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Abstract: The Edge/Fog computing paradigm has been recently advocated
for future IoT systems to cope with the capacity and latency constraints of
conventional cloud-centric IoT architectures. Fog nodes are not only needed
to offload computing tasks from the centralised cloud but also to provide IoT
applications with management services that facilitate deployment and improve
Quality of Service. Indeed, in large-scale IoT deployments, it is expected that
a large number of applications access the same resources (e.g. a sensor or an
actuator), most likely hosted on constrained devices. Moreover, applications
can have highly heterogeneous QoS requirements, e.g., regarding real-time
constraints or frequency with which they desire to receive notifications from the
monitored resources. However, IoT applications may be unable to autonomously
adapt their access patterns for IoT resources to network dynamics and bandwidth
limitations. To address these issues, in this work we design a fog-based broker that
regulates the access to IoT resources transparently and effectively. Specifically,
we develop an optimisation framework to determine the notification periods that
maximise the applications’ QoS satisfaction under network-related constraints.
Then, we also propose practical algorithms that leverage measurements of the
degree of reliability of application transmissions to infer the congestion level of the
IoT resources, and adapt the notification periods accordingly. We have developed
a software prototype of our broker by exploiting the standard features of the CoAP
protocol. Then, we have validated the proposed solution through simulations
and real experiments in an IoT testbed. Results show that, as the application
demands increase, the proposed approach guarantees better QoS satisfaction,
higher throughput and improved energy efficiency than a conventional CoAP
proxy. Moreover, the efficacy of the optimal solution heavily depends on accurate
estimates of the network capacity, which may be difficult to obtain in real-world
IoT deployments.
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1 Introduction

During the last few years, we have witnessed the rapid development and deployment of
the Internet of Things (IoT). The most recent projections estimate that 20 billion smart
things (excluding smartphones, tablets, and PCs) will be connected to the Internet by 2020
using IoT technologies [1]. Most of these IoT devices are low-cost and resource-constrained
devices, endowed with sensing and actuating capabilities, that collect and exchange data
related to physical objects, processes and environments. In many existing IoT deployments, a
common approach to cope with the limited capabilities of IoT devices regarding computing,
memory and energy, is to send all the produced IoT data to a centralised cloud infrastructure,
where storage, management, processing and decision-making services are implemented in
large data centres [2]. However, it is has become widely recognised that in a cloud-based IoT
architecture network bandwidth and communication latency can be severe bottlenecks [3].
Indeed, as the number of IoT devices continues to increase, the volume and velocity of
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IoT traffic are expected to grow exponentially [4]. Then, it is very challenging for both
existing and future core networks to support the exponential increase of traffic demand
due to the exchange of IoT data. Moreover, many IoT applications (e.g., industrial control
systems), have stringent requirements regarding time responsiveness and Quality of Service
(QoS), which are difficult to satisfy with a cloud-centric model. In the case of intermittent
network connectivity (e.g., IoT devices may often be offline), it is also difficult to provide
uninterrupted cloud services.

To address the above issues, many research efforts have proposed the edge computing
paradigm for future IoT systems [5, 6, 7]. According to this concept, the functions of a
centralised cloud are transferred to edge devices of networks, close to end users and things.
Different approaches have been proposed to realise edge computing platforms in the IoT
domain, but one of the most mature and flexible solutions is fog computing [8]. In a fog-based
IoT architecture, resources and services of data management, storage, computing, control
and even networking are distributed over many heterogeneous devices, called fog nodes,
which are distributed from the cloud to the things [9]. Fog integrates with cloud and helps in
coping with network bandwidth constraints by reducing the amount of data that needs to be
sent to the cloud, and ensuring low latency and location-awareness to applications. However,
it is important to emphasise that fog nodes are only used to offload computing from the
core cloud, but they are also expected to provide specific services to support heterogeneous
QoS requirements of IoT applications. Specifically, large-scale IoT scenarios (e.g., smart
cities) entail a large number of applications that concurrently access resources that are
available at IoT sensors and actuators [10]. This situation can easily result in scalability
issues and QoS degradation, as application messages can get lost due to network congestion
and limited memory of IoT devices. Secondly, network congestion would cause an increase
in communication and process delays, even for fog nodes. Moreover, applications may
have different requirements on how frequently they want to access the same IoT resource
or be notified of state changes for a resource. However, IoT applications are typically
unaware of network-related constraints (e.g., capacity limitations), and they may be unable
to adjust their patterns of IoT data collection to the current network state. Thus, a resource
brokering service for IoT is needed to handle requests from external applications with the
aim of providing load balancing, improving overall network efficiency and performance,
and ensuring better QoS [11]. Note that many existing standard IoT architectures, such as
ETSI oneM2M [12], advocates the used of so-called M2M gateways to handle application
requests on behalf of IoT devices, which can also act as application/resource brokers.

In this work, we focus on the problem of designing a fog-based intermediary entity that
can act as a broker for heterogenous IoT applications, regulating the access to IoT resources
transparently and effectively. First of all, we formulate an optimisation framework that aims
at maximising the overall QoS satisfaction of heterogeneous IoT applications that access the
same IoT resource, while taking into account network-related constraints. Then, we discuss
the limitations of an optimal approach that requires an a priori and accurate prediction of
the capacity of network links and paths. This analysis leads us to the design of practical
algorithms and solutions that can effectively work in the real case where the estimation
of network-related constraints is difficult or too costly in terms of network resources. A
key feature of our proposed solution is to directly measure the transmission reliability of
application messages that convey resource state updates, and to leverage this metric to infer
if application requests overload an IoT resource. As better explained in the following, we
distinguish between localised congestion and network-wide congestion by introducing the
concept of congested routing subtree, and we define specific rate adaptation mechanisms to
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cope with the latter case. Finally, our proposed resource broker implements edge caching
to further reduce traffic congestion and response time in the IoT network.

