fig. 21. three-dimensional oscillating drop. Evolution of the measure Λ and
comparison with the two-dimensional problem.

applied to the three dimensional problem. In this case it is interesting to
compare the evolution of Λ with the two dimensional simulation (see �gure
21). In three dimensions the time history of Λ does not exhibit the initial
peak since the particle resettlement is weaker. Intuitively, this is due to the
fact that in three dimensions particles have more degrees of freedom and,
consequently, they rearrange previously than the two dimensional case and
with weaker dynamics. Apart from this, the long time evolution is similar in
both the cases.

Conclusions

Based only on geometrical considerations, we proposed an algorithm to
measure the disorder in a generic particle distribution. The proposed measure
applies to both two- and three-dimensional problems and can be qualitatively
regarded as the mean absolute value of the perturbation with respect to a
hypothetical regular lattice.

Possible practical applications of the proposed disorder measure have been
provided by using the Smoothed Particle Hydrodynamics scheme and
considering both two- and three-dimensional simulations. The numerical
simulations highlighted how Λ can be used to inspect the relation between the
particle disorder and the accuracy of the numerical scheme and to compare
di�erent variants of the same numerical method. The proposed measure may
be also adopted to monitor the particle disorder during simulations and decide
when/if re-meshing or packing algorithms have to be used. This would help to
optimize the implementation of such tools, reducing the computational costs.

In all the considered cases, the disorder measure proved to be reliable
and to qualitatively discriminates between more and less regular particle
distributions.
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A Random noise on a regular lattice

Let us consider a regular grid with uniform spacing ∆x and two independent
random variables, say x and y, with the same density distribution and with
zero mean, that is E(x) = E(y) = 0. Starting from them, we derive two
new independent variables, namely X and Y , with the same probability
distribution of x and y, with zero mean and which satisfy:

E(Z) = E
(√

X2 + Y 2
)

= εr ∆x . (A.1)

Here εr is assigned and represents the mean absolute relative error with respect
to the regular grid. The variables X and Y are used to perturb the horizontal
and vertical coordinates of the grid points of the regular lattice.

The derivation of X and Y is straightforward. We introduce a positive
parameter α and set X = αx and Y = α y. By de�nition, X and Y have
the same probability distribution of x and y, are independent and have zero
mean. The parameter α is obtained by satisfying the requirement in (A.1):

E(Z) = αE
(√

x2 + y2
)

= εr ∆x ⇒ α =
εr ∆x

E
(√

x2 + y2
) .

It is simple to show that the variance of the new variables is V(X) = α2V(x)
and V(Y ) = α2V(y). Then, the larger the relative error εr, the larger the
variance. In our computations we use a Normal Gaussian distribution and a
Uniform distribution in [0, 1] for x and y.
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