1 Surprising concentrations of hydrogen and non-geological methane and carbon

2 **dioxide in the soil**

3

4 Etiope G.^{1,2*}, Ciotoli G.^{3,1}, Benà E.⁴, Mazzoli, C.⁴, Röckmann T.⁵, Sivan M.⁵, Squartini A.⁶, Laemmel

6

7 ¹ Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Rome, Italy

8 ² Faculty of Environmental Science and Engineering, Babes-Bolyai University, Cluj-Napoca, Romania

9 ³ Consiglio Nazionale delle Ricerche, Istituto di Geologia Ambientale e Geoingegneria, Monterotondo, Italy

- ⁴ Dipartimento di Geoscienze, Università di Padova, Padova, Italy
- ⁵ Institute for Marine and Atmospheric Research Utrecht, Utrecht University, The Netherlands
- 12 ⁶ Department of Agronomy, Food, Natural Res., Animals and Environment, Università di Padova, Padova, Italy

⁷ Department of Chemistry, Biochemistry and Pharmaceutical Sciences & Oeschger Center for Climate Change

- 14 Research, University of Bern, Bern, Switzerland
- 15 ⁸ Geological Institute & Laboratory of Ion Beam Physics, ETHZ, Zurich, Switzerland
- 16 **Corresponding author: giuseppe.etiope@ingv.it*
- 17
- 18

19 Abstract

20 Due to its potential use as a carbon-free energy resource with minimal environmental and climate 21 impacts, natural hydrogen (H_2) produced by subsurface geochemical processes is today the target of 22 intensive research. In H₂ exploration practices, bacteria are thought to swiftly consume H₂ and, therefore, small near-surface concentrations of H_2 , even orders of 10^2 ppmv in soils, are considered a 23 signal of active migration of geological gas, potentially revealing underground resources. Here, we 24 25 document an extraordinary case of a widespread occurrence of H₂ (up to 1 vol.%), together with elevated concentrations of CH₄ and CO₂ (up to 51 and 27 vol.%, respectively), in aerated meadow 26 27 soils along Italian Alps valleys. Based on current literature, this finding would be classified as a discovery of pervasive and massive geological H₂ seepage. Nevertheless, an ensemble of gas 28 geochemical and soil microbiological analyses, including bulk and clumped CH₄ isotopes, 29 30 radiocarbon of CH₄ and CO₂, and DNA and *mcrA* gene quantitative polymerase chain reaction analyses, revealed that H₂ was only coupled to modern microbial gas. The H₂-CO₂-CH₄-H₂S 31 32 association, wet soil proximity, and the absence of other geogenic gases in soils and springs suggest 33 that H₂ derives from near-surface fermentation, rather than geological degassing. H₂ concentrations

⁵ T.⁷, Szidat S.⁷, Haghipour N.⁸, Sassi R.⁴

34	up to 1 vol.% in soils are not conclusive evidence of deep gas seepage. This study provides a new
35	reference for the potential of microbial H ₂ , CH ₄ and CO ₂ in soils, to be considered in H ₂ exploration
36	guidelines and soil carbon and greenhouse-gas cycle research.

38 Keywords: Natural hydrogen, methane, carbon dioxide, soil-gas, radiocarbon

- 39
- 40

41 **1. Introduction**

42 Natural hydrogen gas (H₂) produced by a variety of geochemical processes in crustal and mantle 43 rocks is currently sought-after for its use as a carbon-free energy resource with low environmental 44 and climate impacts (e.g., Gaucher, 2020; Rigollet and Prinzhofer, 2022; Yedinak, 2022). Together 45 with artificially produced hydrogen (e.g., black/gray, blue, green hydrogen; IEA, 2023) and the 46 hydrogen generation stimulated by geochemical reactions in the underground (orange hydrogen; Osselin et al. 2022), the naturally occurring geological H₂ (also referred to as "white" or "gold" 47 48 hydrogen) might contribute to new hydrogen economy implementation. The geochemical processes 49 generating subsurface H₂ are mostly related to water-rock reactions such as serpentinization (olivine 50 hydration), radiolysis, and several types of iron oxidation (Sherwood Lollar et al. 2014; Warr et al. 51 2019; Zgonnik, 2020; Milkov, 2022; Geymond et al. 2023). Relevant amounts (up to 98 vol.%) of H₂ 52 have been directly discovered in reservoirs intercepted by wells in the United States, Mali, Australia, 53 and the Russian Federation (Newell et al 2007; Prinzhofer et al. 2018; Boreham et al. 2021; Zgonnik, 54 2020 and references therein). In other countries, H_2 is increasingly reported at the surface in soil or 55 gas seeps (Zgonnik, 2020; Vacquand et al. 2018; Etiope, 2023; McMahon et al. 2023), and surface 56 geochemistry is becoming part of global H₂ exploration (Lefeuvre et al. 2021; Frery et al. 2021; Lévy 57 et al. 2023; Langhi and Strand, 2023). In soil-gas prospections, diffuse application of a paradigm 58 exists by which H_2 microbially generated in wet soils and aquifers is rapidly consumed by bacteria 59 and it should not occur in the aerated vadose zone (e.g., Rhee et al. 2006; Larin et al. 2015; Zgonnik 60 et al. 2015; Paulot et al. 2021). Therefore, the presence of H₂ in soil-gas, at concentrations on the order of 10^{1} - 10^{3} parts per million by volume (ppmv), is thought to be evidence of non-exogenous 61 62 sources, i.e., geological degassing (seepage) from underground sources. This concept has been 63 applied, for example, to so called "fairy circles" observed in Russia, the United States, Brazil, Australia, Namibia and Colombia (Larin et al. 2015; Zgonnik et al. 2015; Prinzhofer et al. 2019; Frery 64 65 et al. 2021; Moretti et al., 2022; Carrillo Ramirez et al. 2023), to Pyrenean soils (Lefeuvre et al. 2021), 66 to the San Andreas Fault in California (Mathur et al. 2023), and in proposed H₂ exploration guidelines 67 (Lévy et al. 2023). However, similar amounts of H₂ can be produced by multiple microbially mediated 68 processes, including fermentation in wet soils or shallow aquifers, N₂ fixation, and cellulose 69 decomposition by termites (Conrad and Seilert, 1980; Krämer and Conrad, 1993; Sugimoto and 70 Fujita, 2006; Pal et al. 2018), by the oxidation or corrosion of ferrous minerals (e.g., Starkey and 71 Wight, 1945), and by the hydration of silicate radicals in basaltic soils (Dunham et al. 2021). 72 Therefore, caution has been advised when cursorily attributing the term "seep" or "seepage" to soil-73 gas H_2 at ppmv levels (Etiope, 2023). H_2 may persist in soils due to inhibitors of syntrophic H_2 74 consumption such as hydrogen sulphide, alcohols, and organic acids (Hoeler et al. 1998; Schmidt et 75 al. 2016; Meinel et al. 2022). The primary issue for understanding the H₂ potential in the soils is the 76 paucity of available soil gas datasets. A few studies have focused on H₂ in soils as a tracer of faults 77 and seismicity (e.g., Sugisaki et al., 1983; Xiang et al. 2020). Bio-ecosystem studies have largely 78 addressed wetlands and the capacity of dry soil to act as an atmospheric H₂ sink, with a focus on 79 laboratory tests and modelling, and without extensive in situ soil-gas surveys (e.g., Conrad 1996; 80 Chen et al. 2015). As a result, insufficient data exists regarding background H₂ values, irrespective of 81 soil moisture content or geological setting. Understanding the origin of H₂ in soil-gas is also 82 complicated by the fact that biological and geological processes can produce H₂ with a similar 83 isotopic composition (²H/H, expressed as δ^2 H), therefore, isotopic analyses may not be conclusive 84 (Etiope, 2023). Given the issues outlined above, interpretations of H₂ origin should be based on a 85 multidisciplinary, integrated study, including a compositional and isotopic analysis of the gases 86 associated with H₂. Careful investigations of the geology and the ecosystem are also necessary.

87 Here, we present an apparently straightforward case of relevant H₂ concentrations in aerated soils, 88 reaching 1 vol.%, which, based on current scientific literature, would immediately be classified as 89 the discovery of pervasive and massive geological H₂ seepage. The study was performed in two 90 valleys within the Eastern Alps (the Pusteria and Anterselva Valleys) of northern Italy, where high 91 H₂ values, associated with high methane (CH₄) values, were accidentally discovered in a previous 92 soil-gas survey addressed to radon. The H₂ and CH₄ data, not published in the radon study (Benà et 93 al. 2022), boosted the present study due to their noteworthy concentrations. Since elevated levels of 94 H₂ in aerated soils are commonly attributed to crustal degassing of geological origin (Larin et al. 95 2015; Zgonnik et al. 2015; Prinzhofer et al. 2019; Frery et al. 2021; Lefeuvre et al. 2021; Moretti et 96 al., 2022), our objective was to assess whether the high H_2 concentrations in the two Alpine valleys 97 are actually of geological origin or, rather, are a product of near-surface biological processes. To this 98 aim, we carried out an ensemble of gas geochemical and microbiological investigations (listed in 99 Table S1), including a wide soil-gas survey and multiple isotopic and radiocarbon analysis of CH₄ 100 and CO₂ associated to H₂ in the soil. H₂ was also searched in several springs along the valleys. Surface 101 exploration of natural hydrogen has never made use of such an ensemble of analyses, particularly 102 radiocarbon analysis of CH₄ and CO₂ associated to H₂. Since the research was conceived as a surface 103 exploration of natural H₂ with the aim of understanding whether crustal degassing exists in the studied 104 area, investigating the specific biological and environmental elements that may have contributed to 105 the high levels of H₂ was beyond the scope of work. This study demonstrates the complexity of soil-106 gas interpretations of H₂ and presents a crucial case to consider for future research and natural H₂ 107 exploration guidelines.

- 108
- 109

```
110 2. Geological setting of Pusteria and Anterselva valleys
```

The Pusteria Valley develops along a segment of the Periadriatic lineament, the Pusteria Fault (PF), which is an East–West trending, a sub vertical aseismic fault with dextral transpressive strike-slip kinematics, representing the tectonic boundary between the Austroalpine crystalline basement to the north and the Southalpine basement to the south (Fig. 1; Schmid et al. 1989).

- 116
- 117

Figure 1

118

119 The Austroalpine crystalline basement in the Eastern Alps consists of pre-Variscan sequences. These 120 were mainly affected by a Variscan (320-350 Ma) metamorphic event covering the whole temperature range of the amphibolite and greenschist facies at metamorphic thermal gradients of about 40°C/km, 121 122 partly affected by Alpine metamorphic overprint (Sassi et al., 2004; Spiess et al., 2010). It is mainly 123 made up by paragneisses and micaschists (locally grading to migmatites), in which orthogneisses, 124 amphibolites, quartzites and marbles are interlayered. Eclogites, metabasites and metaultramafics 125 locally occur. The Southalpine crystalline basement in the Eastern Alps consists of a thick phyllitic 126 sequence affected by Variscan metamorphism under greenschist facies (Spiess et al. 2010). The 127 Austroalpine block is cut by two major E-W trending tectonic lines: the DAV (Deffereggen-128 Antholz/Anterselva-Vals/Valles fault (DAV) and the KV (Kalkstein-Vallarga) faults (Fig. 1). The 129 DAV is a ~80 km long mainly mylonitic shear zone with dominant sinistral strike slip delimiting towards the south the Alpine metamorphic overprint (Müller et al. 2000). The KV is a transpressive 130 131 strike-slip fault (Borsi et al., 1978). These two faults merge westwards close to the Insubric Line. 132 Based on seismic reflectors, Lammerer et al. (2011) suggest the presence of schists containing serpentinites at depths of at least 5 km, in correspondence with the DAV and PF lineaments. The 133 134 Anterselva Valley, is NNE-SSW oriented, was formed by glacial excavation along both the Austroalpine and Southalpine domains, and is crossed by the KV fault (Fig. 1). The soil features are 135 136 described in the Supplementary Material.