A key challenge in the IoT domain is the fragmentation of existing IoT architectures
and platforms, while a root enabler for the IoT wide deployment would be the adoption
of open and standardised architectures and protocols. Therefore, we have developed a
software prototype of our broker by leveraging the capabilities of the CoAP protocol [13], a
specialised web transfer protocol standardised by the IETF for use in resource-constrained
devices. Specifically, our prototype exposes standard RESTful APIs to allow applications
to discover and access IoT resources. Note that CoAP specification already defines basic
proxying and caching capabilities, and our proposed broker is backwards-compatible with
the legacy CoAP standard. We have carried out an extensive evaluation through emulation to
assess the performance of our solution under controlled and reproducible conditions. As for
performance benchmarks we used two alternative approaches: i) the solution of the general
optimisation framework, and ii) a conventional CoAP proxy that is unaware of network-
related constraints. Results showed that the three schemes perform similarly for low traffic
demands, while our proposed approach provides better QoS satisfaction, higher throughput
and improved energy efficiency for high traffic demands. Besides, we have validated our
prototype implementation using a large-scale experimental IoT testbed. The experimental
results confirm the efficacy of the proposed broker also in real-world deployments.

The rest of this paper is organised as follows. Section 2 introduces the reference scenario
and the addressed problem. Section 3 describes the general optimisation framework for
edge-centric resource brokering. Section 4 describes in detail a practical algorithm to support
resource brokering. Section 5 overviews enabling technologies and introduces our prototype
implementation. Evaluation results are presented in Section 6. Concluding remarks are
finally reported in Section 8.

2 Problem Statement and System Model

As in [11], we assume that an IoT domain is any group of IoT devices that are managed by
the same IoT broker (or M2M gateway following ETSI oneM2M nomenclature [12]). IoT
devices are battery-powered devices with limited processing power and memory capacity,
which host IoT resources to provide sensing and actuating services. The information
generated by the IoT resources is typically delivered to a collection point (sink node) through
multi-hop network paths. Without loss of generality, we assume that there is a single sink
node in the IoT domain and it is deployed together with the border router that interconnects
the IoT domain to the core Internet. The IoT broker is a logical entity that, following
the edge/fog computing paradigm, is deployed on a server close to the IoT devices. By
definition, an IoT broker implements a set of functionalities that are needed to allow client
applications to access the IoT resources in the managed domain efficiently. Without loss of
generality, we further assume that the broker is deployed in the border router as proximity
between the IoT broker and the IoT devices brings many advantages compared to remote
brokers, such as more efficient and low-latency communications. The key functionalities
that are implemented in the IoT broker are the following: i) resource discovery and lookup
to allow applications to locate resources that are hosted in the managed IoT devices, and ii)
proxying to be able to act as an intermediary between the IoT resources and the applications.
In a nutshell, a proxy can forward application requests and relay back responses on behalf
of the IoT devices hosting the target resource. In this study, we envisage that the IoT broker
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optimally manages the application requests to satisfy application requirements, while taking
into account network-related constraints.

More formally, let S={s1, s2, . . . , sn} be a set of n devices that form the IoT domain,
and let s0 denote the sink. Without loss of generality, we assume that each IoT device si host
a single resource, say ri, but the formulation could be easily extended to deal with multiple
resources per IoT devices. Thus, in the following, we will use the notation si and ri, and the
term IoT node and IoT resource interchangeably. Now, letA={a1, a2, . . . , sm}be a set ofm
applications that want to access the IoT resources. We envisage that an application typically
accesses a single resource, but each resource can be accessed by multiple applications, i.e.,
m ≥ n. Therefore, it is also convenient to introduce the set Ak ⊂ A, defined as the set of
applications that require to access the same resources rk. To simplify the notation, in the
following we use the subscript index i to refer to an IoT device si, the subscript index j to
refer to an application aj and the subscript index k to refer to a resource rk.

Each application j ∈ A requires to receive periodic notifications about the current status
of the target resource. More precisely, we assume that each application is characterised
by a desired range of notification rates, and the higher the notification rate, the higher the
satisfaction of the application’s QoS requirements. Formally, let [αj , βj ] be the desired
range of notification rates for application j and let gj(x) be the QoS satisfaction index
associated to application j, which describes the degree of application’s QoS satisfaction
when it receives updated representation of the target resource with a rate x. Without loss
of generality, gj(x) can be thought as a utility function [14, 15], i.e. an increasing, strictly
concave, and continuously differentiable function over the setx∈ [αj , βj ], with gj(x)=1 for
x ≥ βj and gj(x)=0 for x ≤ αj . In other words, if the broker provides a notification rate to
application j greater than βj , this does not increase the application’s QoS satisfaction. The
objective of the broker is to assign to each application the maximum feasible notification
rate to maximise the total QoS satisfaction. To this aim, the broker collects the notification
requirements for a given resource rk from all the applications j ∈ Ak. Then, the broker
periodically polls resource k with a polling rate xk and caches the received response. Edge
caching at the broker is beneficial to significantly reduce the network traffic in the IoT
domain as a single response message can be used to serve multiple applications. Indeed,
the broker shall immediately reply the cached response from rk to application j ∈ Ak if
xk ≤ βj , i.e., if the notification rate is within the desired range. Otherwise, the broker should
wait to avoid overloading the application.

3 General Optimisation Model for Resource Brokering

In this section, we formulate a general optimisation problem to determine which polling
rates should be allocated by the broker to each IoT resource to maximise the overall QoS
satisfaction of the active applications, subject to constraints on physical network resources.
We cast our problem in the ideal case where a perfect medium access control scheme
regulates the access of the shared wireless medium under a simple protocol interference
model. The reason of considering an ideal case is to provide a reference scenario and a
benchmark to evaluate the proposed algorithms in a real case, in which it might be difficult
to obtain reliable statistics about the link capacities (e.g. under time-varying channel and
interference conditions).

Let xk be a continuous decision variable indicating the probing rate that is used by
the broker to collect status updates about resource k ∈ S. The following objective function
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aims to maximise the overall satisfaction of admitted applications:

max
∑
k∈S

∑
j∈Ak

gj(xk) (1)

xk ≥ max
j∈Ak

{αj} ∀k ∈ S (2)

Constraint (2) enforces that all applications obtain the minimum desired notification period.
In principle, the problem of application admission control, namely, to decide whether to
allow a new incoming application to access an IoT resource should be considered jointly
with the problem of allocating network resources to the admitted applications. For the sake
of simplicity, we can assume that the network has sufficient capacity to satisfy the minimum
QoS requirements of the client applications (i.e., constraint (2) is always feasible). It is also
important to observe that in our architectural model, application requests are sent to the
broker rather than directly to the IoT device that hosts the target resource, and the broker
can aggregate application requests for the same IoT resource. Such aggregation capability
limits the impact of admitting new applications for an already active IoT resource.

