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Abstract
CLIP-based text-to-image retrieval has proven to be very effective at the interactive video retrieval
competition Video Browser Showdown 2022, where all three top-scoring teams had implemented a
variant of a CLIP model in their system. Since the performance of these three systems was quite
close, this post-evaluation was designed to get better insights on the differences of the systems and
compare the CLIP-based text-query retrieval engines by introducing slight modifications to the original
competition settings. An extended analysis of the overall results and the retrieval performance of
all systems’ functionalities shows that a strong text retrieval model certainly helps, but has to be
coupled with extensive browsing capabilities and other query-modalities to consistently solve known-
item-search tasks in a large scale video database.
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1 Introduction
Multimodal AI models, which learn relationships
between natural language and images, have signif-
icantly improved automatic image content under-
standing and visual information retrieval in the
last few years. One popular example of such a
model is CLIP [1] (Contrastive Language-Image
Pre-training), which has not only successfully
demonstrated its great performance in matching
text with images, but also it has been successfully
used for image and video retrieval competitions.
For instance, the top performing teams at the
Video Browser Showdown (VBS) [2–4] competi-
tion, as well as at the Lifelog Search Challenge
(LSC) [5], were all relying on CLIP models when
building their retrieval engines. Interestingly, how-
ever, their performance in solving specific queries
in these competitions was quite varying and the
same task was not always solved by all the teams.

In this paper, we evaluate the CLIP-based
retrieval performance of the top three systems
that participated in the Video Browser Showdown
(VBS) 2022 competition [2]. We set up a dedicated
VBS-like competition with about 60 KIS (known-
item search) tasks that needed to be solved by
the teams. In order to level out user-based perfor-
mance impact and test the three retrieval systems
rather than individual users, each system is tested
with four independent users. Additionally, in the
first 45 seconds the teams were not allowed to
change the text of the KIS query, and have to
use the same text that is provided by the com-
petition moderators. This specific setting allowed
both, to measure system-level performance and
find differences in the CLIP-based approaches.

We evaluate the three systems with several
performance metrics (correct item rank, achieved
VBS score, query frequency and mAP) and discuss
the differences of the employed retrieval systems,
which all operate on the same data to solve the
same tasks.

Our results show that even though Visione
has the best performing text-to-image search
engine, vibro, the winning system of the Video
Browser Showdown 2022 was able to secure the
first place in this extended evaluation due to
three main factors: one superuser with an out-
standing performance, the support of extended

browsing capabilities, and the use of a general-
purpose nearest neighbor search model for image-
based similarity queries. However, on a team-wide
level, the performance differences between vibro
and CVhunter (second place) are not statis-
tically significant and a much larger amount of
KIS tasks would have been needed to distinguish
these two teams. This results indicate that even
though a strong text-query method is capable of
solving a large number of tasks, other features
like image-based searches and visual browsing are
very important to achieve a consistency in solving
video-based known-item-search tasks.

2 Related Work

2.1 Interactive Retrieval
Benchmarks

During the last decades, several highly recognized
competitions emerged that provide benchmark
datasets and unified evaluation procedures such
that the participating approaches can be com-
pared and ranked. For example, NIST organizes
a respected TRECVID benchmark [6] focusing
on different types of tasks like Ad-hoc search,
Video to Text or Deep Video Understanding.
The MediaEval benchmark [7] is another example
of activities towards multimedia task description
and standardization of evaluation methodology.
Other competitions focus primarily on task cat-
egories, where not only ranking models but also
good user interfaces are necessary for better per-
formance. Out of many possible task categories
[8], known-item search tasks became well estab-
lished at the Video Browser Showdown [3, 9]
and Lifelog Search [10, 11] challenges. Both com-
petitions define known-item search tasks over a
large dataset and organize annual meetings at the
International Conference on Multimedia Modeling
(MMM) and the ACM International Conference
on Multimedia Retrieval (ICMR) respectively.
The VBS challenge is the most related evaluation
competition to this paper as the same dataset,
task category, similar setting and evaluation pro-
cedures were used for the presented study. Fur-
thermore, it was based on the results of VBS 2022
[2] that the top three systems were identified. The
authors of the systems agreed to participate in
a more comprehensive evaluation to reveal more
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insights to the performance of the systems and
analyze the effect of different users.