138 **3. Methods**

139

140 *3.1 Sampling and the on-site analysis of gas in soils.*

141 Soil-gas surveys were conducted during July 2021 (244 sampling points) and September 2021 (89 points, using two different sensors for both H₂ and CH₄, described below, with multiple 142 143 measurements surrounding the H_2 -rich points observed in July 2021). A check of H_2 and CH_4 was 144 repeated in August 2023 (16 points; Fig. 1 and Tables S1 and S2). In addition to the Pusteria Valley, 145 soil-gas surveys included the adjacent N-S trending Anterselva Valley, transversally crossed by a 146 fault (Fig. 1). Soil-gas sampling, conducted during July and September 2021, and August 2023 147 (Tables S1 and S2), was performed by pounding stainless-steel probes with a sliding hammer to depths of 60-80 cm. To minimize soil moisture, soil and air temperature and barometric pressure 148 149 effects (Hinkle, 1994), sampling was performed over a very short period of time and during stable 150 meteorological conditions. The probe was then connected to the following portable gas detectors, for 151 measuring H₂, CH₄, CO₂, O₂, and H₂S:

H₂: (a) A Dräger electrochemical sensor (DrägerSensor® XXS H₂, Dräger X-am 7000, Germany; accuracy $\leq 1\%$ of measured value; range 0-2000 ppmv) used during July and September 2021, and August 2023; (b) A Huberg semiconductor + pellistor sensor (Huberg Metrex 2, Italy; range 0-5 vol.%; accuracy $\leq 2\%$ at 1000 ppmv, and $\leq 1\%$ at 10,000 ppmv) used during September 2021. Further details and sensor intercomparison tests are reported in the Supplementary Material.

157 CH₄: (a) A Dräger infrared sensor (DrägerSensor® Smart IR CH₄, Dräger X-am 7000, Germany;
158 accuracy: ≤5%; range 0.1-100 vol.%) used during July and September 2021, and August 2023; (b) A
159 Tunable Diode Laser Adsorption Spectrometry (TDLAS) detector (Gazomat, France; precision 0.1
160 ppmv, lower detection limit 0.1 ppmv; range 0-100 vol.%) used during September 2021.

161 CO₂: (a) A Dräger infrared sensor (DrägerSensor® Smart IR CO₂ HC, Dräger X-am 7000, Germany;

162 accuracy: ≤0.2%; range 0-100 vol.%) used during July and September 2021, and August 2023; (b) A

163 Licor non-dispersive infrared sensor (Licor LI-820; accuracy <3% of reading; range 0-20,000 ppmv)

164 used during September 2021.

O₂: (a) A Dräger electrochemical sensor (DrägerSensor® XXS O₂, Dräger X-am 7000, Germany;
accuracy: ≤0.2%; range 0-25 vol.%) used during July and September 2021, and August 2023.

- 167 H₂S: (a) A Dräger electrochemical sensor (DrägerSensor® XXS H₂S, Dräger X-am 7000, Germany;
- 168 precision: 0.5 ppmv; range 0-200 ppmv) used during July and September 2021, and August 2023.

169 The spatial distribution of H₂ and CO₂ in soil-gas along the Pusteria Valley was derived by Natural

170 Neighbour interpolation of July 2021 soil-gas sampling points, using Surfer 23.1.162 (copyright
171 1993–2021, Golden Software, LLC).

H₂ and CH₄ fluxes from soils were measured using a closed chamber technique in 5 points at the P1 (Pusteria Valley) and A14 (Anterselva Valley) sites (Figure S1). A 30cm-diameter static accumulation chamber was connected to the semiconductor H₂ and laser CH₄ sensors described above, using the same procedure in Etiope (2023) and Etiope et al (2017).

At sites P1, P8, A14, and A15, soil-gas samples were collected for the laboratory analyses described
below. Gas was stored in evacuated Teflon bags and Wheaton bottles sealed with gas impermeable,
thick, blue butyl septa (Bellco Glass Inc., NJ, USA) and aluminum crimp caps.

179

180 *3.2 Sampling and the on-site analysis of gas dissolved in spring water.*

181 CH₄ and H₂ were analysed in five spring water samples collected along the Pusteria and Anterselva 182 Valleys (the spring name and location are reported in Fig. 1). Dissolved gas was extracted via an 183 equilibration head-space method in 500 mL Duran bottles, and analysed using the TDLAS (for CH₄) 184 and the semiconductor sensor (for H₂) described above.

185

186 *3.3 Laboratory analyses of gas samples.*

187

188 3.3.1 Analysis of C_2 - C_6 hydrocarbons.

The presence of C_{2+} volatile hydrocarbons (ethane, propane, butane, pentane, and hexane) in the four, high-CH₄ soil-gas samples, stored in Teflon bags, was checked by Fourier Transform Infrared Spectroscopy (FTIR, Gasmet DX-4030, Finland; lower detection limit 1 ppmv, accuracy ±10%).

192

193 *3.3.2 CH*⁴ and CO₂ isotopic analyses.

To determine the stable carbon and hydrogen isotope composition of CH₄ ($\delta^{13}C_{CH4}$, $\delta^{2}H_{CH4}$), extracted 194 gas samples were first diluted to near-atmospheric CH₄ concentrations with synthetic air. Diluted 195 196 samples were then analysed on an automated IRMS system (Brass and Röckmann, 2010; Röckmann et al., 2016) with a typical precision of <0.1‰ for $\delta^{13}C_{CH4}$ and <2‰ for $\delta^{2}H_{CH4}$. The system has been 197 198 validated in international intercomparison programs (Umezawa et al., 2018). The CO₂ isotopic 199 composition was determined using a modified system that had originally been designed for CO 200 isotopic analysis (Pathirana et al., 2015). In CO_2 analysis mode, a small amount of gas is admitted to 201 the system and the Schütze reagent used to oxidize CO to CO₂ is by-passed, allowing the straightforward determination of δ^{13} C in CO₂. The system has been linked to international isotope 202 203 scales using reference cylinders prepared by the Max-Planck Institute for Biogeochemistry in Jena, 204 Germany. Multiple samples from the same soil-gas site have been analysed (Table S3). Bulk CH₄ 205 and CO₂ isotopic ratios are expressed as permil vs. the Vienna Peedee Belemnite (VPDB) standard 206 for C and the Vienna Standard Mean Ocean Water (VSMOW) standard for H.

207

208 *3.3.3 CH*⁴ *clumped-isotopes.*

For the clumped isotope analysis, CH₄ was separated from bulk gas and purified using a self-built High Concentration Extraction System (HCES) (Sivan et al., 2023). In the first step, the complete sample mixture is cryogenically collected on silica gel. Individual components are then separated on packed gas chromatographic columns (a 5m long 1/4" OD 5A molecular sieve column and a 2 m long 1/4" OD HayeSep D column) at 50°C using He as the carrier gas at a flow rate of 30 mL/min, after which purified CH₄ is again collected on silica gel. Sample amounts are chosen based on prior 215 information for CH₄ content to yield 4 mL of pure CH₄, which is required for the high-precision clumped isotope analysis. The clumped isotopic composition of extracted CH₄ was analysed using a 216 217 Thermo Ultra high-resolution IRMS. The typical measurement precision of a single measurement is 0.3‰ for Δ^{13} CH₃D and 2‰ for Δ^{12} CH₂D₂. Multiple purifications of laboratory gas mixtures yielded 218 219 results within these error estimates, indicating that the overall analytical procedure does not induce 220 variability beyond instrumental errors. The long-term reproducibility of the mass spectrometer is around 0.3‰ for Δ^{13} CDH₃ and 1.7‰ for Δ^{12} CD₂H₂. To link the theoretical temperature calibration 221 222 scale, isotope exchange experiments at various temperatures were performed using the laboratory 223 reference gas. CH₄ was equilibrated at temperatures ranging from 50 to 450°C using two different 224 catalysts: γ-Al₂O₃ for temperatures below 200°C and Pt on Al₂O₃ for 200-450°C. The experimental 225 setup and subsequent calculations are thoroughly explained in Sivan et al., (2023).

226

227 3.3.4 CH₄ and CO₂ radiocarbon (¹⁴C) and $\delta^{13}C$ analyses.

CH₄ and CO₂ were extracted from the four high-CH₄ soil-gas samples (i.e., P1, P8, A14, and A15, 228 229 see Table 1) at the Laboratory for the Analysis of Radiocarbon (LARA), University of Bern, 230 Switzerland, using an Acceleration Mass Spectrometry (AMS), with a methane preconcentration and 231 purification setup (Espic et al., 2019). Due to the high concentrations of CO₂ and CH₄ for the samples 232 from P1, A14 and A15, 0.6-2 mL of sample could be directly and manually injected into the gas 233 chromatograph (GC, 7890B, Agilent, USA). For the P8 sample, a preconcentration step was 234 necessary. The GC was equipped with a purged packed inlet, a packed column (ShinCarbon ST 235 80/100, 2 mm ID, L = 2 m, Restek, USA) and a thermal conductivity detector (TCD). He (purity = 236 99.999%, Carbagas, Switzerland) was used as a carrier gas. The oven was kept at 40°C for 4 min and 237 then heated to 250°C with a temperature ramp of +10°C/min, followed by a final cleaning step at 238 280°C for 3 minutes. The system was operated in constant pressure mode (20 psig), which caused a gradual decrease in the He carrier gas flow rate from 14 mL min⁻¹ to 9 mL min⁻¹ during heating. The 239 240 carbon-containing gases CO, CH₄, and CO₂ were well separated from each other, eluting at 3.5 min,

241 8 min, and 13 min, respectively. Pure CH₄ and CO₂ were trapped at liquid nitrogen temperatures in 242 individual traps filled with 0.4 g charcoal, transferred into 4 mm OD glass ampoules (for CH₄ after 243 combustion to CO₂ in a flow oven at 950°C using copper oxide wires of 0.5 mm diameter, Elementar, Germany) and sealed for isotope measurements. Radiocarbon and $\delta^{13}C$ analyses were performed at 244 LARA and at the Laboratory of Ion Beam Physics, ETH, Zürich, Switzerland, using a AMS 245 MICADAS (MIni CArbon DAting System), equipped with a gas ion source (Ruff et al., 2007). Glass 246 247 ampoules provided by LARA Bern were cracked in the gas inlet system, and the CO₂ was mixed with 248 He to ~5%, transferred into a syringe, and then fed into the ion source using a constant gas flow. Raw $^{14}C/^{12}C$, as well as $^{13}C/^{12}C$ ratios, were converted into $F^{14}C$ and $\delta^{13}C$ values, respectively, by 249 250 performing a blank subtraction, and a standard normalization and correction for isotope fractionations 251 (only for F¹⁴C) using ¹⁴C-free CO₂ and CO₂ produced from the primary NIST standard oxalic acid II 252 (SRM 4990C), respectively, that were applied as ~5% mixtures with He. Multiple samples from the 253 same soil-gas site have been analysed (Table S3).