The most popular routing protocols for data collection in wireless sensor networks (e.g.
CTP [16] and RPL [17]) are based on a routing tree. This means that the sink node is the
root of a tree-based routing topology, and each node must forward all the traffic destined for
the sink to its parent node in the tree. Thus, all the data generated in the network is collected
at the sink node. Finally, according to the flow conservation rule, the traffic flow entering
into a node i plus the data generated by node i must be equal to the traffic flow leaving that
node. These routing conditions can be conveniently expressed using the following set of
constraints: ∑

k∈S

xk =
∑
i∈S

fi (3)

xi +
∑
h∈S

fhi =
∑
h∈S

fih ∀i ∈ S (4)

fih ≤ Kih ∀i, h ∈ S (5)

where fi and fih are variables representing the traffic flow from node i to the sink and
node h, respectively. The constantKih is used to represents the children-parent relationship
between nodes in a network path. More precisely, Kih = 0 if h is not the parent node for
node i, while is chosen to be large enough so that the constraint is always satisfied if h is
the parent node for node i (e.g., higher than the maximum link capacity).

Finally, we have to take into account that the available link capacity is limited and must
be shared among the IoT nodes that contend for the channel access. More formally, let
Cih be the maximum capacity of a link between a pair of nodes (i, h). According to the
interference protocol model, given a transmission from node i to node h, none of the nodes
in the interference area of i can be a receiver, and none of the nodes in the interference area of
h can be a transmitter. In other words, all the nodes within the same interference area share
the same transmission channel and therefore, the transmission time should be shared among
them. Note that the interference area can depend complexly on several factors, including
transmission powers, channel propagation and obstacles. However, under the interference
protocol model [18], the interference area of a node is a disk around the node with a
radius equal to the interference range. Moreover, node h cannot be a simultaneous receiver
for another children node p different from node i. These conditions can be conveniently
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expressed by enforcing that the sum of the fractions of total channel time used by each link
(i, h) and its interfering links (according to the definition above) is equal or less than one.
Formally, the following constraint must hold:

fih
Cih

+
∑
p∈S
p 6=i

fph
Cph

+
∑
p,q∈S

d(q,i)≤Ii

fpq
Cpq

+
∑
p,q∈S

d(p,h)≤Ih

fpq
Cpq
≤ 1 ∀i, h ∈ S (6)

where d(i, h) is the distance between i and h, and Ii is the interference range of i. Note
that the second term in the above sum expresses the constraints that two children nodes of
h can not transmit simultaneously.

4 Practical Algorithm for Resource Brokering

The general optimisation framework formulated in the previous section assumes perfect
knowledge of both the channel propagation model and the channel access behaviour. While
this approach provides a useful benchmark for optimal performance, its applicability to
practical cases might be limited due to the hurdles of obtaining such information reliably,
especially under time-varying channels and complex interference models. Thus, more
practical algorithms and solutions may be needed. In the following, we present the design
rationale behind our proposed broker. Then, we describe our practical algorithm for resource
brokering if network-related constraints are unknown.

4.1 Design rationale

The broker manages the IoT resources deployed in an IoT domain and makes periodic
decisions about the notification rates assigned to the applications that access the IoT
resources. We assume that the decision cycle is fixed and equal to T seconds. The m-th
decision point is simply given by the time instant tm = m× T with m=0, 1, . . .. The
broker’s decisions are based on the congestion state of the IoT resource and the degree
of transmission reliability for application messages. More precisely, during each cycle,
the broker collects measurements about the transaction loss ratio (TLR) of each resource,
defined as the fraction of transaction losses over a decision cycle, and it leverages these
measurements to update the congestion state of IoT resources. Specifically, the transactions
between an application and its target IoT resource follow a typical request/response model.
For instance, an IoT device can host a temperature resource (sensor), and the resource
responds to the application requests with the temperature reading. A transaction loss is
defined as a request/response exchange in which the reply does not arrive at the broker
before the notification deadline expires. A transaction can get lost due to several reasons. For
instance, a burst of channel errors or buffer overflows can cause too many retransmissions at
the MAC layer, and the request or response messages get lost. Moreover, network congestion
increases the transmission delay of the response messages, which can arrive at the broker
when the notification deadline is already expired.

It is quite straightforward to assume that if the TLR value is above a given threshold, the
IoT resource should be regarded as congested. An essential characteristic of our proposed
solution is that the broker takes into account not only localised congestion conditions but
also network-wide congestion conditions to decide whether to increase, decrease or keep
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constant the polling rate associated to a resource. Specifically, in a tree-based topology,
each node is the root of a subtree. The larger the subtree of a node is, the more packets it has
to forward to the sink. Thus, a congested root node of a subtree can also be an indication
of traffic congestion generated within the sub-tree. As explained in the following sections,
if a subtree is classified as congested the broker aggressively reduces the polling rates of
congested resources to recover more rapidly a normal state. On the other hand, if the IoT
resource is not congested the broker can tentatively increase the polling rate to test for
available network bandwidth. It is important to point out that our broker gives higher priority
to applications that have a low QoS satisfaction index to ensure a more balanced usage of
the network capacity. Moreover, the adaptive tuning of polling rates is designed in such
a way to allow more aggressive rate increases for applications with low QoS satisfaction
than applications with already high QoS satisfaction. The broker design is detailed in the
following sections.

4.2 Transaction loss ratio

Let us define with γk(tm) the TLR value for IoT resource rk, measured in the m-th
decision cycle between tm and tm+1. The decision cycle should be chosen long enough
for observing a reasonable number of application transactions to collect reliable statistics
for the instantaneous TLR parameter. To filter out the fluctuations in the measurements and
to obtain a long-term forecast of the average TLR value, the broker leverages a classical
exponentially weighted moving average approach. Specifically, at the end of the m-th
decision cycle the long-term TLR value for resource rk to be used in the (m+1)-th decision
cycle, say γ̂k(tm+1), is computed as follows:

γ̂k(tm+1) = αγ × γk(tm) + (1− αγ)× γ̂k(tm) (7)

with 0 < αγ < 1. However, the quick detection of congestion onset due to temporary
conditions (e.g., large backoff times or buffer saturation) requires to examine also short-term
behaviours. Therefore, the broker also computes the relative difference between consecutive
measurements of instantaneous TLR values. Formally, we have that ∆γk,m = [γk(tm)−
γk(tm−1]/γk(tm). As explained in the following, the broker leverages both γ̂k(tm) and
∆γk,m to assess the degree of reliability and the resulting congestion state of a resource.