One comparison of top-performing VBS
teams was conducted previously [12], where
SOMHunter and vitrivr, the two best-
performing tools of VBS 2020 competition, were
evaluated. In that study, SOMHunter signifi-
cantly outperformed vitrivr, mainly due to the
better text-to-image ranking model in combina-
tion with the used search strategy. Also, the
authors conducted a bootstrap analysis to esti-
mate the size of the study that would be nec-
essary to reliably distinguish the best and the
second-best team. In particular, to achieve a 95%
confidence interval, approx. 20-25 tasks solved
by 4-6 participants, or approx. 40 tasks solved
by 2 participants were suggested. The dynamic
nature of the field is shown by the fact that
none of the tools mentioned is among the top 3
tools in the VBS 2022 competition. The currently
evaluated tools have evolved in terms of query
modalities, underlying retrieval models, as well as
visualization options. Compared to the previous
study, we altered the task settings and performed
more in-depth analysis of user behavior, includ-
ing usage statistics for various query paradigms.
Finally, all three tools evaluated in this paper
are much more similar in terms of the text-to-
image retrieval model, which resulted in smaller
performance differences.

2.2 Description of the Systems
Even though the performance of the video search
systems vibro [13], CVHunter [14] and Visione
[15] was quite similar in the VBS 2022, the video
browsing tools have significant differences regard-
ing their supported query modalities, underlying
ranking models, presentation of retrieval results
and browsing capabilities. However, the gen-
eral approach of splitting up videos into seg-
ments (shots) and defining a representative frame
(image) for each segment is used by all three
systems with small differences in this procedure.

Considering all search related features of the
three systems, the query types can be grouped
as Text, Image, Temporal, Multimodal and Other.
Starting with Text, all systems support rich text
inputs by leveraging text-to-image models like
CLIP [1]. vibro uses OpenAI’s ResNet50x16 [16]

CLIP-trained model and reduces the dimension-
ality of the 768-dimensional embeddings to 512
via PCA-whitening [17]. Additionally, the output
is further quantized to byte-scale (INT8). While
these steps might harm the text-to-image retrieval
results, the memory footprint is greatly reduced.
CVHunter also uses a CLIP-based model, the
ViT-L/14 [18] variant that performed well in
many benchmarks in the original paper. Visione
is using a combination of two mutimodal joint
embedding models: TERN [19] (for text-to-image
retrieval) and CLIP2video [20] (for text-to-video
retrieval).

Image-queries play an important role in vibro,
since any image presented on the UI can be
double-clicked to perform a new image-based
search. A Swin-L@384 [21] model, pre-trained
with ImageNet21k [22] (classification) was fine-
tuned for content-based image retrieval with the
ProxyAnchor loss function [23] and a combina-
tion of publicly available datasets with a total
of over 100k classes. Furthermore, a simple bina-
rization with threshold=0 per dimension was used
to obtain memory efficient image embeddings.
CVHunter uses the image embeddings from
their CLIP model for image-as-example queries
and implemented a Bayesian relevance feedback
approach introduced in PicHunter [24]. A tempo-
ral variant of the model was supported as well
[25]. Visione supports both visual and seman-
tic similarity queries. The GEM [26] features are
used to support visual similarity search. The fea-
tures extracted using CLIP2video [20] are used
to retrieve video clips that are semantically sim-
ilar to a query video segment, while TERN [19]
are used for searching video keyframes that are
semantically similar to a query image.

Temporal -queries can be formulated for two
consecutive shots with vibro, where each shot can
be described by text or an image. CVHunter
supports description of two temporally close video
segments, where the relevance score of the first
segment is combined with the relevance score of
the best following segment within a search win-
dow. This aggregation can be further updated
with temporal relevance feedback [25]. Visione
uses a temporal quantization approach for com-
bining two different queries and select results
temporally close each other. Specifically, videos
are divided into intervals of T = 21 seconds, and
the best results for each query in each interval are
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retained. Only result pairs from the same video
and with a temporal distance smaller than 12
seconds are then displayed in the UI.

The Other query modality category groups less
commonly used features of the three systems. For
vibro this includes color-based searches, i.e. a
user can do multi-colored drawings on any selected
image to modify the color layout of the image.
CVHunter supports only text and image (kNN
or relevance feedback) search. Visione also sup-
ports object and color-based queries. In the UI
there is a canvas where the user can place objects
and colors appearing in a target scene. To sup-
port this kind of query, three pre-trained object
detectors (VfNet [27], Mask R-CNN [28], Faster
R-CNN [29]) and two chip-based color naming
[30, 31] are indexed.

