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OBJECTIVE

A critical element in the definition and evaluation of any signal or image processing
method is the validity and the accuracy of the underlying scene and sensor modeling -
backgrounds, contrasts, fluctuations, speckle, propagation, disturbances and jammers,
sensor calibration, etc...

The accuracy of this physical description and its adequation to the signal
processing techniques becomes an essential challenge for sensor design, in the
different fields of application - from medical to military, using radar, acoustic, optic,
optronic and seismic sensors.

In this biennial workshop, detailed analyses of this interaction between physics and
signal or image processing will be presented in % hour conferences, with applications
in such different areas as radar and laser imaging and interferometry, PET or
scintigraphic  imaging, inverse scattering, 3D reconstruction, and polarimetric
classification, models of random signals, atmospheric turbulence measurement, blind
source separation, influence of multichannel models, robust subspace tracking, or
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characterization of the mobile radio channel.

This forum of specialists coming from different application domains and countries, and
sharing a common interest in adequation of physical models to signal processing
techniques, is expected to generate ideas and innovations for further advances in the
fast expanding techniques of signal and image processing.

TOPICS

= Signal and Image acquisition :

Image formation and analysis,
Tomography,

SAR,

Phase conjugation,

New image acquisition systems (laser SAR, hyperspectral, polarization, etc..),
Acoustic and seismic signals acquisition,

® o @& o ¢ ¢

« Modeling :

e Description and modeling of physical phenomena : radiation, flow, propagation,
motion, turbulence, scattering, etc.

Scenes and interferences modeling,

Physical and stochastic models for sensor processing,

Noise and disturbances modeling and synthesis,

Performance criteria,

Processing algorithm :

Clutter, reverberation, background elimination,

Motion estimation, motion elimination

Noise reduction

Separation of sources

Multidimensional processing (space-time, space-frequency, time-frequency, space-
polarization)

Stereo and array processing of complex scenes

o Classification and identification

e Sensor fusion
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MODELLING IMAGES WITH ALPHA-STABLE TEXTURES
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Abstract

In this paper we present an alternative to Gaussian
textures for modelling images. In particular we
introduce linear textures generated with alpha-stable
innovations. The advantages alpha-stable texturcs
present over Gaussian textures are two-folds: they can
maodel both textures exhibiting rough-impulsive
characteristic and those that exhibit unsymmetrical
{skewed) characteristics, We also introduce new
parameter estimation technigues for modellin g and we
demonstrate the success of the technigues on synthetic
data. The alpha-stable textures are expected to work
well especially for SAR images of urban scenes,

Keywords

Non-Gaussian models, alpha-stable disiribution, linear
alpha-stable fields.

LIntroduction

Linear processes with Gaussian innovations have been
used widely in modelling image textures. One of the
most important applications of texture modelling has
been the segmentation of images. Although Gaussian
texture models have been successful in some
applications, their performarice have been
disappointing in cases where the image contains
impulsive and/or skewed features. Such examples are
not rare in the case of SAR images [1]. The Gaussian
model is very conservative in tha, impulsive events
oceur with exponentially diminishing probability and
skewness is simply not supported by the Gaussian
density function, which is symmetric. In this paper, we
present linear alpha-stable textures (fields with alpha-
stable innovations) which can mode! both impulsive
and skewed image characteristics and introduce
techniques for estimating the process parameters (both
process coefficients and density parameters) from
observations. Finally, we present simulation results on
estimating the parameters of synthetic alpha-stable
lextures.

2.Alpha-Stable Distributions

The alpha-stable distribution family is described most
conveniently by its characteristic function, which is the
Fourier transform of the probability density function
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exp{ jw—yiz]a[l+ jgsgn(f)i-logjﬂ},if o=t

where alpha e (0,2] is the characteristic exponent
which sets the impulsiveness of the distribution,
Be[-1,1] is the symmetry parameter which sets the
skewness, ¥> 0 is the dispersion analogous to the
variance and | e (-o0,00) is the location parameter.
When B=0, the distribution is symmetric around 1 and
the distribution is called a symmetric q-stable (SaS)
distribution. When moreover p=0, the distribution is
centralised at the origin. The three important speciat
cases of the a-stable distribution are the Gaussian
distribution (0=2), the Cauchy distribution (a=1, p=0)
and the Pearson distribution (o=0.5, #=1).