4.3 Congestion detection

Let us denote with Γk,m the reliability degree of a resource rk during the m-th decision
cycle. The broker defines three possible values for the Γk,m parameter: high reliability
(HR), low reliability (LR), and transitional reliability (TR). The two main parameters for
the reliability classification are: i) the TLR threshold (ΓL) that dictates the start to the LR

region, and ii) the TLR threshold (ΓH ) that determines the stop of the HR region. Then, the
difference between the two thresholds is the hysteresis margin (HM = ΓL − ΓH ), which
defines the size of the transitional region for the TLR. For the sake of clarity, the pseudo-
code of the function that estimates the Γk,m parameter is provided in Algorithm 1. The
selection of the ΓL threshold is critical. If it is selected too high, the broker may fail to
identify an unreliable resource. On the other hand, if it is too low, the broker may be too
conservative and do not fully exploit the available network capacity. It is important to point
out that packet losses are very likely in a constrained environment and a small number of
transaction losses should be tolerated. In the evaluation section, we show that there is a clear
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trade-off on the maximum allowed unreliability and the ability of the broker to fully utilise
the network bandwidth. Similarly, if the hysteresis margin is too narrow, the broker may be
too sensitive making frequent and unnecessary adjustments to the polling rates. To some
extent, the hysteresis margin should be used to cope with the variability of the network and
let the broker converge to a stable operating point.

As discussed above, temporary degradations of channel and network conditions play a
key role in determining the reliability of application transactions. The onset of this sudden
congestion can be detected more effectively by taking into account short-term behaviours
rather than long-term averages. For this reason, the broker also considers the variations of
TLR values when classifying the resource reliability. If there is a significant TLR decrease
(i.e., ∆γk,m ≤ −βγ), the broker conjectures that the IoT resource is entering a HR state
(line 3). Conversely, if there is a noticeable TLR increase (i.e., ∆γk,m ≥ βγ), the broker
conjectures that the IoT resources is entering a LR state (line 2).

Algorithm 1: Computation of Γk,m.

1: function ComputeΓ(γ̂k(tm),∆γk,m)

2: if (Γk,m ≥ ΓL OR ∆γk,m ≥ βγ) then return LR;
3: else if (Γk,m ≤ ΓH OR ∆γk,m ≤ −βγ) then return HR;
4: else return TR;
5: end function

A straightforward approach to exploit the Γk,m parameter is to assume that an IoT node
si is congested if Γi,m = LR, where ri is the resource hosted at si. We remind that each
IoT device hosts a single resource. Thus, the concept of resource and node can be used
interchangeably when assessing congestion. However, the root cause of network congestion
is not necessarily the node where unreliability manifests itself as each node also forwards
to the data collection point traffic that is originated by other nodes in its subtree. Therefore,
we also introduce the concept of congested subtree. We assume that a subtree is congested
if the root of the subtree is congested and a non-negligible fraction of nodes that belongs
to the subtree are also congested. For ease of presentation, let us introduce some useful
notation. Let ST i denote the set of nodes in the subtree rooted at node si. Moreover, let Ci
denote the set of children nodes of si and let p(i) the parent node of si. Finally, let xk the
polling rate allocated to resource rk. Algorithm 2 presents the pseudo-code of the function
that checks whether ST i is congested or not. The function checks the reliability degree of
all nodes in the subtree and maintains two counters. The first one counts all congested nodes
(line 7). The second one counts the fraction of congested nodes that have a polling rate
higher than the one assigned to the root of the subtree (line 8). The rationale of this design
choice is to weight more congested nodes that use more network bandwidth than the root
of the subtree, which has to forward all the traffic generated in the subtree. Then, ω1 and
ω2 (ω1 > ω2) are the two parameters for fine-tuning the mechanism for subtree congestion
detection (line 10). Note that a prerequisite for a subtree to be congested is that the root
node is also congested (line 3).

Algorithm 2: Detection of congested subtrees.

1: function CheckCongestedST(ST i)
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2: Γi,m ← ComputeΓ (γ̂i(tm),∆γi,m)
3: if (Γk,m 6= LR) then return False;
4: numHL1 ← 0 ; numHL2 ← 0
5: for all k ∈ ST i do
6: Γk,m ← ComputeΓ (γ̂k(tm),∆γk,m)
7: if (Γk,m = LR) then numHL1 ← numHL1 + 1;
8: if (xk ≥ xi) then numHL2 ← numHL2 + 1;
9: end for
10: if (numHL1 ≥ ω1 × |ST i| OR numHL2 ≥ ω2 × |ST i|) then return True;
11: else return False;
12: end function

Finally, Algorithm 3 presents a variation of the classical Depth-First Search (DFS)
algorithm [19] to recursively traverse the network tree while searching for congested
subtrees. The output of the algorithm is the setO1, defined as the set of nodes (congested or
not congested) that belongs to at least one congested subtree. Then, the set of nodes that do
not belong to any congested subtree is simply given byO2 = S \ O1. Note that, differently
from a classical DFS implementation, if a subtree is congested it is not necessary to visit
the nodes in the subtree (line 7).

Algorithm 3: Node classification.

1: function DFS(ST i)

2: if i = 0 then O1 ← ∅;
3: mark si as visited;
4: for all u ∈ Ci do
5: if (u is not marked as visited) then
6: if (CheckCongestedST(STu)) then
7: O1 ← O1 ∪ STu;
8: else
9: recursively call DFS(ST u);
10: end for
11: end function

4.4 Tuning of the polling rates

The last component of the broker is responsible for adjusting the polling rates between the
broker and the IoT resources. As illustrated in Algorithm 4, first of all, the broker selects the
set of resources (sayAdec) whose polling rates should be decreased and the set of resources
(say Ainc) whose polling rates can be tentatively increased. Specifically, all the resources
inO1 with low reliability are added toAdec (line 3), while all the resources inO2 with high
reliability are added to Ainc (line 7). Note that also a small fraction (say ω3) of resources
in O1 with high reliability are added to Ainc (line 4) to be tentatively tested for available
network bandwidth and speed up the convergence to an optimal operating point. A key
characteristic of our rate adjustment policy is that the list of resources in Ainc is sorted in
ascending order based on the QoS satisfaction index (line 9). This ranking allows assigning
a higher priority to applications that have lower QoS satisfaction, facilitating a fairer usage
of network bandwidth and the maximisation of the total QoS satisfaction. Moreover, only
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a fraction τ of all eligible resources in Ainc is actually tested for higher notification rates
(line 10). The tuning of the τ parameter controls the aggressiveness of the broker in testing
for available network bandwidth.