On top of that, the vibro and Visione sys-
tems support merging of the previously described
modalities (Multimodal -queries). However, for the
case of vibro this was not used during this
evaluation. Visione enables users to perform mul-
timodal searches by combining textual queries and
object/color-based queries. For instance, a user
can specify objects in an image (e.g., a person
and a dog) while also providing a textual descrip-
tion (e.g., "a man and a dog running in a park").
Moreover, users can issue two multimodal queries
together to perform a temporal search, where the
first query describes what happened before the
second query.

vibro has two ways to display results of the
current query. The first one is a simple list,
arranged in scan-line order, sorted by the rele-
vance to the query of each displayed item. The
second one is the same result-list arranged on a
2D-grid with a SOM-like [32] algorithm, FLAS
[33], using a combination of the image embed-
dings and a low-level descriptor to include color
information in this sorting. The most relevant
item will always be in the center. All items rep-
resent keyframes of all videos and none of the
above display methods aggregate those keyframes
into videos, leading to up to 1.7 million ranked
items but only the most relevant 10,000 keyframes
are displayed. In addition, vibro supports explo-
ration of the entire keyframe collection by using
of an exploration graph [13]. CVHunter allows
to show top ranked selected frames or top ranked
frames accompanied with their video context. For
each displayed frame, it is possible to use playback

of sampled video frames or show the whole video
summary. Users can press a number on numeric
keyboard to limit the number of displayed result
set frames from each video. In the browsing inter-
face of Visione, the search results are organized
by videos, presenting one row per video contain-
ing up to 20 frames. The order of these video
rows and the frames within them is determined
by the retrieval model’s scores. Each frame in the
row has a menu that offers various options to the
user. These options include conducting similarity
searches, viewing the entire video starting from
the selected frame, or getting a preview of the
video around the chosen frame.

2.3 CLIP-Based Video Retrieval
The effectiveness of CLIP-based video retrieval is
a well studied phenomenon and many different
works use CLIP to produce video-level descrip-
tors [20, 34–36]. The common idea of this field
of research is to extract embeddings with CLIP-
trained visual encoders from sub-sampled frames
of each video (e.g. one frame per second) and
then aggregate those frame-level embeddings to
a single, video-level embedding. Those descrip-
tors therefore allow more complex action-based
textual queries. A simple aggregation method
would be mean-pooling, but can be improved
as seen in [20, 34, 35]. CLIP2Video [20] pro-
poses to use a trainable transformer network [37]
to achieve video-level features and XCLIP [34]
presents a multi-grained contrastive learning mod-
ule, to enhance the importance of frames that
have a high affinity to some single words of the
query sentence. Both methods start with CLIP
pre-trained visual and textual encoders but fine-
tune those networks in combination with the
training of the weights of the newly introduced
modules. Bain et. al. show that a parameter
free, query-specific pooling approach can achieve
very good results and outperforms CLIP2Video´s
transformer-based aggregation, which used 19 mil-
lion parameters. However, the downside of this
approach is that all frame-level visual embeddings
have to be stored to compute relevance scores for
each textual query. This scores are then used to
create a weighted-average pooling to form a query-
specific video-level descriptor. Due to the nature of
the V3C dataset and the VBS tasks, where short
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sequences have to be found in rather long videos,
initial tests of the CVHunter and vibro teams
showed that video retrieval models where only
beneficial in specific tasks where actions where
required to be described. However, in most task
scenarios, it is more important to query particu-
lar easily distinguishable objects. This can better
be achieved with the standard image-text CLIP
models. To keep the memory footprint low, both
teams have therefore decided to omit video level
embeddings in their respective systems.

3 Extended Evaluation

3.1 Differences to the VBS
Competition

The three introduced systems achieved very simi-
lar results at the main VBS competition. In order
to get more detailed insights on their differences,
we decided to introduce some changes in this
extended evaluation. For reference, the typical
VBS competition settings are described in [9].

Usually, a participating system is represented
by up to two individual users at the main VBS
event. If one user solves the current task, the
team gets assigned a score and the second user
does not longer have to solve the task. Those two
users are often highly experienced in solving video
retrieval tasks with their respective systems and
usually compliment each other. Since this team-
wide aggregation of performance makes it difficult
to analyze user specific behaviour and perfor-
mance, we omitted this default aggregation in this
evaluation. Each team was asked to assign four
users, the information about the users’ experience
can be found in Table 1.