The o-stable distribution has received great interest
over the last few years due to its numerous attractive
properties which can be summarised as: I)itisa
generalisation of the Gaussian distribution and shares
many important properties with it, such as stability (o
stable distributions are closed under Linear operations);
2) it has a strong theoretical justification provided by
the generalised central limit theorem [2]; 3} it provides
a very flexible model: it can model not only varying
degrees of impulsiveness bat also skewness,

o-stable distributions have found many applications
such as in modelling atmospheric noise, noise on
telephone lines [3] and financial time series 4.
Unfortunately, up to now the applications of ¢-stable
distributions in image processing have been VEIy
limited other than a few isolated works [(5]. Moreover,
work in both signal and image processing have been
limited to only symmetric o-stable (SaS) distributions,
ignoring skewed distributions in all other than a couple
of works on parameter estimation [6] while some
physical phenomena clearly exhibit skewed
characteristics.

In this paper, we defend the view that the o-stable
processes provide a very flexible framework for
modelling textures in images. Contrary to previous
work in signal and image processing, here we consider
general o-stable distributions including the skewed
case.




3.Linear a-Stable Textures

In this paper, we consider only deterministic textures;
random fields such as or-stable Markov random fields
will be addressed in a follow-up paper, The models we
consider are: 2-D AR processes with a-stable
innovations which can be described with:

X(n,m)= Z a;, ;X (n-im— j)+Win,m) @
i,jeN

where & dentotes the neighbour index set and the

innovations Win,m) are distributed with {possibly

skewed) ¢-stable distributions.

Unlike the Gaussian fields, a-stable fields can provide
textures which have skewed and impnlsive features
and therefore have an inhomogeneous look. To picture
this significant difference in character we present
examples of synthetic Gaussian and a-stable textures
in Figures 1,2,3 and 4.

GAYSSIAH TEXTURE

Figure 1: Gaussian texture.

SYMMETRIC ALPHA-STABLE TEXTURE, ALPHAs{, BETA=D,

Figure 2: Symmetric o-stable texture, o=1, B=0.

3.1.Estimation of _o-Stable Field Coefficients

There are various techniques suggested for the
estimation of linear 1-D symmetric a-stable processes.
In particular, Kanter and Steiger suggest classical least
squares estimation which is surprisingly consistent
despite the lack of second order moments and

SKEWED ALPHA-STABLE TEXTURE. ALPHA=1, BETA=1

Figure 3: Skewed o-stable texture, o=1, B=1.

SREWED ALPHA-STABLE TEXTURE, ALPHA=1, BETAR-1
PR

Figure 4: Skewed a-stable texture, qi=1, 8=-1

generalised Yule-Walker estimation [7]. Gross and
Steiger later suggested least absolute deviations (LAD)
estimation and demonstrated its consistency [8].
However, unfortunately the techniques required for
LAD estimation are computationally very expensive.
Nikias and Shao provide a performance comparison of
these techniques by simulations [2]. Finally, Kuruoglu
ef al. suggest least Ip-norm estimation [9] and
demonstrate the higher rate of convergence when
compared to least squares as predicted by Davis er al.
101

The simulation studies provided in these papers
consider only the symmetric case. For the case of 2-D
skewed a-stable fields we present a new estimation
technique. The technique can be simply summarised as
first symmetrising the field without changing the linear
field coefficients and then to use extensions of the
techniques developed earlier for 1-D SaS processes on
the symmetrised field.

3.1.1.Symmetrising and Centralising Transforms

In this section, we suggest a symmetrising and
centralising transform which converts the skewed AR
sequence into a symmetric one. The transformation is




motivated with the following properties of the g-stable
distribution.

Property I: Let X, =~ §, (B;,v,.p,) and

Xy=S4B2.v2.12)
be independent stable random variables. Then,

X1+X3=840@.7.p)
where
B_Bﬂi”“‘ﬁz?%

- o, o
Y1 +72

-

Property 2: Let X = §, (B,'Y,u) and ce K.
Then,
cX ~ 5, (sgn CB.lefren) i o=t

X = Sl[sgn (eB.lclv.cn ﬂ%c(]nlc[)yﬁ} ifa=1

v=(v{"+v%)w, B=l+l,

Consider segmenting the AR process into two, from
the middle, and subtracting one segment from the
other, sample by sample. That is:

X(n)- X(ft +—§]=ia,(x(n—i)— X[n-—z’+—‘§-D+

i=1
L
+ Wn)-w nts =12, L

Calling Y(n) = X(n) - X(n+L/2) and Un) =Wn) -
W{n+L/2), it is easy to see that the resulting sequence
is an AR sequence with the same coefficients and
driven by a SaS process (U(n)) distributed with the
same o, §=0, and scale parameter 2y. To estimate the
AR coefficients of this process, one can simply use the
2-D extensions of any of the previously suggested
techniques for 1-D SaS AR processes.