Algorithm 4: Rate adjustment.

Require: O1,O2

1: Ainc ← ∅; Adec ← ∅
2: for all i ∈ O1 do
3: if (Γi,m) = LR) then Adec ← Adec ∪ {ri}
4: if (Γi,m) = HR OR rand() ≥ ω3) then Ainc ← Ainc ∪ {ri}
5: end for
6: for all i ∈ O2 do
7: if (Γi,m) = HR) then Ainc ← Ainc ∪ {ri}
8: end for

9: sort Ainc based on QoS satisfaction index;
10: remove the last (1− τ) percent of resources in Ainc;

11: for all k ∈ Adec do
12: xk ← computeNewRate(rk, xk, , dec);
13: end for
14: for all k ∈ Ainc do
15: xk ← computeNewRate(rk, xk, inc);
16: end for

A final optimisation of the broker is to perform a more aggressive rate increase if the polling
rate is low (i.e. the application’s QoS satisfaction is low). This is obtain by partitioning the
interval of possible polling rates in subintervals with decreasing length. More formally, let
a0 = maxj∈Ak

αj and b0 = maxj∈Ak
βj . Then, the polling rate for resource rk has to be a

real number in range [a0, b0]. Let us divide this interval into v subintervals with decreasing
length. A simple quadratic function can be used to build the subintervals. Specifically, in case
of a rate increase a subinterval di = [wi, wi+1] (with i = 1, 2, . . . , v, w1 = a0 and wv+1 =
b0) has a length (v−i)2(b0−a0)/v2. Then, the function computeNewRate(rk, xk, inc)
checks the subinterval within which the rate xk falls, and randomly selects a new rate in the
subsequent subinterval. In case of rate decrease, we follows a complementary approach as
the broker should perform a more aggressive rate decrease if the polling rate is high. This
can be easily achieved by dividing the interval [a0, b0] into v subintervals with increasing
length. Following the same quadratic approach, this is equivalent to assume that the length
of subinterval i is equal to (i−1)2(b0 − a0)/v2.

5 Enabling Technologies and Prototype Implementation

Before detailing the implementation of the software prototype of our proposed broker, we
provide a brief overview of the key CoAP features and technologies that we have relied
upon.
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5.1 CoAP basics

CoAP is a web transfer protocol specified by the IETF CoRE Working Group and optimised
for resource-constrained devices [13]. CoAP follows RESTful programming principles and
employs a request/response interaction model to access resources hosted by CoAP endpoints
(EP). CoAP does not strictly differentiate between clients and servers, because a CoAP
EP can generally play both roles. Each IoT resource is made remotely available through
a Uniform Resource Identifier (URI). Moreover, an IoT resource can be described using a
standard format, called the Link Format [20], which is based on classical Web Linking [21]
but extended to include additional attributes that are relevant for IoT resources. Then,
CoAP EPs access resources to retrieve or alter their state by sending requests messages that
convey one of the four canonical REST commands: GET, PUT, POST and DELETE. To
some extent, CoAP is regarded as a lightweight version of HTTP. However, CoAP differs
from HTTP in many aspects as it also implements additional services, like link binding, or
entities, like the Resource Directory (RD) and the reverse-proxy, which we have exploited
for implementing our resource broker.

5.1.1 Proxying

CoAP allows intermediary CoAP EPs, called proxies, to sit in between CoAP clients and
CoAP servers and perform tasks on behalf of the CoAP clients. CoAP proxies fall into two
categories: forward-proxy and reverse-proxy. With the former, a client directly selects the
proxy, while a reverse-proxy is transparent to clients and it is used primarily to provide a
common access point to multiple CoAP servers and to cope with intermittently-connected
CoAP servers. Due to its feature, a reverse-proxy could be leveraged to implement a resource
broker in a fog node since: (i) it can offer internal resources of the IoT domain as if they
were its own resources (using namespace translation); and (ii) perform caching of past
response to satisfy future CoAP requests.

5.1.2 RD

Legacy CoAP already provides a basic service for resource discovery by defining a non-
physical resource, called /.well-known/core, that a CoAP EP must expose to allow other
CoAP EPs to retrieve its list of hosted resources. The RD is a more sophisticated approach
for resource discovery under specification in the CORE WG [22], which is based on a
resource directory, namely a centralised repository of registrations describing resources
hosted on other CoAP EPs. Then, the RD exposes a set of standard REST interfaces which
allow CoAP EPs to register and maintain their resource descriptors, as well as to lookup
resource descriptors from the RD. Note that the RD can also provide additional information
about a target resource, such as the proxy server that can be used to access it. Another option
is for the reverse-proxy to directly implement an RD for the CoAP servers on behalf of
which it satisfies the requests. As better explained in the following, our broker prototype
follows this latter architectural model.

5.1.3 Link Binding

Link Binding is a new concept under specification in CoAP, which defines the rules to
create a dynamic link between a source resource and a destination resource so that the
state of the two resources can be synchronised [23]. The simplest form of binding is the
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Pollingmethod, which consists of a destination EP that periodically sends GET requests
to a source EP, copying the content of the response message in the destination resource. The
Push binding method is complementary to the Polling method as it is the source node
to send PUT requests to the destination resource when a specified binding condition is met.
Finally, the Observe method is analogous to a publish/subscribe model as notification
messages from the source resource (the producer) are simply copied to the destination
resource (the consumer). Note that the creation of the observation relationship requires the
CoAP Observation mechanism [24]. However, the Observe method allows specifying
some observation parameters (e.g., maximum notification frequency) or conditional rules to
drive the generation of state updates (e.g. threshold levels on resource value). It is important
to point out that most constrained devices may be unable to support CoAP observing, as a
CoAP observer typically results in high memory usage.

5.2 Prototype implementation in detail

Our broker prototype is built using the Californium library [25], a popular Java-based
open-source CoAP implementation. The Californium framework already includes modules
that implement the reverse-proxy and the RD entities. Our software implementation of
the proposed broker extends the RD module that is included in Californium by adding
a customised reverse-proxy and integrating a new module, called the brokering engine.
The RD module exposes REST APIs that allows CoAP clients to register their hosted
resources. The registration message contains the EP name (e.g., ep=node1) and a “base”
URI (optional), namely the path to resolve any relative references given in the registration
(e.g., </sensors/temp>). If the base URI is not provided, the RD generates the reference
path using the IP address and protocol port of the hosting node. If the resource registration
is successful the RD generates a unique identifier (e.g. /rd/4521) for the location of the
associated resource descriptor in its local database. This location is returned to the registrant
EP in the response message and must be used by the EP for any further operation on the
registered resources (e.g., update and removal).