Even though three types of tasks have to be
solved at the main VBS event, the next change was
to solely focus on the visual known-item-search (v-
KIS) task category. This allowed us to perform a
much higher volume of tasks, 57 compared to 10
at the VBS22 event for this particular category.
The main purpose of the higher task volume was
to obtain a much larger sample size and thus be
able to draw more reliable conclusions about the
performance of the respective systems.

The last change was the introduction of a pre-
defined textual query and the restriction not to
change this initial text for the first 45 second

Table 1: Information on the 12 participants.
Active VBS indicates participation as one of the
two competition users. Passive VBS participation
stands for working on the system, when it took
part in a VBS competition.

User Active
VBS

Passive
VBS

Experience
with
KIS
tasks

Overall
Score

vibro1 - ✓ ✓ 69.1
vibro2 ✓ ✓ ✓ 93.5
vibro3 ✓ ✓ ✓ 83.9
vibro4 - - - 86.0
cvhunter1 - - - 75.0
cvhunter2 ✓ - ✓ 84.0
cvhunter3 ✓ ✓ ✓ 85.8
cvhunter4 - - ✓ 85.6
visione1 ✓ ✓ ✓ 84.2
visione2 - ✓ ✓ 78.0
visione3 ✓ - ✓ 86.5
visione4 ✓ ✓ ✓ 85.4

of each task. Since all three systems used differ-
ent CLIP-based text-to-image retrieval models, we
wanted to reduce the variance introduced by user-
formulated queries and focus on a fair comparison
of the systems’ text-to-image retrieval perfor-
mance. Furthermore, we hoped to gain insights on
the browsing capabilities of the systems and the
performance of retrieval models from other modal-
ities such as image-as-example queries. Restricting
the reformulation of text forced users to use other
features of their video retrieval system, resulting
in a more comprehensive evaluation process.

3.2 Setup and Execution
The entire extended evaluation was conducted in a
fully remote setting with DRES [38], a system for
interactive multimedia retrieval evaluations. Since
DRES has also been used at the Video Browser
Showdown since 2020, the API communication
has already been implemented for all of the three
evaluated systems. The modified v-KIS tasks were
displayed in the web-browser interface of DRES.
Each task consists of one short segment of a single
video from the V3C1 or V3C2 data sets [39] and
a textual description of this clip. The users had a
maximum of 300 seconds per task and each task is
rated with a scoring function that assigns 0 to 100
points if a correct submission appears within the
task time limit. The score consists of 50 points for
solving a task, (300− t)/6 points based on elapsed
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Fig. 1: Part of speech tagging analysis of the predefined queries.

submission time t, and a penalty for wrong sub-
missions x · |WS|, with x = 10 (one tenth of the
maximum number of points).

3.3 Task Formulation
The target segments for the visual KIS tasks
were selected following the established procedure
described in [40]. While traditionally, visual KIS
queries are typically 15-20s long, we wanted to
have more short queries in this experiment. Thus,
the selected queries have a mean duration of 8.2s
(standard deviation 4.2s) and range from 2.6s to
21s.

For defining the predefined text queries to be
initially used by the participants, an attempt was
made to form a sentence with subject, predicate
and object, and to add adjectives, quantifiers, etc.
when necessary for a good description. The aim
was to give a factual description of the main con-
tents of the scene without being too specific, i.e.,
not as detailed as would be required for a textual
KIS query. This should produce a result set after
the initial query that is still large enough to use
the browsing capabilities of the systems. Two VBS
experts created the queries, each starting with
queries for half of the tasks and the other review-
ing and refining them. If necessary, details of the
queries were discussed and jointly reformulated.

We performed an analysis of the predefined
text queries using part-of-speech (POS) tagging
from NLTK [41], using a coarser grouping (10
types) of the POS tags. The queries range in
length from 3 to 16 words, and the typical query

contains 3 nouns and 1-2 verbs. A plot of the POS
tags is shown in Figure 1.

4 Analysis
During the system evaluation, each team main-
tained a record of user queries and the corre-
sponding results for each task. In this section,
we present a comprehensive analysis of these logs
to gain a more in-depth understanding of system
performance and user-interaction during the KIS
tasks.