254

255 *3.3.5 Microbiological analysis of soil samples.*

256 Forty soil samples from seven drilling points were collected at multiple depths ranging from 10 to 257 105 cm below the ground's surface. Five samples were obtained within two zones with high CH₄ 258 concentrations (P1 and P8). Two samples were obtained at control sites, where CH4 was not detected 259 (at the time of soil sampling). Soil conditions are described in the Supplementary Material. To 260 identify the presence and abundance of methanogens, the methyl coenzyme M reductase A genetic 261 determinant (mcrA) was quantified using RealTime Polymerase Chain Reaction, PCR). We extracted 262 DNA and amplified two types of gene targets via PCR: the first target, (16S) encoding the small 263 protein subunit of the ribosome, is universally used to quantify total bacterial communities, while the 264 second target, mcrA, is specific for methanogens. Three replicates for each of the genes were 265 performed. Total DNA was extracted from 0.25 g of dried soil using the Qiagen DNeasy PowerSoil 266 kit as described by the manufacturer. Extracted DNA was quantified with a Qubit 3.0 fluorimeter

(Thermo Fisher Scientific, USA) using the Qubit[™] DNA HS Assay Kit (Thermo Fisher Scientific) 267 and stored at -20°C. RealTime qPCR was performed by a QuantStudio 5 system (Life Technologies, 268 269 USA). The qPCR reaction volume was equal to 5 μ L, 1 μ L of purified DNA solution and 4 μ L of 270 reaction mix, composed using 1.2 µL of PCR-grade water, 0.15 µL each of F and R primers (Table 271 S5), and 2.5 µL of Power SYBR Green PCR Master Mix with Taq polymerase (Applied Biosystems, 272 USA). qPCR thermal conditions were set to a pre-denaturing stage at 95°C for 10 minutes, followed by 40 cycles with a denaturation step at 95°C for 15 sec, an annealing step at 57°C for 60 sec, and an 273 274 extension at 72°C for 60 sec. For each amplification, a negative control of sterile MilliQ water was 275 run with three replicates.

- 276
- 277 **4. Results**
- 278

279 4.1 H₂, CH₄, and CO₂ concentrations in soils

280 We observed, both in the Pusteria and Anterseva valley, that H₂ was typically coupled to high CH₄ 281 and CO₂ concentrations (Table S2). During the first survey, H₂ was detected at 106 points (43% of 282 measured points), with concentrations ranging from 10 to 610 ppmv. In September 2021, at the P1 283 site, H₂ reached 1,700 ppmv (Fig. 1; Fig. S1), with 14 vol.% CH₄ and 27 vol.% CO₂. At site A14, H₂ 284 reached 10,000 ppmv (CH₄ reached 51 vol.% and CO₂ reached 15.5 vol.%). Repeated analysis at site 285 A14 (point 14a in Table S2) indicated a peak, with H₂ sensor saturation at 5 vol.% (although the 286 signal rapidly decreased and is not reported within the data table). The second and third surveys confirmed three sites with the highest H₂-CH₄-CO₂ concentrations (P1, P8, and A14) and revealed an 287 288 additional gas-rich site (A15, near the Salomone spring). Repeated measurements at the same soil-289 gas probe position revealed that H₂ concentrations frequently decreased over time, suggesting a 290 limited amount of gas available within intercepted aerated soil layers (see "Intercomparison of H₂ 291 sensors in the Supplementary Material). Interestingly, gas-rich soils (P1, P8, and, especially, A14 and

292	A15) were the only sites where H_2S was also detected (up to 200 ppmv, sensor upper range limit, at
293	A14).
294	The spatial distribution of soil-gas H_2 , compared with that of CO_2 (interpolation of the July 2021
295	survey data), is shown in Fig. 2. The H ₂ distribution only partially coincides with two fault lineaments,
296	the Pusteria Fault (PF) and the Kalkstein-Vallarga Fault (KV) (described in Supplementary Material).
297	H ₂ concentrations exceeding 100 ppmv also occurred far from fault zones.
298	
299	Figure 2
300	
301	
302	4.2 Isotopic and radiocarbon composition CH_4 and CO_2
303	The stable C and H isotope composition of CH_4 at the four H_2 -rich sites is reported in Table 1 and
304	Fig. 3. The values are typical of microbial methanogenesis in peatlands and wetlands (Whiticar,
305	1999). The ¹³ C-enriched CH ₄ of P1 (-41.6 ‰; Table 1) is coupled to a relevant concentration of
306	slightly ¹³ C-enriched CO ₂ (up to 27 vol.% detected on-site; $\delta^{13}C_{CO2}$: -17.9 ‰, which is within the
307	range of the isotopic composition of CO ₂ in freshwater environments; Whiticar, 1999; Figure 3). The
308	radiocarbon content of CH ₄ in all four sites ($F^{14}C > 1$; Table 1) confirmed modern microbial origin.
309	The paired CH ₄ clumped isotopes ($\Delta^{12}CH_2D_2 - \Delta^{13}CH_3D$) of CH ₄ measured at P1 and A15 are in
310	thermodynamic disequilibrium (Fig. 3B), which is typical of CH ₄ generated via microbial pathways
311	at relatively low temperatures (Young et al., 2017; Sivan et al., 2023). CO ₂ at all four H ₂ -rich sites is
312	also modern ($F^{14}C$: 0.8 to >1; Table 1).
313	
314	Figure 3
315	
316	Figure 4

319 *4.3 Gas flux measurements*

320	The CH ₄ and H ₂ flux measurements by closed-chamber technique performed in 5 points at the P1
321	(Pusteria Valley) and A14 (Anterselva Valley) sites (Figures 1 and S1) did not show any exhalation
322	of the two gases. No gas concentration build-up was recorded within the chamber. Three
323	measurements showed a negative CH ₄ flux (-4, -4 and -5 mg m ⁻² day ⁻¹), indicating methanotrophic
324	consumption.
325	
326	4.4 Analysis of gaseous hydrocarbons heavier than methane.
327	C ₂₊ volatile hydrocarbons (ethane, propane, butane, pentane, and hexane) in the four, high-CH ₄ soil-
328	gas samples were below the FTIR detection limit of 1 ppmv (Table S4).

329

330 4.5 Analysis of H₂ and CH₄ dissolved in spring waters

331 In the five springs along the Pusteria and Anterselva Valleys (Fig. 1), CH₄ concentrations were always

in equilibrium with the atmosphere, and H₂ concentrations were below detection limits (1.5-2 ppmv

333 CH₄ and 5 ppmv H₂ within the extracted head-space, respectively).

334

335 4.6 DNA and mcrA gene quantitative polymerase chain reaction –qPCR- analyses

The microbiological analyses, performed on 40 soil samples from seven drilling points, clearly indicate that CH₄-rich sites (P1 and P8) host higher amounts of methanogenic bacteria as compared to the two control (no CH₄) sites (P1-BG and P8-BG) (Table S6). As expected, the quantity of methanogens initially increased with depth following lower redox potential. However, at approximately 40-60 cm the increase was attenuated and a decrease occurred, likely due to overall harsher conditions. At one of the richest CH₄ sites (P8b), the highest concentration of active bacteria was shallower (30 cm) than for the other sites.

344 **5. Discussion**

345

346 5.1 Multiple isotopic analyses unveiled a modern microbial origin for CH₄ and CO₂

347 The bulk isotopic composition of CH₄ and CO₂ suggest a biological origin of these gases (Figures 3 and 4). The ¹³C-enrichment of CH₄ at P1 (δ^{13} C: -41.6 ‰) could be related to substrate depletion or 348 oxidation (Whiticar, 1999). Although oxidation is commonly observed at shallow depths above 349 350 water-logged sediments (e.g., Hornibrook et al. 1997), there is no corresponding ²H-enrichment in P1 (Fig. 3). Overall, the isotopic CH₄ and CO₂ data were compatible to signatures of methyl-351 352 fermentation (Fig. 4; Whiticar, 1999). The radiocarbon content of CH₄ and CO₂ in all four CH₄-CO₂rich sites ($F^{14}C > 1$) confirmed modern microbial origin. Accordingly, an attribution to the 353 overlapping abiotic genetic field in the clumped isotope diagram (Fig. 3B) is excluded. Therefore, 354 355 the observed CH₄ is not a geological carrier of H₂.

The radiocarbon data represent a key finding because they clarifies that H_2 is only associated with modern microbial gases, which are all typical of fermentation. Since methanogens may thrive on any type of H_2 , microbial CH₄ alone does not allow us to exclude a geological origin for H_2 ; but the presence of microbial CO₂ corroborates an exclusion because it is typically co-produced with H_2 during acetogenesis (Ye et al. 2014).

Understanding specific CH₄ and CO₂ sources, and potential isotopic C fractionation in the soil, was beyond the scope of this study; such an undertaking requires gas and organic matter ¹⁴C analyses at multiple depths (e.g. Wordell-Dietrich et al. 2020). The unequivocal isotopic data demonstrated that microbial and modern CH₄ and CO₂ can reach elevated concentrations in aerated soil (up to >50 vol.% CH₄ and >20 vol.% CO₂). Similar CH₄ and CO₂ concentrations are common in landfill soils, where waste is decomposed by aerobic methanogenesis. However, we were unable to locate any reports of such high levels of microbial gas in natural aerated soils.

368 Whether or not the observed large quantities of CH_4 (up to 51 vol.%) were totally or partially 369 produced in aerated soil portions (using CO_2 and H_2 migrating from fermentation sites) remains 370 undetermined. Methanogenesis in the aerated soils is a known process: as in our case, it was reported 371 around wetlands (Angle et al. 2017) and in Tyrol Alpine soils (Hofmann et al., 2016). Due to the 372 inherent reversibility of hydrogenase-encoding enzymes, leading to either the emission or 373 consumption of H₂, depending on fluctuating metabolic requirements (Ogata and Lubitz, 2021), the 374 detection of specific H₂ producing bacteria remained elusive. Nevertheless, the overall bacterial 375 population (universal for the 16S ribosomal gene), which was several orders of magnitude higher 376 than the methanogenic population, was particularly high at the P1 site. Therefore, it is possible that 377 such an extra population included H₂ producers. H₂-generating metabolism is widespread across very 378 diverse prokaryotic groups, and encompasses anaerobic gram positives, enterobacteria, symbiotic or 379 free-living nitrogen-fixing bacteria, photosynthetic cyanobacteria, and sulphur bacteria.

380

381 5.2 No evidence of crustal degassing

382 H_2 and tectonic faults. The Pusteria Valley develops along a regional fault system, but the spatial 383 distribution of soil-gas H₂, derived by interpolation of the July 2021 survey data (Fig. 2), only partially 384 coincides with two fault lineaments, the Pusteria Fault (PF) and the Kalkstein-Vallarga Fault (KV) 385 (see Supplementary Material). The P1 H₂-rich site, located near the PF trace, actually hosts high 386 concentrations of microbial modern CO₂, which obviously is not a result of fault degassing (Fig. 2). 387 Rather than faults, H_2 and CO_2 appear to generally follow the valley slope and bottom, which include 388 flat areas, channels and depressions. These are zones of low relative elevation, inducing water 389 accumulation, shallow groundwater flows, and increased soil moisture, factors that contribute to near-390 surface microbial gas production (e.g., Morozumi et al. 2019). Further ¹⁴C analyses should be performed in other soil-gas sites along the PF to unambiguously identify possible geological 391 392 degassing processes.

393 *No gas exhalation to the atmosphere*. Dry soil is known to be a net sink of H_2 , with rapid H_2 394 consumption corroborated by negative fluxes (Conrad, 1996; Hammer and Levin, 2009; Chen et al., 395 2015). The presence of advective exhalation of H_2 from the soil to the atmosphere is, therefore, 396 considered to be a potential proxy for subsurface gas migration (Etiope, 2023). The flux 397 measurements of CH₄ and H₂ obtained using the closed-chamber technique within the richest gas 398 sites during September 2021 (Fig. 1) did not show the presence of active seepage. Gas concentrations 399 within the chamber were monitored over a five-minute interval, an interval that, with the specific 400 chamber-sensor system used, is generally sufficient to detect fluxes typical of active seeps (Etiope et 401 al. 2017; Etiope, 2023). The measurements suggest that the CH₄-H₂ concentrations within the soil are 402 not due to active, pressure-driven gas migration (seepage). High gas concentrations in soil pores 403 associated with a lack of fluxes to the atmosphere are more frequently related to small, low-pressure 404 pockets of *in situ* originated gas (Forde et al. 2018; Etiope, 2023). Despite the possibility that silty 405 material and wet layers may restrict the gas flow above the soil-gas sample depth (60-80 cm), the 406 negative CH₄ flux observed in three locations, which suggests methanotrophic consumption, typical 407 of dry soil, still points to the presence of air movement in the upper soil layers.