The RD exposes a REST API to allow other CoAP EPs to discover the resources
registered with the RD. In the existing implementation, usually, output of a lookup
operation on the RD is a list of links equal to the ones submitted to the RD (special
cases are not considered in this work, and the interested reader is referred to the draft
RD specification [22]). However, our prototype modifies this normal behaviour to ensure
resource “shadowing”, i.e. to force the client applications to access the registered resources
only through the Proxy component of the broker. Specifically, the reverse-proxy performs
namespace translation of the registered resources and creates equivalent virtual URIs for the
resources by concatenating: (i) the reverse-proxy URI address (e.g., /rp/ ), (ii) the location
path of the EP hosting the resources, and (iii) the resource URI-reference. This design
choice yields a fully backwards-compatible CoAP URI, and a transparent redirection of
client requests from real resources to the reverse-proxy.

The link binding, resource polling and application notification operations are illustrated
with the example in Figure 1. After a discovery operation, an application knows the virtual
URIs of the registered resources. A CoAP GET request is sent by the CoAP client to
establish a resource binding relation. The reverse-proxy can resolve the real URI associated
with the target resource by simply extracting from the virtual URI the location path of
the resource descriptor in the RD. We have also extended the basic Observe binding to
include the support for periodic conditional observing. Specifically, we have introduced in
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Figure 1 Sequence diagram of the observe binding, resource polling and application notification.

the conditional GET two additional options to specify the αj and βj parameters. Then, the
reverse-proxy registers these parameters in the broker engine, that updates the polling rate
for the target resource. As new client applications register for the same target resource, the
broker engine also updates the polling rate at the end of each decision cycle. The reverse-
proxy maintains a list of notification deadlines for the application registered to the same
resources and notifies the cached contents before deadline expiration.

Finally, the broker engine maintains information about the routing topology. This is
achieved by requiring that each CoAP EP in the IoT domain exposes a resource with URI
reference /RP-info/, which returns the IP address of the node’s parent. Then, we extended
the EP descriptor in the RD to include a parent attribute, which is updated by the EP itself
with the content of the RP-info resource. This last modification allows the broker engine to
obtain complete topological information by merely querying the RD module.

6 Performance Evaluation

In this section, we describe the results obtained from both a simulation study and an IoT
testbed. Simulations are important to perform experiments in controlled and reproducible
conditions. In our case, they are also needed to better isolate the impact of the channel
behaviours on the efficiency of the optimisation framework. Before presenting the results,
we detail the benchmarks used for performance comparison.
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6.1 Benchmarks

The first benchmark, referred to asPROXY, is a conventional CoAP reverse-proxy that allows
applications to register their interest in a resource by sending an extended GET request that
specifies the QoS requirements (i.e. αj and βj). Then, the PROXY establishes a link binding
with that resource using the Polling method [23], choosing as polling frequency the
maximum notification rate requested by the clients bound to the same resource. This ensures
that all the applications attain that maximum QoS satisfaction. The second benchmark, called
OPT, is still based on a CoAP reverse-proxy that establishes polling bindings, but the polling
frequency is chosen according to the optimal solution of the optimisation problem described
Section 3. As far as the gj(x) function (i.e., the QoS satisfaction index for application j)
is concerned, we select an S-shaped function, which is commonly used in network utility
maximisation problems for resource allocation [15]. More formally, we have that

gj(x) =



0 x ≤ αj
2
(
x−αj

βj−αj

)2
αj ≤ x ≤ x0

1− 2
(
x−αj

βj−αj

)2
x0 ≤ x ≤ βj

1 xk > βj

, (8)

wherex0 = (αj + βj)/2. Clearly, our proposed solution, calledBROKER for brevity, adopts
the formulation in (8) for resource ranking, as described in Algorithm 4. The Matlab software
was used to solve the optimisation model.

6.2 Simulation study

First, we introduce the simulation tool used for the evaluation. Secondly, we explain how
simulations have been conducted, and finally, we present the simulation results.

6.2.1 Simulation setup

For the simulation study, we used Cooja, a cross-level network simulator that allows
simulating networks of Contiki motes, which can also be emulated at the hardware level [26].
Contiki (http://www.contiki-os.org) is a popular open-source operating system
for IoT systems, which provides full support for Internet standards (6lowpan, RPL, CoAP).

The simulated network scenario consists of a regular 6x6 grid topology, with the length
of a grid cell equal to 10 meters. The sink is deployed at one of the corners of the grid, and
it also behaves as the border router interconnecting the IoT domain to external applications.
RPL is used for building the network paths between the IoT devices and the sink. To avoid
that routing instabilities caused by RPL [27] interfere with CoAP performance, before
activating the applications we let the routing algorithm to run until it converges to a stable
topology (5 minutes) and, then, we freeze the network paths.

At the PHY and MAC layers, IoT nodes use the IEEE 802.15.4 standard. No radio
duty-cycling mechanism is used at the MAC layer. To model real-world propagation and
interference conditions we use the MRM model included in Cooja, which accounts for
multi-path and fading [28]. We set up the model parameters to obtain a 100% success rate
at 10 meters, and an interference range of 20 meters. It is important to point out that the use
of a deterministic interference range allows to precisely define the d(i, h) distance in the
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Table 1 Parameters for the broker.

Parameter Value
T 90 seconds
αγ 0.2
HM = ΓH − ΓL 0.1
µ = (ΓH + ΓL)/2 { 0.1, 0.2, 0.3}
βγ 0.4
{ω1, ω2, ω3} { 0.2, 0.1, 0.1}
τ 0.8
v 10

optimisation framework. As already pointed out, the most challenging task for the optimal
approach is to estimate the network link capacity Cij as seen at the application layer. It is
straightforward to recognise that the Cij value is lower than the data transmission rate as
various protocol overheads (e.g., packet headers and acknowledgements) should be taken
into account. Thus, we experimentally evaluate the Cij value by running an experiment
with only two nodes, a CoAP client and a CoAP server, exchanging CoAP messages. Then,
the Cij value is approximated with the maximum transaction frequency that guarantees a
negligible average TLR (≤ 1%). Under our settings, we have that Cij is equal to about
60 kbps.