The logs are structured in JSON format, and
each log contains details such as the team user
identifier, timestamp, query description, and a
list of ranked items retrieved by the systems for
each specific query. To ensure data accuracy, we
verified the consistency and synchronization of
timestamps with the DRES local time and we
filtered out records not related to active tasks.
However, it’s essential to acknowledge that cir-
cumstances beyond our control may have led to
incomplete logs. For instance, Visione encoun-
tered issues recording logs of a single user in two
tasks where the user did not submit any results.
Furthermore, teams logged retrieved results up to
a maximum rank of 10,000, but in certain cases,
especially when using filters, the maximum rank
may be less than 10,000 in the log files. As a result,
the analysis using these logs should be considered
an estimation of the system performance.
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4.1 Overall results
Let us start with a simple binary metric, namely
whether the user was able to solve a given task
within the time limit. Of the 228 user-task pairs
in total, vibro, CVHunter and Visione users
managed to solve 199, 198, and 198 tasks, respec-
tively. We can therefore conclude that there were
no significant differences w.r.t. binary solved tasks
metric and focus on the capability of individ-
ual tools to provide correct answers quickly and
reliably.

For this, we used the same metric as in the
VBS competition, denoted as VBS score. First,
we focused on results, if all users solved the
tasks independently. The mean per-user VBS
scores were 73.02, 72.58, and 73.38 for vibro,
CVHunter and Visione users (no statistically
significant differences were found). Finally, we
focused on the same scenario as in VBS competi-
tions, i.e., all users of a single tool play as a team,
and the score of the fastest team member (who
found the correct solution for the task) is consid-
ered as the team score. With these settings, the
mean per-team VBS scores were 87.85, 85.77, and
78.84 for vibro, CVHunter and Visione. The
differences were statistically significant between
vibro and Visione (p-value: 0.006 w.r.t. one-
sided paired t-test), and between CVHunter and
Visione (p-value: 0.049).

We also conducted a bootstrap analysis to ver-
ify the significance of the results and to estimate
the necessary study sizes to reliably distinguish
the performance of individual approaches. In par-
ticular, we draw k tasks, 1 ≤ k ≤ 200 with rep-
etition and calculated total per-team VBS scores
for these tasks. Then, we evaluated whether each
team was better than the other two. For each k,
the task selection was repeated 500 times, and we
report the percentage of cases, where one team
was better than the other. Results of the boot-
strap analysis confirmed the t-test values when we
sampled the same volume of tasks as in the actual
volume of evaluated tasks (i.e., k = 57). For these
settings, vibro was better than CVHunter in
82% of cases and better than Visione in 100% of
cases, while CVHunter was better than Visione
in 95% of cases. The minimal necessary size of
the study to reliably distinguish between vibro
and Visione (w.r.t. 95% confidence) was ∼ 20
tasks. In order to estimate the necessary size of

vibro CVHunter Visione
Systems
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Fig. 2: Distribution of VBS scores for each
system user over all the tasks, the results for
"user"="team" are VBS scores when users of the
same system are treated as a unique team. The
red line is the median score over all the 12 users.

the study, where we can reliably distinguish vibro
and CVHunter, one would need to extend far
beyond the size of the conducted study. In par-
ticular, the bootstrap analysis suggests that the
required study size would be ∼ 160 tasks.

4.2 Individual Users vs System as a
Team

Figure 2 displays the distribution of VBS scores
for each user within each system, as well as the
team scores computed based on the collective per-
formance of users within the same system, acting
as a unified team. The calculation of the team
score takes into account the time of the first cor-
rect score submission of a team member, while at
the same time imposes a penalty for all incorrect
submissions of a team member before the first cor-
rect submission. A noticeable observation is that
both vibro and CVHunter systems have a user
(user 1 in both cases) who achieved significantly
lower scores compared to other team members.
In the case of CVHunter, this discrepancy can
be attributed to the fact that cvhunter1 was a
novice user. As for vibro1, it appears that this user
encountered difficulties in resolving the queries.
For visione, the distribution of scores among
users is more evenly distributed, although visione2
fell slightly behind compared to its team members.
This could be due to the fact that visione2 had
no prior competition experience, despite having
contributed to the system development. Further-
more, it is worth noting that vibro secured the
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first position both as a single user (vibro2) and
as a team. On the other hand, Visione achieved
the second position as a single user (visione3), but
ranked third as a team, behind CVHunter.