408 No heavier hydrocarbons in soils and no geological gas in springs. The lack of gaseous hydrocarbons 409 heavier than methane in the soil, which may be produced in deep C-rich rocks either by thermogenesis 410 or abiotic processes (Etiope and Sherwood Lollar, 2013), and the absence of H₂ associated with CH₄ 411 in atmospheric equilibrium in the several springs, are additional indicators that the investigated 412 Alpine valleys do not host an appreciable crustal degassing. Other springs in the valleys did not have 413 any features that may suggest deep geothermal or serpentinization processes (no bubbling; pH < 9; 414 https://geoportale.retectivica.bz.it/geodati.asp). There were also no manifestations of gas seepage 415 within the area (no mofettes, no vegetation stress).

416

417 5.3. Microbiological activity in the soil

418 Although a large methanogenic population was detected in the investigated soils, whether or not the 419 observed large quantities of CH_4 (up to 51 vol.%) were totally or partially produced in aerated soil 420 portions (using CO_2 and H_2 migrating from fermentation sites) remains undetermined. 421 Methanogenesis in the aerated soils is a known process: as in our case, it was reported around 422 wetlands (Angle et al. 2017) and in Tyrol Alpine soils (Hofmann et al., 2016). Due to the inherent 423 reversibility of hydrogenase-encoding enzymes, leading to either the emission or consumption of H₂, 424 depending on fluctuating metabolic requirements (Ogata and Lubitz, 2021), the detection of specific 425 H₂ producing bacteria remained elusive. Nevertheless, the overall bacterial population (universal for the 16S ribosomal gene), which was several orders of magnitude higher than the methanogenic 426 427 population, was particularly high at the P1 site. Therefore, it is possible that such an extra population 428 included H₂ producers. H₂-generating metabolism is widespread across very diverse prokaryotic 429 groups, and encompasses anaerobic gram positives, enterobacteria, symbiotic or free-living nitrogen-430 fixing bacteria, photosynthetic cyanobacteria, and sulphur bacteria.

431

432 5.4 Potential biogenic sources of H₂ and CO₂

Although it can be hypothesized that methanogenic activity in the meadows could have been caused by crustal H₂ degassing (where bacteria use geological H₂ as an energy source), the simultaneous presence of high quantities of microbial CO_2 and H₂S is indicative of fermentation activity. CO_2 , H₂S, and H₂ are, in fact, all typical co-products of two stages of anaerobic digestion, acetogenesis (the transformation of alcohols, and carbonic and fatty acids into gases) and, subordinately, acidogenesis (the conversion of sugars and amino acids; **Enderse Versions and Equation and Source 1999**). H₂ is a key

439 intermediate in anaerobic environments and these fermentation stages are particularly enhanced in 440 wet soils (Ye et al. 2014). While it is known that methanogenesis can occur in aerated soils (Angle et al. 2017; Hoffmann et al, 2016), fermentation requires anoxic conditions. The ¹⁴C content of CO₂ 441 suggests that the C feedstock (organic matter) is approximately 1200-1400 years old at P8 ($F^{14}C_{CO2}$: 442 0.846) and younger, influenced by the bomb spike ($F^{14}C_{CO2}$: >1), at the other three sites. These data 443 444 are typical of fermentation observed in wetlands, fens, bogs, and peat soils (Chanton et al. 2008; 445 Trumbore et al. 1999). Although we can assume that normal soil respiration (a common process in 446 aerobic soils, leading to CO₂ concentrations typically <1 vol.%) exists in all investigated sites, we 447 hypothesize that the large quantities of CO₂ (up to 27 vol.%), observed at depths of 60-80 cm, are

448 allochthonous (as well as the associated H₂, CH₄ and H₂S), and migrated from shallow wet soil layers 449 and/or adjacent water-logged strata (wetland, fens) that are widespread in Tyrol Alpine grasslands (Fig. 1; Hilpold et al. 2023). The A14 site is, in fact, located between two wetland zones (bogs; Fig. 450 451 1 and Fig. S1; Supplementary Material). The P8 and A15 sites are located near diffuse water-logged soils, and are likely impacted by the emergence of shallow groundwater (and by the spring in A15). 452 453 High H_2 concentrations in the apparently dry meadows of P1 and other sites, such as n. 12 and 22, as 454 observed in the September 2021 survey (Table S2), were less expected. We could not obtain specific 455 information regarding the depth of local aquifers. However, we could not exclude the existence of 456 substantial organic matter under anaerobic conditions at shallow depth, induced by near surface water 457 flows (the meadows around P1 host drainage channels), as is typical of Alpine proglacial zones and 458 hillslopes (e.g., Müller et al. 2022; Penna et al. 2015).

459 Delving into the particular microbiological and environmental factors that could contribute to the 460 high amounts of H₂, CH₄, and CO₂ was beyond the purview of our study, since our goal was to 461 exclusively figure out whether H₂ and associated gases are geological. Additional research is required 462 to broaden the current understanding of the soil's capacity for H₂ production and syntrophic 463 consumption (Piché-Choquette and Constant, 2019; Meinel et al. 2022). Oxygenation (H₂ was extracted from aerated soils) and H₂S (observed at the richest H₂ sites) are known to be strong 464 465 inhibitors of H₂ consumption. These and other potential inhibitors, such as organic acids and alcohols 466 (Oremland and Taylor, 1975; Hoeler et al. 1998; Schmidt et al. 2016), will be considered in future 467 studies. Studying the variation of H_2 with depth within the soil (as suggested in Zgonnik et al., 2015) 468 could also be considered in a future work, but in our case this approach may not be effective in 469 determining the source of H₂: in fact, in the vadose zone H₂ may increase with depth either if the gas 470 migrates from deeper geological formations or is generated in moist subsoil and aquifers. Geological 471 seepage could potentially be detected exclusively through boreholes that penetrate the bedrock 472 beneath aquifers, on the condition that artificial H₂ production associated with drilling (as 473 documented in Halas et al. 2021) can be disregarded.

475 5.5 Geological or biological H_2 ?

476 Table 2 summarizes multiple indicators, considered in this work, which may suggest a geological or 477 biological origin for the H₂ observed within the Pusteria and Anterselva Valleys. No single indicator unequivocally demonstrates that H₂ is geological. Microbial origin is, instead, supported by multiple 478 479 lines of evidence. The ¹⁴C-enrichment of CO_2 is, in particular, a strong indication that H_2 is also microbial. While methanogenesis near the surface may develop through the use of geological H₂, 480 481 modern CO₂ is compatible with acetogenesis during fermentation, for which H₂ and H₂S (the latter 482 was observed at high CH₄-H₂-CO₂ sites) are typical products (i.e. Ye et al. 2014). The existence of 483 geological H₂ degassing at sites dominated by microbial gas would be a tremendous coincidence. The 484 coexistence of crustal helium (⁴He) anomalies and hydrogen in the soil was suggested as a crucial element in determining the deep source of hydrogen, hence minimizing the possibility of 485 486 misinterpreting surface biological hydrogen detection (e.g., Prinzhofer et al. 2024). Nevertheless, this concept is valid only if the potential ⁴He radiogenic source rocks, such as granite basement and 487 488 intrusions, are quite deep (e.g., within sedimentary basins). It is well known that in areas with shallow 489 or outcropping crystalline basement, crustal helium in soil-gas is not a deep gas tracer, but it reflects 490 groundwater circulation in fractured igneous rocks at shallow depths (e.g., Gregory and Durrance, 491 1987; Gascoyne et al. 1993). Therefore, detecting ⁴He soil-gas anomalies in the Pusteria region, where 492 the Australpine crystalline basement is exposed (Supplementary Material), may not be conclusive. 493 Mantle-derived ³He is virtually absent in near-surface groundwaters of the Central and Eastern Alps 494 (Marty et al. 1992).

495

- 496
- 497

498 **6.** Conclusions

499 The results of this work suggest that aerated soils may host considerable amounts of microbial H_2 , as

500 observed for CH₄. This phenomenon should be considered in surface H₂ exploration guidelines.

501 Caution should, then, be paid when interpreting concentrations of H_2 in the soil in the order of 10^2 -

502 10³ ppmv, as in the case of the so-called "fairy circles" or "sub-circular depressions", which may host

wet ground. Cursorily attributing a geological origin to H_2 in the soil, without a rigorous analysis of the isotopic composition of the associated gases, can be misleading. We demonstrated that radiocarbon analysis of CH₄ and CO₂ is a decisive interpretative tool.

506 The detected concentrations of microbial CH₄ and CO₂ also appear to be the highest ever reported in 507 the scientific literature for aerated soils. In this respect, our study represents a new reference for the 508 potential of microbial C-bearing gas production and greenhouse-gas cycle in surface environments. 509 Future research should address the biological reasons for the high H₂ levels, and related modern CO₂ 510 and CH_4 , focusing on the potential H_2 consumption inhibitors, such as oxygen, sulphide, organic acids 511 and alcohols. Acquiring further soil-gas and flux data in aerated and wet soils will be beneficial not 512 only for improving natural CH₄ emission estimates, but also for expanding the dataset of surface 513 biological H₂ generation, an essential baseline for the ongoing geological and geochemical 514 exploration of natural hydrogen.

515

516 **Data availability.**

517 All data acquired in this study are available in this paper and Supplementary data file.

518

519 **Declaration of competing interests**

520 The authors declare no competing interests or personal relationships that could have appeared to influence the521 work reported in this paper.

522

523 Acknowledgements

We acknowledge support from the Istituto Nazionale di Geofisica e Vulcanologia ("Sezione Roma 2 - Etiope"
project funds) and the Project SID (Investimento Strategico di Dipartimento) 2021 of University of Padova.
M. Sivan and the Thermo Ultra instrument are supported by the Netherlands Earth Science System Center
(NESSC), funded by the Ministry of Education, Culture and Science (OCW) and Utrecht University. We thank
c. van der Veen for the isotopic analyses at Utrecht University. R. Conrad, C. Vogt, and M.E. Popa offered

530	DNA amplification analyses and P. Stevanato for the availability of required facilities. We also thank L.
531	Ruggiero for help with soil sampling.
532	
533	Author contributions. GE designed the multidisciplinary study, executed field measurements and laboratory
534	FTIR analyses, interpreted all data, and developed the manuscript. GC, EB, RS and CM executed field
535	measurements, contributed to geological analysis and mapping. TR and MS performed methane bulk and
536	clumped isotope analyses. AS performed the microbiological analyses. TL, SS and NH performed the ¹⁴ C
537	analyses. All authors contributed to data interpretation and manuscript refinement.
538	
539	Supplementary Material
540	Supplementary text, figures and tables are annexed to this paper.
541	
542	References
543	
544	Angle, J.C., Morin, T.H., Solden, L.M., Narrowe, A.B., Smith, G.J., Borton, M.A., et al. (2017).
545	Methanogenesis in oxygenated soils is a substantial fraction of wetland methane emissions. Nature
546	Comm., 8, 1567, doi.org/10.1038/s41467-017-01753-4.
547	
548	Benà, E., Ciotoli, G., Ruggiero, L., Coletti, C., Bossew, P., Massironi, M., et al. (2022). Evaluation
549	of tectonically enhanced radon in fault zones by quantification of the radon activity index. Scientific
550	Reports, 12, 21586.
551	
552	Boreham, C.J., Edwards, D.S., Czado, K., Rollet, N., Wang, L., van der Wielen, S., et al. (2021).
553	Hydrogen in Australian natural gas: occurrences, sources and resources. The APPEA J., 61, 63-91.
554	
555	Brass, M., Röckmann, T. (2010). Continuous-flow isotope ratio mass spectrometry method for
556	carbon and hydrogen isotope measurements on atmospheric methane, Atmos. Meas. Tech., 3, 1707-
557	1721.
558	
559	Carrillo Ramirez, A., Gonzalez Penagos, F., Rodriguez, G., Moretti, I. (2023). Natural H ₂ emissions
560	in Colombian ophiolites: first findings Geosciences 13 358
561	in coloniolan opinioneol. Inst findingo. Geoscienceol, 19, 556.
567	Chapton I.P. Glaser D.H. Chasar I.S. Burdige D.I. Hines M.F. Siegel D.I. Trambley, I.P.
502	Chanton, J.I., Olasci, I.I., Chasai, L.S., Duluige, D.J., Hilles, W.E., Slegel, D.I., Helliolay, L.D.,

fruitful discussions on biological H₂ production. A. Tondello is gratefully acknowledged for assistance in the