It is important to point out that Cooja is not only a network simulator, but it also allows
running real software to test it before deployment. Moreover, it also allows injecting real
traffic into the simulator. Thus, in our simulations, both the broker prototype and the CoAP
clients are Java applications that run as independent processes on the local machine on
which Cooja runs. To bridge the CoAP traffic between the CoAP clients, the broker and the
RPL network simulated in Cooja we use the Tunslip utility provided in Contiki [29].

The evaluation focuses on the impact that an increasing application demand has on three
performance metrics:

• application goodput, measured as the average number of resource state updates that
are successfully received by the CoAP clients;

• total TLR, i.e., the percentage of transactions losses over the entire simulation;

• QoS satisfaction, evaluated as the distribution of the average QoS satisfaction of each
CoAP client;

• energy efficiency, measured as the ratio between the total energy consumption and the
total number of successful CoAP messages.

Table 1 lists the value of the main parameters for the broker. Note that the parameter µ,
defined as the arithmetic mean of the γL and γH thresholds, is equivalent to the target
reliability that the broker tries to maintain, as the transitional reliability region is centred
around µ.

Finally, each simulation lasts 30 minutes, and the 95% confidence intervals are computed
by replicating each simulation ten times. Confidence intervals are represented by vertical
errorbars in the graph (often in the graphs small errorbars collapse to a point).
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6.2.2 Simulation results

In the following evaluation we assume that there are ten CoAP clients registered to each
resource. Without loss of generality we assume that αj = α for all j ∈ A, while each
CoAP client randomly selects a βj value within the range [α, α+ ∆α]. Clearly, the higher
the α value, and the higher the minimum notification rate that the CoAP server hosting
that resource should guarantee. Moreover, the higher the ∆α value, and the higher the
application heterogeneity. To fairly compare BROKER to PROXY and OPTwe introduce the
maximum total load as the

∑
k∈R maxj∈Ak

{βj}. In other words, the maximum observing
load expresses the total number of state updates that should be received at the proxy to
satisfy the maximum QoS requirements of all the client applications.

Figure 2 shows the application goodput as a function of the maximum observing load for
the BROKER and the two benchmarks. We consider three cases for the target reliability µ,
namely 10%, 20% and 30%. Several observations can be derived from the reported results.
First, all the considered schemes perform similarly if the network is not congested. In this
case, the QoS requirements of CoAP clients are fully satisfied. Second, when the network
is deeply congested, both PROXY and OPT suffer from goodput degradation, which is more
severe for PROXY than OPT. The root cause of performance degradation for PROXY is
that it is unaware of network-related constraints and it continues to poll the IoT resources
with the maximum notification rate that is demanded by the CoAP clients. Although OPT
implements a rate adjustment policy, the rate decisions are not efficient due to over-optimistic
estimate of channel capacities in congested scenarios. On the other hand, BROKER can
attain a stable goodput since it promptly reacts to the onset of network congestion and it
reduces the notification rate as the TLR value increases. It is important to point out that
there is a clear trade-off between the TLR thresholds used to detect the start and the end
of LR state, and the efficiency of the BROKER scheme. Specifically, if µ is too low (e.g.,
0.1), the broker starts reducing the notification rate too early and this prevents the broker to
fully utilise the available network bandwidth Clearly, this behaviour is more evident in the
transitional region of TLR values, i.e., under intermediate conditions for traffic congestion.
Interestingly, we can observe that µ = 0.3 provides the best performance for BROKER,
which obtains up to three times more goodput than PROXY.

To confirm the above conjecture, Figure 3 shows the total TLR in the same configurations
of Figure 2. The results demonstrate that our solution is very effective in controlling the
transmission reliability by limiting the notification rate. On the contrary, both PROXY and
OPT suffers from an increasing number of transaction losses as the congestion level rises. To
get a deeper insight into the broker’s decision process, we plot the box-plots of the clients’
QoS satisfaction index for two relevant cases in Figure 4. Specifically, case A (shown in
Figure 4a) corresponds to the scenario in which PROXY obtains the maximum goodput.
In such scenario, there are no remarkable differences between the algorithms, except for
BROKER with µ = 0.1 which underutilise the network. This is also reflected in smaller
values for the QoS satisfaction index of the CoAP clients. Case B (shown in Figure 4b)
corresponds to scenario in which OPT performs for the first time worse than BROKER. The
results show that BROKER is able to guarantee higher QoS satisfaction values on average to
most CoAP clients as it avoids that CoAP clients requesting higher notification rates gets
an unfair share of the network resources.

Finally, Figure 5 shows the energy efficiency values as a function of the maximum
observing load for the BROKER and the two benchmarks. Interestingly, we can observe
that not only PROXY and OPT obtain a lower goodput when the network is congested, but
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Figure 2 Total goodput versus the maximum observing load (ten clients per IoT resource).
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Figure 4 Boxplots of clients’ QoS satisfaction values for two representative cases.

they also consume more energy to complete the CoAP message exchanges. This can be
explained by observing that BROKER avoids overloading the network, thus reducing the
energy wasted in packet retransmissions and packet losses due to buffer overflows.
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Figure 5 Energy efficiency versus the maximum observing load (ten clients per IoT resource).

6.3 Experimental study

In the following we first introduce the testbed where experiments have been conducted, and
finally we present the experimental results.
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Figure 6 Physical deployment of the Strasbourg testbed.

6.3.1 Experimental methodology

To carry out our experimental study, we exploited the FIT IoT-LAB platform [30]. IoT-LAB
provides a very large scale infrastructure for IoT experimentation that consists of 1823
wireless sensors nodes deployed over six different testbeds across France. We conducted
our experiments in the Strasbourg testbed, which is located at ICube laboratory. Different
boards are available in this testbed, but we fused the M3 and A8 open motes as they are
capable of running Contiki. More precisely, M3 nodes are based on an ARM Cortex M3
microcontroller, have a 64kB RAM, and a radio interface with an 802.15.4 PHY Layer.
Instead, A8 nodes are powerful nodes based on an ARM M8 micro-controller, which allows
running high-level OSs like Linux. Therefore, each A8 also embeds an M3 node to support
802.15.4 communications. In the Strasbourg testbed, nodes are deployed on wooden poles
forming a two-floor grid topology (see Figures 6). Node’s distance is approximately 2
meters on both X and Y axes, while nodes on the same pole are distant 90 centimetres.
For our evaluation, we selected 39 nodes (seven A8 nodes and 32 M3 nodes) on the same
topology layer, as shown in Figure 7. Our broker is deployed in the red node in the figure,
which is a powerful A8 node. Due to the vicinity of nodes if was necessary to fine-tune the
transmission power of the 802.15.4 radio interfaces in order to build meaningful network
topologies. After an extensive testing, we set the antenna TX power level to -3dBm and the
RX sensitivity to -60dBm, which ensured to have a network topology with an average node
degree equal to six.