Figure 3 presents the difference between the
cumulative VBS score of each user and the average
cumulative score for each system in the competi-
tion. We can observe that the vibro system has
two users whose performance closely approaches
the average score, an outstanding "superuser"
(vibro2) who significantly outperforms the aver-
age, and another user (vibro1) who performs
significantly worse than the rest of the team.
Similarly, the CVHunter system exhibits a user
(cvhunter1 who was a novice user) who achieved
a significantly lower score compared to the oth-
ers, while the overall performance of the remaining
users is relatively consistent. In contrast, the
Visione system demonstrates a more stable per-
formance across all its users, with only a slight
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Fig. 5: Ranks of teams for each task.

divergence observed in the final queries. In par-
ticular, this deviation was most evident with
visione2, the only team member with no prior
competition experience. The dotted vertical line
represents the lunch break, and it is worth not-
ing also that the queries in the morning and
afternoon sessions were selected by different indi-
viduals. Interestingly, in the afternoon session, the
difference between the cumulative scores of users
and the average score tends to increase. This could
be attributed to the selection of more challeng-
ing queries during the session, as well as potential
fatigue experienced by the users.

See Figure 4 for an analysis of the ranks
achieved by each user in the queries relevant to
their respective teams. This includes the num-
ber of times they ranked first within their team
and the occurrences of no submissions. A notable
observation from the figure is that vibro2 con-
sistently ranked first in his team and had the
fewest instances of no submissions. Furthermore,
it is evident that each system has one user with
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a higher number of no submissions compared to
their teammates. These users are vibro1, visione2,
and cvhunter1.

It is worth noting that although visione2 had
the highest number of no submissions within their
team, he also ranked first most frequently. This
indicates that despite his lack of experience in
using the system, when he formulated the cor-
rect queries, he was the fastest among their team
members in finding the correct results. Moving on
to Figure 5, it presents the same plot but con-
siders the users as a team, with the first user to
find the correct answer being considered for each
task. We can observe that the vibro team had
zero instances of no submissions, indicating that at
least one member of the team consistently found
the correct result. The CVHunter team had a
relatively low number of no submissions, while
the Visione team experienced a higher number
of no submissions. These findings align with the
overall competition results, where the vibro team
secured the first position, followed by CVHunter
in second place, and Visione in third place.

We also investigate the correlation between the
best video rank and the corresponding submis-
sion time for each task. We present the results
in Figure 6, where the x-axis represents the best
rank of the searched video, while the y-axis dis-
plays the time in seconds from the beginning of
the task until the correct submission occurred.
An important aspect to note in this plot is the

presence of outliers. Under normal circumstances,
when a video is ranked among the top positions
(around 10), the submission time should be rel-
atively low (below 100 seconds). However, it is
evident that there are several instances across all
three systems where the rank was below 10, but
the submission time is unexpectedly high or even
absent (indicating no submission). This discrep-
ancy could be attributed to various factors, such
as the frame displayed in the interface not being
representative of the searched video or the user not
identifying it promptly. Furthermore, it is inter-
esting to observe that there are cases where the
video was ranked very low (beyond the 1,000th
position), but the submission time remains rela-
tively low (below 100 seconds) in a few instances
for Visione, a couple of instances for vibro, and
once for CVHunter. In these cases, the brows-
ing ability of the users proved to be beneficial in
quickly finding the correct video despite its lower
(initial) ranking. Overall, this figure highlights the
variability in submission time and rank, indicating
the influence of factors such as video representa-
tion, user perception, and browsing capabilities in
the competition results.

Based on the analysis, we can draw several
conclusions regarding the performance of each
system and its respective teams in the competi-
tion. Vibro is probably the most effective system.
The outstanding performance of the "superuser"
vibro2 played a significant role in securing the
team’s first position. However, even as a novice
user, vibro4 achieved the 3rd highest user score
in the competition. In contrast, Visione demon-
strated more consistent results among its users,
which translated into a more balanced perfor-
mance as a team (as observed in Figure 2). If a
user struggled to find a specific video, it was likely
that other team members faced similar difficul-
ties. Consequently, the performance of Visione
as a team is closely aligned with the collective
performance of its members. CVHunter, on the
other hand, exhibited a different dynamic. While
the individual users’ results were not particularly
impressive (each user had a noticeable number
of no submissions, comparable to Visione team
members as reported in Figure 4), the team as
a whole managed to compensate for these indi-
vidual errors. This is evident from the relatively
low number of no submissions achieved by the
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CVHunter team (see Figure 5), ultimately secur-
ing their second-place position. This implies that
the CVHunter system possesses sufficient flexi-
bility to yield diverse results from different users
utilizing the system.