529

563 Cooper, W.T. (2008). Radiocarbon evidence for the importance of surface vegetation on fermentation

- and methanogenesis in contrasting types of boreal peatlands. Global Biogeoch. Cycles 22, GB4022,
 doi:10.1029/2008GB003274.
- 566
- 567 Chen Q., Popa M.E., Batenburg A.M., Röckmann T. (2015). Isotopic signatures of production and 568 uptake of H₂ by soil. Atmos. Chem. Phys., 15, 13003-21.
- 569
- 570 Conrad, R. (1996). Soil microorganisms as controllers of atmospheric trace gases (H₂, CO, CH₄, OCS,
 571 N₂O, and NO). Microbiol. Rev., 60, 609-640.
- 572
- 573 Conrad, R., Seiler, W. (1980) Contribution of hydrogen production by biological nitrogen fixation to
 574 the global hydrogen budget. J. Geoph. Res., Oceans, 85(C10), 5493-5498.
- 575
- Dunham, E.C., Dore, J.E., Skidmore, M.L. (2021). Lithogenic hydrogen supports microbial primary
 production in subglacial and proglacial environments. PNAS, 118, e2007051117.
- 578
- 579 Espic, C., Liechti, M., Battaglia, M., Paul, D., Röckmann, T., Szidat, S. (2019). Compound-specific
 580 radiocarbon analysis of atmospheric methane: a new preconcentration and purification setup.
 581 Radiocarbon, 61, 1461-1476, doi.org/10.1017/RDC.2019.76.
- 582
- Etiope, G. (2023). Massive release of natural hydrogen from a geological seep (Chimaera, Turkey):
 gas advection as a proxy of subsurface gas migration and pressurised accumulations. Int. J. Hydrogen
 Energy, 48, 9172-9184, doi.org/10.1016/j.ijhydene.2022.12.025.
- 586
- Etiope, G., Doezema, L., Pacheco, C. (2017). Emission of methane and heavier alkanes from the La
 Brea Tar Pits seepage area, Los Angeles. J. Geophys. Res. Atm., 122, 12,008-12,019. doi:
 10.1002/2017JD027675.
- 590
- 591 Etiope, G., Oze, C. (2022). Microbial vs abiotic origin of methane in continental serpentinized
 592 ultramafic rocks: a critical review and the need of a holistic approach. App. Geochem., 143, 105373,
 593 doi.org/10.1016/j.apgeochem.2022.105373
- 594
- 595 Etiope, G., Sherwood Lollar, B. (2013). Abiotic methane on Earth. Rev. Geophys. 51, 276–299,
 596 doi.org/10.1002/rog.20011.
- 597

598	Forde, O.N., Mayer, K.U., Cahill, A.G., Mayer, B., Cherry, J.A., Parker, B.L. (2018). Vadose zone
599	gas migration and surface effluxes after a controlled natural gas release into an unconfined shallow
600	aquifer. Vadose Zone, 17, 180033.
601	
602	Frery, E., Langhi, L., Maison, M., Moretti, I. (2021). Natural hydrogen seeps identified in the north
603	Perth Basin, western Australia. Int. J. Hydrogen Energy, 46, 31158-73.
604	
605	Gascoyne, M., Wuschke, D.M., Durrance, E.M. (1993). Fracture detection and groundwater flow
606	characterization using He and Rn in soil gases, Manitoba, Canada. Appl. Geochem., 8, 223-233.
607	
608	Gaucher, E.C. (2020). New perspectives in the industrial exploration for native hydrogen. Elements
609	16, 8-9.
610	
611	Geymond, U., Briolet, T., Combaudon, V., Sissmann, O., Martinez, I., Duttine, M., Moretti, I. (2023).
612	Reassessing the role of magnetite during natural hydrogen generation. Frontiers in Earth Science, 11,
613	1169356.
614	
615	Gregory, R.G., Durrance, E.M. (1987). Helium in soil gas: a method of mapping groundwater
616	circulation systems in fractured plutonic rock. Appl. Geochem., 2, 11-23.
617	
618	Halas, P., Dupuy, A., Franceschi, M., Bordmann, V., Fleury, J.M., Duclerc, D. (2021). Hydrogen
619	gas in circular depressions in South Gironde, France: Flux, stock, or artefact? App. Geochem., 127,
620	104928.
621	
622	Hammer, S., Levin, I. (2009). Seasonal variation of the molecular hydrogen uptake by soils inferred
623	from continuous atmospheric observations in Heidelberg, southwest Germany. Tellus B: Chemical
624	and Physical Meteorology, 61, doi:10.1111/j.1600-0889.2009.00417.x.
625	
626	Hilpold, A., Anderle, M., Guariento, E., Marsoner, T., Mina, M., Paniccia, C., Plunger, J., Rigo, F.,
627	Rüdisser J., Scotti, A., Seeber, J., Steinwandter, M., Stifter, S., Strobl, J., Suarez-Muñoz, M., Vanek,
628	M., Bottarin, R., Tappeiner, U. (2023). Biodiversity Monitoring South Tyrol - Handbook,
629	Bozen/Bolzano, Italy, Eurac Research, doi.org/10.57749/2qm9-fq40
630	

- Hinkle, M. (1994). Environmental conditions affecting concentrations of He, CO₂, O₂ and N₂ in soil
 gases. Appl. Geochem. 9, 53–63.
- 633
- Hoehler, T.M., Alperin, M.J., Albert, D.B., Martens, C.S. (1998). Thermodynamic control on
 hydrogen concentrations in anoxic sediments. Geochim. Cosmoch. Acta, 62, 1745-1756.
- 636
- Hofmann, K., Praeg, N., Mutschlechner, M., Wagner, A.O., Illmer, P. (2016). Abundance and
 potential metabolic activity of methanogens in well-aerated forest and grassland soils of an alpine
 region. FEMS microbiology ecology, 92(2), fiv171.
- 640
- Hornibrook, E.R., Longstaffe, F.J., Fyfe, W.S. (1997). Spatial distribution of microbial methane
 production pathways in temperate zone wetland soils: Stable carbon and hydrogen isotope evidence.
 Geochim. Cosmoch. Acta, 61, 745-753.
- 644
- 645 IEA (2023). Global Hydrogen Review 2023, IEA, Paris https://www.iea.org/reports/global646 hydrogen-review-2023,
- 647

Kinnaman, F.S., Valentine, D.L., Tyler, S.C. (2007). Carbon and hydrogen isotope fractionation
associated with the aerobic microbial oxidation of methane, ethane, propane and butane. Geochim.
Cosmochim. Acta 71, 271–283.

- 651
- Krämer, H., Conrad, R. (1993). Measurement of dissolved H₂ concentrations in methanogenic
 environments with a gas diffusion probe. FEMS Microbiology Ecology, 12, 149-158.
- 654
- Langhi, L., Strand, J. (2023). Exploring natural hydrogen hotspots: a review and soil-gas survey
 design for identifying seepage. Geoenergy, 1, doi.org/10.1144/geoenergy2023-014.
- 657
- Larin, N., Zgonnik, V., Rodina, S., Deville, E., Prinzhofer, A., Larin, V.N. (2015). Natural molecular
 hydrogen seepage associated with surficial, rounded depressions on the European craton in Russia.
 Nat. Resour. Res., 24, 369-383.
- 661
- Lefeuvre, N., Truche, L., Donz., F.-V., Ducoux, M., Barr., G., Fakoury, R.-A., et al. (2021). Native
 H₂ exploration in the western Pyrenean foothills. Geochemistry, Geophysics, Geosystems, 22,
 e2021GC009917, doi.org/10.1029/2021GC009917

- Lévy, D., Roche, V., Pasquet, G., Combaudon, V., Geymond, U., Loiseau, K., Moretti, I. (2023).
 Natural H₂ exploration: tools and workflows to characterize a play. Sci. Tech. Energ. Transition, 78,
 27, doi.org/10.2516/stet/2023021
- 669
- Marty, B., O'Nions, R.K., Oxburgh, E.R., Martel, D., Lombardi, S. (1992). Helium isotopes in Alpine
 regions. Tectonophysics, 206, 71-78.
- 672
- Mathur, Y., Awosiji, V., Mukerji, T., Scheirer, A.H., Peters, K.E. (2023). Soil geochemistry of
 hydrogen and other gases along the San Andreas fault. Int. J. Hydrogen Energy, 50, 411-419.
- 675
- McMahon, C.J., Roberts, J.J., Johnson, G., Edlmann, K., Flude, S., Shipton, Z.K. (2023). Natural
 hydrogen seeps as analogues to inform monitoring of engineered geological hydrogen storage. Geol
 Soc Spec Publ., 528, doi.org/10.1144/SP528-2022-5.
- 679
- Meinel, M., Delgado, A.G., Ilhan, Z.E., Aguero, M.L., Aguiar, S., Krajmalnik-Brown, R., Torres,
 C.I. (2022). Organic carbon metabolism is a main determinant of hydrogen demand and dynamics in
 anaerobic soils. Chemosphere, 303, 134877.
- 683
- Milkov, A.V. (2022). Molecular hydrogen in surface and subsurface natural gases: abundance, origins
 and ideas for deliberate exploration. Earth Sci. Rev., 104063.
- 686
- Milkov, A.V., Etiope, G. (2018). Revised genetic diagrams for natural gases based on a global dataset
 of >20,000 samples. Org. Geochem. 125, 109–120.
- 689
- Moretti, I., Geymond, U., Pasquet, G., Aimar, L., Rabaute, A. (2022). Natural hydrogen emanations
 in Namibia: field acquisition and vegetation indexes from multispectral satellite image analysis. Int.
 J. Hydrogen Energy, 47, 35588-607.
- 693
- Morozumi, T., Shingubara, R., Suzuki, R., Kobayashi, H., Tei, S., Takano, S., et al. (2019).
 Estimating methane emissions using vegetation mapping in the taiga–tundra boundary of a northeastern Siberian lowland. Tellus B: Chem. Phys. Meteor., 71(1), 1581004.
- 697

698	Müller, T., Lane, S.N., Schaefli, B. (2022). Towards a hydrogeomorphological understanding of
699	proglacial catchments: an assessment of groundwater storage and release in an Alpine catchment.
700	Hydrology and Earth System Sciences, 26(23), 6029-6054.
701	
702	Newell, K.D., Doveton, J.H., Merriam, D.F., Gilevska, T., Waggoner, W.M., Magnuson, L.M.
703	(2007). H ₂ -rich and hydrocarbon gas recovered in a deep Precambrian well in Northeastern Kansas.
704	Nat. Resour. Res., 16, 277–292.
705	
706	Ogata, H., Lubitz, W. (2021). Bioenergetics Theory and Components Hydrogenases Structure and
707	Function, Editor: J. Jez, Encyclopedia of Biological Chemistry III (Third Edition), Elsevier, 66-73.
708	
709	Oremland, R.S., Taylor, B.F. (1975). Inhibition of methanogenesis in marine sediments by
710	acetylene and ethylene: validity of the acetylene reduction assay for anaerobic microcosms. App.
711	Microbiol., 30, 707-709.
712	
713	Osselin, F., Soulaine, C., Fauguerolles, C., Gaucher, E. C., Scaillet, B., Pichavant, M. (2022).
714	Orange hydrogen is the new green. Nature Geoscience, 15, 765-769.
715	
716	Pal, D.S., Tripathee, R., Reid, M.C., Schäfer, K.V., Jaffé, P.R. (2018). Simultaneous measurements
717	of dissolved CH ₄ and H ₂ in wetland soils. Environm. Monitor. Assess., 190, 1-11.
718	
719	Pathirana, S.L., van der Veen, C., Popa, M.E., Röckmann, T. (2015). An analytical system for stable
720	isotope analysis on carbon monoxide using continuous-flow isotope-ratio mass spectrometry, Atmos.
721	Meas. Tech., 8, 5315-5324, 10.5194/amt-8-5315-2015.
722	
723	Paulot, F., Paynter, D., Naik, V., Malyshev, S., Menzel, R., Horowitz, L.W. (2021). Global modeling
724	of hydrogen using GFDL-AM4.1: Sensitivity of soil removal and radiative forcing. Int. J. Hydrogen
725	Energy, 46, 13446-13460.
726	
727	Penna, D., Mantese, N., Hopp, L., Dalla Fontana, G., Borga, M. (2015). Spatio-temporal variability
728	of piezometric response on two steep alpine hillslopes. Hydrological Processes, 29, 198-211.
729	
730	Piché-Choquette, S., Constant, P. (2019). Molecular hydrogen, a neglected key driver of soil
731	biogeochemical processes. Appl. Environm. Microbiology, 85, e02418-18.