In the following evaluation, we tried to replicate the same scenarios of the simulation
study. However, due to time limitations (IoT Lab is a crowdsourced experimental platform
and reserved experiments are queued based on testbed availability and resources), we focus
our tests on the congested regime. Furthermore, results have been obtained only for PROXY
and BROKER as it is challenging to obtain accurate estimates of channel capacities and link
interferences in a real testbed.

6.3.2 Experimental results

The experimental evaluation confirms the findings and trends that were highlighted in
Section 6.2.2. Specifically, Figure 8 confirms that BROKER is able to provide a stable
goodput even under deep network congestion, while PROXY experiences a goodput
collapse. Interestingly, the performance differences between the three BROKER variants
are less notable than in the simulated scenarios. In other words, in real-world conditions,
the performance of our proposed solution seems less sensitive to the choice of the
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Figure 7 Topology of the network used in the experiments.
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Figure 8 Total goodput versus the maximum observing load (ten clients per IoT resource).

µ parameter. Furthermore, PROXY experiences a severe collapse of performance when
network congestion is high. Figure 9 shows the TLR measured in the experiments, and the
results confirm the ability of BROKER to bound the percentage of CoAP transaction losses
to a target value. Finally, we have also analysed the distribution of the QoS satisfaction
index for two relevant cases. The former compares the algorithms when network experience
moderate congestion, while the latter corresponds to a state of deep congestion. Again, we
obtain similar results as the one shown in Section 6.2.2. Case A (shown in Figure 10a)
confirm that a legacy proxy and a more sophisticated broker behave similarly if there is
no traffic congestion. Case B (shown in Figure 10b) highlights the superiority of BROKER
over PROXY to satisfy applications’ QoS requirements with high congestion.
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Figure 10 Boxplots of clients’ QoS satisfaction values for two representative cases.
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7 Related Work

Several IoT platforms and solutions have been developed to support resource management in
IoT domains, which implement services for the monitoring of resource usage, fair resource
allocation, and resource conflict resolution [3].

A class of solutions have been proposed that leverages virtualisation technologies to
allow multiple applications to share the same IoT network and devices. For instance,
Maté [31] is a virtual machine (VM)-based architecture for constrained devices that provides
support for adaptability and resource management (e.g., modifying sampling rate of sensors
or dynamically installing data aggregation functions). UMADE is another example of a
management platform proposed in [32], which defines a utility-based sensor selection
scheme for heterogeneous applications that dynamically reallocate applications based on
network dynamics and applications’ QoS requirements. More recently, an optimisation
framework and greedy-based heuristic have been proposed in [33] for solving the problem
of application admission and physical resource leasing in sensor networks with multiple
concurrent applications with heterogeneous requirements and constraints. A QoS-aware
service selection algorithms for cloud-based IoT systems is proposed in [34] to minimise
network energy consumption while guaranteeing that all service invocations are entirely
executed before their deadline.

An alternative approach is adopted in the management frameworks that rely on IoT
gateways to directly handle the interactions between applications and IoT resources,
providing efficient services for resource discovery and access. In cloud-centric IoT
systems, such IoT gateways are typically deployed in the cloud infrastructure [35]. For
instance, the DNS-SD protocol uses a central repository to facilitate service discovery
for IoT applications [36]. To deal with scalability issues, most recent IoT platforms
proposes the use of “local” gateways deployed on network nodes in proximity to the IoT
network. For instance, the oneM2M standard proposes a functional architecture in which
Common Services Entities (CSEs) form a common service layer between applications
and things, providing several service functions, including discovery, data and application
management [12]. Then, CSEs can be hosted in the cloud or on the home gateway. The OMA
Lightweight M2M (LWM2M) protocol is a COAP-based application protocol for remote
IoT-device management that defines LWM2M clients and servers, the former deployed
on end devices and the latter on local gateways, monitoring and managing the devices’
resources [37]. A COAP-based distributed architecture that provides a common standard
interface to applications for global discovery and access of IoT resources is proposed in [38]
by federating different IoT gateways implemented in fog nodes. Similarly to our work, a
local reverse-proxy is deployed with the RD in the IoT gateway for handling application
requests on behalf of constrained devices. However, the proposed broker simply relays the
application requests without taking into account applications’ QoS requirements. The same
authors address in another work the problem of designing a CoAP proxy that supports
multiple CoAP observers with QoS requirements by selecting the optimal notification period
that minimises the number of messages sent by the server [39]. However, limitation of
network capacity is not considered in the proposed optimisation framework. A similar
problem is considered in [40], where a greedy-based heuristic is designed to allow a CoAP
proxy to approximate a max-min fair allocation of notification periods of multiple CoAP
observers. The formulation in [39] allows the applications to specify the required values for
both the minimum and maximum notification periods, while the formulation in [40] allows
the applications to specify only the minimum desired notification period.
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8 Conclusions

In this work, we have proposed an edge-centric solution for resource brokering in IoT
systems, which deploys a CoAP proxy and RD on a local gateway to seamlessly and
transparently handle application requests. The broker regulates the access to IoT resources
in such a way to maximise the applications’ QoS satisfaction while taking into account
network-related constraints. We have shown how resource brokering can be cast to an
optimisation problem, and we have discussed the limitations of this approach when network
capacity is uncertain or difficult to estimate. Thus, we have also proposed practical
algorithms for the selection of the polling rates from the broker to the IoT resources that
leverage direct measurements of the degree of reliability of application transmissions. The
efficacy of the proposed solution has been extensively evaluated through simulations and
experiments in an IoT testbed. Performance is compared to a conventional CoAP proxy and
the optimal approach.

As future work, we plan to extend the problem formulation to consider that multiple
resources can be hosted in the same IoT device and a conflict resolution mechanism
between co-located resources is needed. Furthermore, cooperation between brokers of
geographically collocated IoT domains is also a future avenue of research.
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