4.3 User-Specific Interaction with
Retrieval Models

To gain insights on the user-specific interactions
with their systems, we first analyzed the individ-
ual queries that were formulated by each user in
order to solve the tasks and divided all queries
into three time ranges. The individual results are
depicted in Figure 7 and show big differences in
usage-patterns between and in-between the teams.
The first time-frame is the first 45 seconds of
each task, since this was the range where the pre-
defined text was not allowed to be altered by the
users and had to be used as the first query for
each task. The number of completed tasks was
57, therefore the amount of text-queries that have
been formulated in this time-range is close to this
number. Discrepancies occur, since some users had
problems with their systems during a few of the
tasks or the system encountered a problem with
the logging mechanism. Most users spent the first
45 seconds inspecting the initial queries results.
This is especially true for Visione. For all four
users, only a small amount of queries from other
modalities than text are used during this time.
For the other two systems, image-queries where
used quite often, especially by the best perform-
ing user, vibro2. The second temporal category
includes queries between 45 and 90 seconds into
each task. This was the time that allowed users
to rephrase the initial text description and there-
fore text was the most popular query modality
here across all users. Again, the only exception is
vibro2. However, both cvhunter2 and cvhunter3
also had a large proportion of image-queries dur-
ing this time range. The last time-range includes
the remaining time of the tasks, 90-300 seconds. It
can be observed that a significant number of users
shift towards query-modalities that were less fre-
quently employed in the earlier time ranges. For
example, temporal and multimodal queries gain
popularity and a lot of users from CVHunter
and vibro rely on images as the most dominant
query-type. Outliers are the two users with the
least experience (Table 1) vibro4 and cvhunter1.

Next, we analyzed the performance of the sys-
tems underlying retrieval models and used the
mean average precision (mAP) metric as a perfor-
mance measure. Since there is only one relevant
video for each task, the average precision can
simply be calculated as the reciprocal value of
the rank of the first item from the current tasks
video for each query. Given that only 10,000 items
from the result lists were logged by the systems,
the mAP is a robust metric for outliers or items
that not had been logged. All but the initial text
queries are additionally affected by the users query
formulation abilities. Experience with the system
might be such a factor. Therefore, we first com-
pare the initial text-queries performance and the
results of Table 2 show that Visiones text-query
retrieval model yields significantly higher aver-
age precision scores across all of those queries.
CVhunters superior performance over vibro
can be explained by the use of a better model
(ViT-L vs ResNet50x16) and vibro’s compression
and quantization of the embeddings.

Next, we investigate the performance of the
retrieval systems in hard tasks, which are defined
per system individually, specifically as tasks,
where no user from the system could solve the task
solely with the initial query. We can observe that
the initial queries obtain far worse mAPs in this
scenario and extensive browsing would be needed
to find the relevant video. Once the 45 seconds
have passed and the users are allowed to refor-
mulate the given text, the user-formulated text
queries provide considerably better, but still not
sufficient results. This indicates that text-to-image
models like CLIP fail to match images with text
in this hard task scenarios. An example for such a
task is "Flashing shots of a man on a bed and in
front of a wall". Neither of the three system could
solve the task with this given query. However,
when looking at the performance of the second
most popular query type, image, we can see that
significantly superior mAPs could be achieved.
Especially vibro’s image retrieval engine per-
forms very well during the hard tasks. Possible
explanations are that due to vibro browsing capa-
bilities it is easier to find fitting queries and the
use of a retrieval specific image model that was
designed to work on visual, rather than semantic
aspects of the images.

Figure 8 shows the progression of each users
mAP over time, where the mean is calculated
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Table 2: Video mAP for pre-defined, initial text
queries from all (A) and hard tasks (H). Hard
tasks where defined per system and include tasks,
where no user of the respective system could find
the video with solely the initial query. The num-
ber after the slash indicates the amount of unique
queries in the respective category.