733	Prinzhofer, A., Cissé, C.S.T., Diallo, A.B. (2018). Discovery of a large accumulation of natural
734	hydrogen in Bourakebougou (Mali). Int. J. Hydrogen Energy, 43, 19315–19326.
735	
736	Prinzhofer, A., Moretti, I., Francolin, J., Pacheco, C., d'Agostino, A., Werly, J., et al. (2019). Natural
737	hydrogen continuous emission from sedimentary basins: the example of a Brazilian H2-emitting
738	structure. Int. J. Hydrogen Energy, 44, 5676-85.
739	
740	Prinzhofer, A., Rigollet, C., Lefeuvre, N., Françolin, J., de Miranda, P.E.V. (2024). Maricá (Brazil),
741	the new natural hydrogen play which changes the paradigm of hydrogen exploration. Int. J. Hydrogen
742	Energy, 62, 91-98.
743	
744	Rhee, T.S., Brenninkmeijer, C.A.M., Röckmann, T. (2006). The overwhelming role of soils in the
745	global atmospheric hydrogen cycle. Atmos. Chem. Phys., 6, 1611-1625, doi.org/10.5194/acp-6-
746	<u>1611-2006</u> .
747	
748	Rigollet, C., Prinzhofer, A. (2022). Natural Hydrogen: a new source of carbon-free and renewable
749	energy that can compete with hydrocarbons. First Break, 40, 78-84.
750	
751	Röckmann, T., Eyer, S., van der Veen, C., Popa, M. E., Tuzson, B., et al. (2016). In situ observations
752	of the isotopic composition of methane at the Cabauw tall tower site, Atmos. Chem. Phys., 16, 10469-
753	10487, doi.org/10.5194/acp-16-10469-2016.
754	
755	Ruff, M., Wacker, L., Gäggeler, H.W., Suter, M., Synal, HA., Szidat, S. (2007). A gas ion source
756	for radiocarbon measurements at 200 kV. Radiocarbon, 49, 307-314,
757	doi.org/10.1017/S0033822200042235.
758	
759	Schmidt, O., Hink, L., Horn, M.A., Drake, H.L. (2016). Peat: home to novel syntrophic species that
760	feed acetate- and hydrogen-scavenging methanogens. The ISME journal, 10, 1954-1966.
761	
762	Sherwood Lollar, B., Onstott, T.C., Lacrampe-Couloume, G., Ballentine, C.J. (2014). The
763	contribution of the Precambrian continental lithosphere to global H ₂ production. Nature 516, 379–
764	382. doi:10.1038/nature14017
765	

766	Sivan, M., Röckmann, T., van der Veen, C., Popa, M.E. (2023). Extraction, purification, and clumped
767	isotope analysis of methane (Δ^{13} CDH ₃ and Δ^{12} CD ₂ H ₂) from sources and the atmosphere, EGUsphere,
768	1-35, 10.5194/egusphere-2023-1906.
769	
770	Starkey, R.L., Wight, K.M. (1945). Anaerobic corrosion of iron in soil. American Gas Association,
771	New York, pp.108.
772	
773	Sugimoto, A., Fujita, N. (2006). Hydrogen concentration and stable isotopic composition of methane
774	in bubble gas observed in a natural wetland. Biogeochemistry, 81, 33-44.
775	
776	Sugisaki, R., Ido, M., Takeda, H., Isobe, Y., Hayashi, Y., Nakamura, N., et al. (1983). Origin of
777	hydrogen and carbon dioxide in fault gases and its relation to fault activity. J. Geol. 91, 239–258.
778	
779	Trumbore, S.E., Bubier, J.L., Harden, J.W., Crill, P.M. (1999). Carbon cycling in boreal wetlands: a
780	comparison of three approaches. J. Geophys. Res., Atmospheres 104, D22, 27673-27682.
781	
782	Umezawa, T., Brenninkmeijer, C. A. M., Röckmann, T., van der Veen, C., Tyler, S. C., Fujita, R.,
783	Morimoto, S., Aoki, S., Sowers, T., Schmitt, J., Bock, M., Beck, J., Fischer, H., Michel, S. E.,
784	Vaughn, B. H., Miller, J. B., White, J. W. C., Brailsford, G., Schaefer, H., Sperlich, P., Brand, W. A.,
785	Rothe, M., Blunier, T., Lowry, D., Fisher, R. E., Nisbet, E. G., Rice, A. L., Bergamaschi, P., Veidt,
786	C., Levin, I. (2018). Interlaboratory comparison of $\delta^{13}C$ and δD measurements of atmospheric CH ₄
787	for combined use of data sets from different laboratories. Atmos. Meas. Tech. 11(2), 1207-1231,
788	doi.org/10.5194/amt-11-1207-2018.
789	
790	Vacquand, C., Deville, E., Beaumont, V., Guyot, F., Sissmann, O., Pillot, D., Arcilla, C., Prinzhofer,
791	A. (2018). Reduced gas seepages in ophiolitic complexes: evidences for multiple origins of the H ₂ -
792	CH ₄ -N ₂ gas mixtures. Geochem. Cosmochim. Acta 233, 437–461.
793	
794	Valdez-Vazquez, I., Poggi-Varaldo, H.M. (2009). Hydrogen production by fermentative consortia.
795	Renewable and sustainable energy reviews, 13, 1000-1013.
796	
797	
798	Warr, O., Giunta, T., Ballentine, C.J., Sherwood Lollar, B. (2019). Mechanisms and rates of ⁴ He,
799	⁴⁰ Ar, and H ₂ production and accumulation in fracture fluids in Precambrian Shield environments.

- 800 Chem. Geol. 530, 119322, doi:10.1016/j.chemgeo.2019.119322
- 801
- Whiticar, M.J. (1999). Carbon and hydrogen isotope systematics of bacterial formation and oxidation
 of methane. Chemical Geology, 161, 291-314.
- 804
- 805 Wordell-Dietrich, P., Wotte, A., Rethemeyer, J., Bachmann, J., Helfrich, M., Kirfel, K., Leuschner,
- 806 C., Don, A. (2020). Vertical partitioning of CO₂ production in a forest soil. Biogeosciences, 17, 6341–
 807 6356, doi.org/10.5194/bg-17-6341-2020.
- 808
- Xiang, Y., Sun, X., Liu, D., Yan, L., Wang, B., Gao, X. (2020). Spatial distribution of Rn, CO₂, Hg,
 and H₂ concentrations in soil gas across a thrust fault in Xinjiang, China. Front. Earth Sci., 8,
 doi.org/10.3389/feart.2020.554924.
- 812
- Ye, R., Jin, Q., Bohannan, B., Keller, J.K., Bridgham, S.D. (2014). Homoacetogenesis: a potentially
 underappreciated carbon pathway in peatlands. Soil Biology and Biochemistry, 68, 385-391.
- 815
- Yedinak, E.M. (2022). The curious case of geologic hydrogen: assessing its potential as a near-term
 clean energy source. Joule, 6, 503-508.
- 818

819 Young, E.D., Kohl, I.E., Sherwood Lollar, B., Etiope, G., Rumble III, D., Li, S., Haghnegahdar, M.

820 A., Schauble, E.A., McCain, K.A., Foustoukos, D.I., Sutclife, C., Warr, O., Ballentine, C.J., Onstott,

- 821 T.C., Hosgormez, H., Neubeck, A., Marques, J.M., Pérez-Rodríguez, I., Rowe, A.R., LaRowe, D.E.,
- Magnabosco, C., Yeung, L.Y, Ash, J.L., Bryndzia, L.T. (2017). The relative abundances of resolved $^{12}CH_2D_2$ and $^{13}CH_3D$ and mechanisms controlling isotopic bond ordering in abiotic and biotic
- methane gases. Geochim. Cosmochim. Acta 203, 235-264, doi.org/10.1016/j.gca.2016.12.041.
 825
- Zgonnik, V. (2020). The occurrence and geoscience of natural hydrogen: a comprehensive review.
 Earth Sci Rev., 203, 103140.
- 828
- Zgonnik, V., Beaumont V., Deville E., Larin N., Pillot D., Farrell K.M. (2015). Evidence for natural
 molecular hydrogen seepage associated with Carolina bays (surficial, ovoid depressions on the
 Atlantic Coastal Plain, Province of the USA). Prog Earth Planet Sci., 2, 31.
- 832 833

- 834 **Figure captions**
- 835

Figure 1. Location map of soil-gas surveys and the richest H₂-CH₄-CO₂ sites within the Pusteria and
Anterselva Valleys. All data are provided in Table S2. Springs where dissolved gas was examined:
S- Salomone; C- Casanova Neuhaus; T- Teodone fountain; TM- Teodone Museum; G- San Giovanni.
Faults: DAV- Deffereggen-Anterselva-Valles Fault (mylonitic zone); KV- Kalkstein-Vallarga Fault;
PF- Pusteria Fault. Geology and faults are from Benà et al. (2022). Geological details are provided in

- the Supplementary Material. Wetland location was extracted from the WebGIS of the Bolzano
- 842 Province (Geoportale Alto Adige, <u>https://geoportale.retecivica.bz.it/geodati.asp</u>).
- 843

Figure 2. The spatial distribution of H_2 and CO_2 in soil-gas along the Pusteria Valley. Contour lines were derived by Natural Neighbour interpolation of July 2021 soil-gas sampling points (black dots). Green stars refer to the H_2 -CH₄-CO₂ rich sites, also observed in all successive soil-gas surveys. Diamonds indicate other sites with high H_2 and CH₄ concentration (up to 370 ppmv and 9000 ppmv, respectively) observed during September 2021. Map base is from Digital Elevation Model (DEM) with resolution of 2.5 m. Wetland zones (brown squares) and faults are as shown in Fig. 1.