3.1.2.Zeroth Order Term

An alternative solution to the problem is motivated by
Davis ef al.’s work on the convergence properties of
M-estimators for linear processors in the domain of
agtraction of a stable law [10]. Here we cite their
Theorem 5.1:

Theorem: Ler X(x) be an AR(p) process given by

X@)=0, +0.X(-1D)+..+0,X (- N)+ ()
with E]le < oo for some >0, [f the function

m(x) = E,Z - zlp has a unigue minimumar 7 =7,
then § — (0, + 2,01 0esby ) s where (E)

minimizes the [, norm estimation error:
L . n n
2[x@ =4 -8 XC-D-..~4, X~ N)’
=]

Motivated by this theorem we suggest that one can
simply introduce an artificial zeroth order term in the

model, obtain the parameters vsing one of the
techniques for symmetric processes and then simply
discard the artificiai term. The remaining AR
coefficients are the actual estimates we are looking for.
The only drawback seems to be the increased
computational cost due to the additional term, which
converges more slowly than the other coefficients [11].

3.2.0rder Determination

Bhansali provided a consistent estimation technique in
[12] for the determination of the order of 1-D AR
processes with innovations in the domain of attraction
of a symmetric stable law. His techntique is based on a
generalisation of Akaike's FPE criterion.

Given observations X, X, ,..., X, , the gencralised

FPE criterion of Akaike is:

FPE (k) =0; [l + 1—1}“:] where 1>0 is an arbitrary
L

constant and

c; =%i(X([) +8, X(E-D+..4, X1 -k)?
=1

Then, the order is estimated as:
N =inf FPE, (k), k=01..N__

Once one symmetries the AR process as described in
section 3.1.1, Bhansali's method can be used to obtain
the order of the process.

3.3.Estimation of distribution parameters

A number of techniques for the estimation of the
distribution parameters from ii.d. samples of a skewed
o-stable random variable were infroduced in [6].
However, we do not possess the innovations sequence
and the distributions parameters need to be estimated
using the information provided by observations of the
AR process. To be abie to use the techniques based on
fractional moments for estimating distribution
parameters directly from the AR process observations,
one needs to establish that the AR process is ergodic. It
is a well known result by Maruyama that MA
processes with innovations from an infinitely divisible
distribution are ergodic [13]. Since an AR Process
which has no roots on the unit circle can be converted
to an MA process with infinite order, the ergodicity of
AR processes with o-stable innovations, which are
subsets of indivisible distributions, is readily
established.

Due to the linearity of the AR process, from the
stability property, the characteristic exponent, o of the
samples from AR process is equal to the characteristic
exponent of the innovations process. Hence, one can
estimate the characteristic exponent directly from AR




process samples. It can be shown from Properties 1

and 2 that Bobservatio ns = B innovation s

and
/o

o
Yabsemalions _Yinnavatiom Z[Ci l
i

where ¢;’s are the coefficients of the infinite MA

process obtained from the AR process by long
division, From these equalities, the rest of the
parameters are readily obtained, having obtained the
parameters of the innovations sequence using the
fracjonal moments based techniques given in [6].

S. Simulations

Consider estimating the simple -stable AR field with
coefficients a1z = (1.5, a21=0.5, a22=-0.2
{neighbourhood cells: upper lefi corner), a=1.1,
$=0.5,1 and y=1. We have used the estimation strategy
we have suggested in section 3.1.1: we first
symmetrised the field and then applied least Ip-norm
estimation which we calcutated via the 2D version of
IRLS [9]. The results are given in Table 1 and Figures
5,6,7. For reasons of comparison we also provide
results obtained using least squares (1.S) estimation
assuming a symmetric field, The difference in
performance is obvious. Symmetrising the ficld and
then applying least squares significantly improves the
performance in this case over direct least square (a
stable field is obtained) however more samples are
need when compared to least Ip-norm estimation and
this fact is reflected in the increased variance of the
estimates,

&y, ay dyy
LS 1055 0.54 -0.15
LPS {0.50 0.50 -0.20

Table 1: $=0.5, LS: Least Squares, no
symmetrisation, LPS: Least Squares with
Symmetrisation,

) Gy 8o
1.8 | 046 0.57 -0.03
LES [0.50 0.51 -0.21

Table 2: p=1.0, LS: Least Squares, 1o
symmetrisation, LPS: Least Squares with
Symmetrisation,

Figure 5: Original texture, a~=1.1,8=1.0,v=1.

Laast Scqranis atmale, eiphtat 1 batast,

40 20 m

Figure 6: texture generated using parameters
estimated with Gaussian texture assumption.

Figure 7: texture generated using parameters
estimated with least Ip-norm estimation with
symmetrising transform.

Currently, we are working on the application of these
techniques in the segmentation of synthetic aperture
radar images of urban areas which show impulsive and
skewed characteristics.
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