System Initial
Text (A)

Initial
Text (H)

User Text
(H)

Image
(H)

vibro 0.108/57 0.011/33 0.029/215 0.129/199
cvhunter 0.138/57 0.006/34 0.039/237 0.053/182
visione 0.183/57 0.004/40 0.024/128 0.056/28

across all tasks. We can observe that Visione
users get a head-start for the aforementioned rea-
sons at the beginning of the tasks but struggle
to find queries that would significantly boost the
rank of the relevant video afterwards. On the other
hand, even though vibro and CVhunter users
begin the tasks with lower mAP values, their sys-
tems are able to improve the relevant video rank
through user formulated queries more often. Even
though text-queries where not allowed up until
the 45 seconds mark, vibro2 was able to achieve
the best mAP at this point and on average, more
than doubled this metric compared to the start-
ing point of his initial query. This diagram also
shows clear differences in the interaction between
users and their systems. For example, given that
three CVhunter users (2, 3 & 4) achieved very
similar VBS scores at the end of the competition,
cvhunter3 was consistently able to find queries
that scored better mAPs compared to the other
CVhunter users.
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Fig. 8: Development of the video mAP over time
for each user. Queries from all modalities where
used and the mean was calculated across all tasks.
Browsing actions like scrolling and switching views
are not included in this Figure and the mAPs are
solely computed from the logged result lists of each
query.

4.4 Reformulation of the
Pre-defined Text Queries

We analyse how the participants made use of
the predefined text query, and the changes made
to narrow down the content-set. We provide a
visualization of the times of query changes and
submissions per user and task in Figure 9. First,
we see that some reformulations have taken place
within the first 45s (where the predefined query
should stay unchanged), which is mostly due to
copy/paste errors and their correction. Most of
these can be considered negligible, however, we
observe that for example including a full stop or
not may impact the result list created with CLIP.
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The visualisation gives a good indication of the
difficulty of tasks, and the amount of text query
changes done by the different teams.

We also looked into how the text queries
changed. The most common changes of queries
involve adding adjectives or numerals (on average
0.5 per task, and quite consistent for all teams and
over working time), as well as adding conjunctions
and nouns. Here it is interesting that for vibro
and CVhunter on average 0.5 of these types of
words are added to the first modified query, which
increases to on average 1.0 to the final query before
submission. For Visione the average number is 0
over the working time, but with quite high vari-
ability in terms of added/removed words between
team members and tasks.

In order to understand the trends in query
reformulation applied by different users (or influ-
enced by the tool) we analyse the lengths of the
queries over the working time. Figure 10 shows the
mean length differences (over all tasks) of queries
per user over the working time, i.e. the length is
expressed as the difference to the length of the pre-
defined query. Each point in the plot means that
the query changed for at least one task at that
working time into the task. It becomes apparent
from the figure, that for Visione and CVhunter
the query lengths tend to increase for 3 out of 4
users, and stay similar for one user. In contrast,
the query lengths rather tend to decrease for 3
out of 4 vibro users, and slightly increases for
the other one. These observations seem consistent
with those from other data, showing that Visione
results hinge more on text search, while vibro
users’ success is often due to browsing capabilities.

5 Conclusion
This post-evaluation aimed to gain insights on
performance differences between the three top-
scoring teams at the interactive video retrieval
competition VBS22. Even though the amount
of KIS tasks was largely increased in this post-
evaluation, the systems ranked in the same order,
i.e. vibro first, CVhunter second and Visione
third when aggregating the performance on a sys-
tem level. Comparing the individual users showed
a slightly different picture with two vibro users
in the top-3 (first and third) and one Visione
user ranked second, followed by two CVhunter
users on fourth and fifth place. Analyzing the user

specific interactions with their respective systems
showed that Visione mostly relies on text queries
and achieved the best text-to-image retrieval per-
formance across the three systems. On the other
hand, vibro and CVhunter performed a signif-
icantly larger amount of image-to-image queries,
which is especially true for the more experienced
users of the two systems. Vibro’s success at
this post-evaluation can be explained with three
factors. First, the user vibro2 showed an out-
standing performance at solving know-item-search
tasks and greatly influenced vibro’s overall VBS
score. Second, compared to the other two systems,
vibro offers more advanced browsing capabili-
ties, which especially helped during the 45 seconds
of each task, where the initial query-text was
not allowed to be modified. Third, since vibro
browsing mostly relies on visual embeddings of
video keyframes, the use of a model optimized for
general-purpose nearest neighbor search to extract
those embeddings has proven to be especially
beneficial in hard tasks, i.e. tasks where the CLIP-
based text-queries failed to achieve good results.
Additionally, the introduction of a pre-defined ini-
tial text query helped to compare the CLIP-based
retrieval engines, and allowed to analyze the refor-
mulation of this text. Even though reformulation
was moderate, we observed that Visione formu-
lated longer queries compared to the two other
teams.
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