850

851 **Figure 3.** The bulk (A) and clumped (B) CH₄ isotopic composition in H₂-enriched soil-gas samples 852 of the Pusteria (P1, P8) and Anterselva (A14, A15) Valleys. Data from IMAU Lab (Table 1). CR: 853 Carbonate Reduction; F: Fermentation. Genetic plots: A, after Milkov and Etiope, (2018); B, after Etiope and Oze, (2022). Microbial oxidation trend (red dashed arrow in A) based on the $\delta^{13}C_{CH4-}$ 854 δ^2 H_{CH4} correlated variations with Δ H/ Δ C~8–9 (Kinnaman et al., 2007). ¹³C-enrichment of P1 may 855 856 reflect ¹³C-enriched CO₂ (Table 1) and substrate depletion. Paired with the modern ¹⁴C dating (Table 857 1), the bulk and clumped-isotopes signatures (within overlapping microbial-abiotic genetic zonation) 858 are all attributable to microbial origin. Measurement uncertainties do not extend beyond symbol size. 859

- Figure 4. The four H₂-rich samples, P1, P8, A14 and A15, within the combination of $\delta^{13}C_{CH4}$ and $\delta^{13}C_{CO2}$ for microbial gas. The carbon isotope partitioning trajectories resulting from both methanogenesis and oxidation processes are shown (redrawn from Whiticar, 1999). Isotopic data are from the LARA-ETH analyses of CO₂ and CH₄ executed in the same gas samples (Table S3).
- 864
- 865
- 866
- 867

868	
-----	--

869 **Table captions**

871	Table 1. Mean values of the isotopic composition of CH ₄ (bulk, clumped, radiocarbon) and CO ₂ (stable carbon

- 872 and radiocarbon) at the four, H_2 -rich soil-gas sampling sites. The complete dataset is reported in Table S3. Gas 873 samples were collected at the same sampling points at different times (within 30 min) and analysed in two
- 874 different laboratories (see Methods).
- 875
- 876
- 877 Table 2. A synopsis of indicators supporting a biological or geological origin for H₂ within the studied
 878 Alpine Valleys.

observations - potential bio-source - potential geo-source

Highlights

- High concentrations of H₂, CH₄ and CO₂ in soil resembling geological seepage
- Modern microbial CH₄ and CO₂ origin revealed by multiple isotopic analyses
- The highest concentrations of microbial CH₄ and CO₂ ever reported in aerated soils
- H₂ up to 1 vol.% in aerated soil may not necessarily be related to geological degassing
- Re-evaluation of the interpretation of H₂ in soils for natural hydrogen exploration

1 Surprising concentrations of hydrogen and non-geological methane and carbon

2 **dioxide in the soil**

3

4 Etiope G.^{1,2*}, Ciotoli G.^{3,1}, Benà E.⁴, Mazzoli, C.⁴, Röckmann T.⁵, Sivan M.⁵, Squartini A.⁶, Laemmel

6

7 ¹ Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Rome, Italy

8 ² Faculty of Environmental Science and Engineering, Babes-Bolyai University, Cluj-Napoca, Romania

9³ Consiglio Nazionale delle Ricerche, Istituto di Geologia Ambientale e Geoingegneria, Monterotondo, Italy

- ⁴ Dipartimento di Geoscienze, Università di Padova, Padova, Italy
- ⁵ Institute for Marine and Atmospheric Research Utrecht, Utrecht University, The Netherlands

12 ⁶ Department of Agronomy, Food, Natural Res., Animals and Environment, Università di Padova, Padova, Italy

⁷ Department of Chemistry, Biochemistry and Pharmaceutical Sciences & Oeschger Center for Climate Change

14 Research, University of Bern, Bern, Switzerland

15 ⁸ Geological Institute & Laboratory of Ion Beam Physics, ETHZ, Zurich, Switzerland

16 **Corresponding author: giuseppe.etiope@ingv.it*

17

18

19 Abstract

20 Due to its potential use as a carbon-free energy resource with minimal environmental and climate impacts, natural hydrogen (H₂) produced by subsurface geochemical processes is today the target of 21 22 intensive research. In H₂ exploration practices, bacteria are thought to swiftly consume H₂ and, therefore, small near-surface concentrations of H_2 , even orders of 10^2 ppmv in soils, are considered a 23 signal of active migration of geological gas, potentially revealing underground resources. Here, we 24 document an extraordinary case of a widespread occurrence of H₂ (up to 1 vol.%), together with 25 elevated concentrations of CH₄ and CO₂ (up to 51 and 27 vol.%, respectively), in aerated meadow 26 27 soils along Italian Alps valleys. Based on current literature, this finding would be classified as a discovery of pervasive and massive geological H₂ seepage. Nevertheless, an ensemble of gas 28 geochemical and soil microbiological analyses, including bulk and clumped CH₄ isotopes, 29 30 radiocarbon of CH₄ and CO₂, and DNA and *mcrA* gene quantitative polymerase chain reaction analyses, revealed that H₂ was only coupled to modern microbial gas. The H₂-CO₂-CH₄-H₂S 31 32 association, wet soil proximity, and the absence of other geogenic gases in soils and springs suggest 33 that H_2 derives from near-surface fermentation, rather than geological degassing. H_2 concentrations

⁵ T.⁷, Szidat S.⁷, Haghipour N.⁸, Sassi R.⁴

- up to 1 vol.% in soils are not conclusive evidence of deep gas seepage. This study provides a new
 reference for the potential of microbial H₂, CH₄ and CO₂ in soils, to be considered in H₂ exploration
 guidelines and soil carbon and greenhouse-gas cycle research.
- 37

38 Keywords: Natural hydrogen, methane, carbon dioxide, soil-gas, radiocarbon

- 39
- 40

41 **1. Introduction**

42 Natural hydrogen gas (H₂) produced by a variety of geochemical processes in crustal and mantle 43 rocks is currently sought-after for its use as a carbon-free energy resource with low environmental 44 and climate impacts (e.g., Gaucher, 2020; Rigollet and Prinzhofer, 2022; Yedinak, 2022). Together 45 with artificially produced hydrogen (e.g., black/gray, blue, green hydrogen; IEA, 2023) and the 46 hydrogen generation stimulated by geochemical reactions in the underground (orange hydrogen; Osselin et al. 2022), the naturally occurring geological H₂ (also referred to as "white" or "gold" 47 48 hydrogen) might contribute to new hydrogen economy implementation. The geochemical processes 49 generating subsurface H₂ are mostly related to water-rock reactions such as serpentinization (olivine 50 hydration), radiolysis, and several types of iron oxidation (Sherwood Lollar et al. 2014; Warr et al. 51 2019; Zgonnik, 2020; Milkov, 2022; Geymond et al. 2023). Relevant amounts (up to 98 vol.%) of H₂ 52 have been directly discovered in reservoirs intercepted by wells in the United States, Mali, Australia, 53 and the Russian Federation (Newell et al 2007; Prinzhofer et al. 2018; Boreham et al. 2021; Zgonnik, 54 2020 and references therein). In other countries, H_2 is increasingly reported at the surface in soil or 55 gas seeps (Zgonnik, 2020; Vacquand et al. 2018; Etiope, 2023; McMahon et al. 2023), and surface 56 geochemistry is becoming part of global H₂ exploration (Lefeuvre et al. 2021; Frery et al. 2021; Lévy 57 et al. 2023; Langhi and Strand, 2023). In soil-gas prospections, diffuse application of a paradigm 58 exists by which H₂ microbially generated in wet soils and aquifers is rapidly consumed by bacteria 59 and it should not occur in the aerated vadose zone (e.g., Rhee et al. 2006; Larin et al. 2015; Zgonnik

60 et al. 2015; Paulot et al. 2021). Therefore, the presence of H₂ in soil-gas, at concentrations on the order of 10^{1} - 10^{3} parts per million by volume (ppmv), is thought to be evidence of non-exogenous 61 62 sources, i.e., geological degassing (seepage) from underground sources. This concept has been 63 applied, for example, to so called "fairy circles" observed in Russia, the United States, Brazil, Australia, Namibia and Colombia (Larin et al. 2015; Zgonnik et al. 2015; Prinzhofer et al. 2019; Frery 64 65 et al. 2021; Moretti et al., 2022; Carrillo Ramirez et al. 2023), to Pyrenean soils (Lefeuvre et al. 2021), 66 to the San Andreas Fault in California (Mathur et al. 2023), and in proposed H₂ exploration guidelines 67 (Lévy et al. 2023). However, similar amounts of H₂ can be produced by multiple microbially mediated 68 processes, including fermentation in wet soils or shallow aquifers, N₂ fixation, and cellulose 69 decomposition by termites (Conrad and Seilert, 1980; Krämer and Conrad, 1993; Sugimoto and 70 Fujita, 2006; Pal et al. 2018), by the oxidation or corrosion of ferrous minerals (e.g., Starkey and 71 Wight, 1945), and by the hydration of silicate radicals in basaltic soils (Dunham et al. 2021). 72 Therefore, caution has been advised when cursorily attributing the term "seep" or "seepage" to soil-73 gas H_2 at ppmv levels (Etiope, 2023). H_2 may persist in soils due to inhibitors of syntrophic H_2 74 consumption such as hydrogen sulphide, alcohols, and organic acids (Hoeler et al. 1998; Schmidt et 75 al. 2016; Meinel et al. 2022). The primary issue for understanding the H₂ potential in the soils is the 76 paucity of available soil gas datasets. A few studies have focused on H₂ in soils as a tracer of faults 77 and seismicity (e.g., Sugisaki et al., 1983; Xiang et al. 2020). Bio-ecosystem studies have largely 78 addressed wetlands and the capacity of dry soil to act as an atmospheric H₂ sink, with a focus on 79 laboratory tests and modelling, and without extensive in situ soil-gas surveys (e.g., Conrad 1996; 80 Chen et al. 2015). As a result, insufficient data exists regarding background H₂ values, irrespective of 81 soil moisture content or geological setting. Understanding the origin of H₂ in soil-gas is also 82 complicated by the fact that biological and geological processes can produce H₂ with a similar 83 isotopic composition (²H/H, expressed as δ^2 H), therefore, isotopic analyses may not be conclusive 84 (Etiope, 2023). Given the issues outlined above, interpretations of H₂ origin should be based on a 85 multidisciplinary, integrated study, including a compositional and isotopic analysis of the gases
86 associated with H₂. Careful investigations of the geology and the ecosystem are also necessary.

87 Here, we present an apparently straightforward case of relevant H₂ concentrations in aerated soils, 88 reaching 1 vol.%, which, based on current scientific literature, would immediately be classified as 89 the discovery of pervasive and massive geological H₂ seepage. The study was performed in two 90 valleys within the Eastern Alps (the Pusteria and Anterselva Valleys) of northern Italy, where high 91 H₂ values, associated with high methane (CH₄) values, were accidentally discovered in a previous 92 soil-gas survey addressed to radon. The H₂ and CH₄ data, not published in the radon study (Benà et 93 al. 2022), boosted the present study due to their noteworthy concentrations. Since elevated levels of 94 H₂ in aerated soils are commonly attributed to crustal degassing of geological origin (Larin et al. 95 2015; Zgonnik et al. 2015; Prinzhofer et al. 2019; Frery et al. 2021; Lefeuvre et al. 2021; Moretti et 96 al., 2022), our objective was to assess whether the high H_2 concentrations in the two Alpine valleys 97 are actually of geological origin or, rather, are a product of near-surface biological processes. To this 98 aim, we carried out an ensemble of gas geochemical and microbiological investigations (listed in 99 Table S1), including a wide soil-gas survey and multiple isotopic and radiocarbon analysis of CH₄ 100 and CO₂ associated to H₂ in the soil. H₂ was also searched in several springs along the valleys. Surface 101 exploration of natural hydrogen has never made use of such an ensemble of analyses, particularly 102 radiocarbon analysis of CH₄ and CO₂ associated to H₂. Since the research was conceived as a surface 103 exploration of natural H₂ with the aim of understanding whether crustal degassing exists in the studied 104 area, investigating the specific biological and environmental elements that may have contributed to 105 the high levels of H₂ was beyond the scope of work. This study demonstrates the complexity of soil-106 gas interpretations of H₂ and presents a crucial case to consider for future research and natural H₂ 107 exploration guidelines.

- 108
- 109

```
110 2. Geological setting of Pusteria and Anterselva valleys
```

The Pusteria Valley develops along a segment of the Periadriatic lineament, the Pusteria Fault (PF), which is an East–West trending, a sub vertical aseismic fault with dextral transpressive strike-slip kinematics, representing the tectonic boundary between the Austroalpine crystalline basement to the north and the Southalpine basement to the south (Fig. 1; Schmid et al. 1989).

- 116
- 117

Figure 1

118

119 The Austroalpine crystalline basement in the Eastern Alps consists of pre-Variscan sequences. These 120 were mainly affected by a Variscan (320-350 Ma) metamorphic event covering the whole temperature range of the amphibolite and greenschist facies at metamorphic thermal gradients of about 40°C/km, 121 122 partly affected by Alpine metamorphic overprint (Sassi et al., 2004; Spiess et al., 2010). It is mainly 123 made up by paragneisses and micaschists (locally grading to migmatites), in which orthogneisses, 124 amphibolites, quartzites and marbles are interlayered. Eclogites, metabasites and metaultramafics 125 locally occur. The Southalpine crystalline basement in the Eastern Alps consists of a thick phyllitic 126 sequence affected by Variscan metamorphism under greenschist facies (Spiess et al. 2010). The 127 Austroalpine block is cut by two major E-W trending tectonic lines: the DAV (Deffereggen-128 Antholz/Anterselva-Vals/Valles fault (DAV) and the KV (Kalkstein-Vallarga) faults (Fig. 1). The 129 DAV is a ~80 km long mainly mylonitic shear zone with dominant sinistral strike slip delimiting towards the south the Alpine metamorphic overprint (Müller et al. 2000). The KV is a transpressive 130 131 strike-slip fault (Borsi et al., 1978). These two faults merge westwards close to the Insubric Line. 132 Based on seismic reflectors, Lammerer et al. (2011) suggest the presence of schists containing serpentinites at depths of at least 5 km, in correspondence with the DAV and PF lineaments. The 133 134 Anterselva Valley, is NNE-SSW oriented, was formed by glacial excavation along both the Austroalpine and Southalpine domains, and is crossed by the KV fault (Fig. 1). The soil features are 135 136 described in the Supplementary Material.

138 **3. Methods**

139

140 *3.1 Sampling and the on-site analysis of gas in soils.*

141 Soil-gas surveys were conducted during July 2021 (244 sampling points) and September 2021 (89 points, using two different sensors for both H₂ and CH₄, described below, with multiple 142 143 measurements surrounding the H_2 -rich points observed in July 2021). A check of H_2 and CH_4 was 144 repeated in August 2023 (16 points; Fig. 1 and Tables S1 and S2). In addition to the Pusteria Valley, 145 soil-gas surveys included the adjacent N-S trending Anterselva Valley, transversally crossed by a 146 fault (Fig. 1). Soil-gas sampling, conducted during July and September 2021, and August 2023 147 (Tables S1 and S2), was performed by pounding stainless-steel probes with a sliding hammer to depths of 60-80 cm. To minimize soil moisture, soil and air temperature and barometric pressure 148 149 effects (Hinkle, 1994), sampling was performed over a very short period of time and during stable 150 meteorological conditions. The probe was then connected to the following portable gas detectors, for 151 measuring H₂, CH₄, CO₂, O₂, and H₂S:

H₂: (a) A Dräger electrochemical sensor (DrägerSensor® XXS H₂, Dräger X-am 7000, Germany; accuracy $\leq 1\%$ of measured value; range 0-2000 ppmv) used during July and September 2021, and August 2023; (b) A Huberg semiconductor + pellistor sensor (Huberg Metrex 2, Italy; range 0-5 vol.%; accuracy $\leq 2\%$ at 1000 ppmv, and $\leq 1\%$ at 10,000 ppmv) used during September 2021. Further details and sensor intercomparison tests are reported in the Supplementary Material.

157 CH₄: (a) A Dräger infrared sensor (DrägerSensor® Smart IR CH₄, Dräger X-am 7000, Germany;
158 accuracy: ≤5%; range 0.1-100 vol.%) used during July and September 2021, and August 2023; (b) A
159 Tunable Diode Laser Adsorption Spectrometry (TDLAS) detector (Gazomat, France; precision 0.1
160 ppmv, lower detection limit 0.1 ppmv; range 0-100 vol.%) used during September 2021.

161 CO₂: (a) A Dräger infrared sensor (DrägerSensor® Smart IR CO₂ HC, Dräger X-am 7000, Germany;

162 accuracy: ≤0.2%; range 0-100 vol.%) used during July and September 2021, and August 2023; (b) A

163 Licor non-dispersive infrared sensor (Licor LI-820; accuracy <3% of reading; range 0-20,000 ppmv)

164 used during September 2021.

O₂: (a) A Dräger electrochemical sensor (DrägerSensor® XXS O₂, Dräger X-am 7000, Germany;
accuracy: ≤0.2%; range 0-25 vol.%) used during July and September 2021, and August 2023.

167 H₂S: (a) A Dräger electrochemical sensor (DrägerSensor® XXS H₂S, Dräger X-am 7000, Germany;

168 precision: 0.5 ppmv; range 0-200 ppmv) used during July and September 2021, and August 2023.

169 The spatial distribution of H₂ and CO₂ in soil-gas along the Pusteria Valley was derived by Natural

170 Neighbour interpolation of July 2021 soil-gas sampling points, using Surfer 23.1.162 (copyright
171 1993–2021, Golden Software, LLC).

H₂ and CH₄ fluxes from soils were measured using a closed chamber technique in 5 points at the P1 (Pusteria Valley) and A14 (Anterselva Valley) sites (Figure S1). A 30cm-diameter static accumulation chamber was connected to the semiconductor H₂ and laser CH₄ sensors described above, using the same procedure in Etiope (2023) and Etiope et al (2017).

At sites P1, P8, A14, and A15, soil-gas samples were collected for the laboratory analyses described
below. Gas was stored in evacuated Teflon bags and Wheaton bottles sealed with gas impermeable,
thick, blue butyl septa (Bellco Glass Inc., NJ, USA) and aluminum crimp caps.

179

180 *3.2 Sampling and the on-site analysis of gas dissolved in spring water.*

181 CH₄ and H₂ were analysed in five spring water samples collected along the Pusteria and Anterselva 182 Valleys (the spring name and location are reported in Fig. 1). Dissolved gas was extracted via an 183 equilibration head-space method in 500 mL Duran bottles, and analysed using the TDLAS (for CH₄) 184 and the semiconductor sensor (for H₂) described above.

185

186 *3.3 Laboratory analyses of gas samples.*

187

188 3.3.1 Analysis of C_2 - C_6 hydrocarbons.

The presence of C_{2+} volatile hydrocarbons (ethane, propane, butane, pentane, and hexane) in the four, high-CH₄ soil-gas samples, stored in Teflon bags, was checked by Fourier Transform Infrared Spectroscopy (FTIR, Gasmet DX-4030, Finland; lower detection limit 1 ppmv, accuracy $\pm 10\%$).

192

193 *3.3.2 CH*⁴ and CO₂ isotopic analyses.

To determine the stable carbon and hydrogen isotope composition of CH₄ ($\delta^{13}C_{CH4}$, $\delta^{2}H_{CH4}$), extracted 194 gas samples were first diluted to near-atmospheric CH₄ concentrations with synthetic air. Diluted 195 196 samples were then analysed on an automated IRMS system (Brass and Röckmann, 2010; Röckmann et al., 2016) with a typical precision of <0.1‰ for $\delta^{13}C_{CH4}$ and <2‰ for $\delta^{2}H_{CH4}$. The system has been 197 198 validated in international intercomparison programs (Umezawa et al., 2018). The CO₂ isotopic 199 composition was determined using a modified system that had originally been designed for CO 200 isotopic analysis (Pathirana et al., 2015). In CO_2 analysis mode, a small amount of gas is admitted to 201 the system and the Schütze reagent used to oxidize CO to CO₂ is by-passed, allowing the straightforward determination of δ^{13} C in CO₂. The system has been linked to international isotope 202 203 scales using reference cylinders prepared by the Max-Planck Institute for Biogeochemistry in Jena, 204 Germany. Multiple samples from the same soil-gas site have been analysed (Table S3). Bulk CH₄ 205 and CO₂ isotopic ratios are expressed as permil vs. the Vienna Peedee Belemnite (VPDB) standard 206 for C and the Vienna Standard Mean Ocean Water (VSMOW) standard for H.

207

208 *3.3.3 CH*⁴ *clumped-isotopes.*

For the clumped isotope analysis, CH₄ was separated from bulk gas and purified using a self-built High Concentration Extraction System (HCES) (Sivan et al., 2023). In the first step, the complete sample mixture is cryogenically collected on silica gel. Individual components are then separated on packed gas chromatographic columns (a 5m long 1/4" OD 5A molecular sieve column and a 2 m long 1/4" OD HayeSep D column) at 50°C using He as the carrier gas at a flow rate of 30 mL/min, after which purified CH₄ is again collected on silica gel. Sample amounts are chosen based on prior 215 information for CH₄ content to yield 4 mL of pure CH₄, which is required for the high-precision clumped isotope analysis. The clumped isotopic composition of extracted CH₄ was analysed using a 216 217 Thermo Ultra high-resolution IRMS. The typical measurement precision of a single measurement is 0.3‰ for Δ^{13} CH₃D and 2‰ for Δ^{12} CH₂D₂. Multiple purifications of laboratory gas mixtures yielded 218 219 results within these error estimates, indicating that the overall analytical procedure does not induce 220 variability beyond instrumental errors. The long-term reproducibility of the mass spectrometer is around 0.3‰ for Δ^{13} CDH₃ and 1.7‰ for Δ^{12} CD₂H₂. To link the theoretical temperature calibration 221 222 scale, isotope exchange experiments at various temperatures were performed using the laboratory 223 reference gas. CH₄ was equilibrated at temperatures ranging from 50 to 450°C using two different 224 catalysts: γ-Al₂O₃ for temperatures below 200°C and Pt on Al₂O₃ for 200-450°C. The experimental 225 setup and subsequent calculations are thoroughly explained in Sivan et al., (2023).

226

227 3.3.4 CH₄ and CO₂ radiocarbon (¹⁴C) and $\delta^{13}C$ analyses.

CH₄ and CO₂ were extracted from the four high-CH₄ soil-gas samples (i.e., P1, P8, A14, and A15, 228 229 see Table 1) at the Laboratory for the Analysis of Radiocarbon (LARA), University of Bern, 230 Switzerland, using an Acceleration Mass Spectrometry (AMS), with a methane preconcentration and 231 purification setup (Espic et al., 2019). Due to the high concentrations of CO₂ and CH₄ for the samples 232 from P1, A14 and A15, 0.6-2 mL of sample could be directly and manually injected into the gas 233 chromatograph (GC, 7890B, Agilent, USA). For the P8 sample, a preconcentration step was 234 necessary. The GC was equipped with a purged packed inlet, a packed column (ShinCarbon ST 235 80/100, 2 mm ID, L = 2 m, Restek, USA) and a thermal conductivity detector (TCD). He (purity = 236 99.999%, Carbagas, Switzerland) was used as a carrier gas. The oven was kept at 40°C for 4 min and 237 then heated to 250°C with a temperature ramp of +10°C/min, followed by a final cleaning step at 238 280°C for 3 minutes. The system was operated in constant pressure mode (20 psig), which caused a gradual decrease in the He carrier gas flow rate from 14 mL min⁻¹ to 9 mL min⁻¹ during heating. The 239 240 carbon-containing gases CO, CH₄, and CO₂ were well separated from each other, eluting at 3.5 min,

241 8 min, and 13 min, respectively. Pure CH₄ and CO₂ were trapped at liquid nitrogen temperatures in 242 individual traps filled with 0.4 g charcoal, transferred into 4 mm OD glass ampoules (for CH₄ after 243 combustion to CO₂ in a flow oven at 950°C using copper oxide wires of 0.5 mm diameter, Elementar, Germany) and sealed for isotope measurements. Radiocarbon and $\delta^{13}C$ analyses were performed at 244 LARA and at the Laboratory of Ion Beam Physics, ETH, Zürich, Switzerland, using a AMS 245 MICADAS (MIni CArbon DAting System), equipped with a gas ion source (Ruff et al., 2007). Glass 246 247 ampoules provided by LARA Bern were cracked in the gas inlet system, and the CO₂ was mixed with 248 He to ~5%, transferred into a syringe, and then fed into the ion source using a constant gas flow. Raw $^{14}C/^{12}C$, as well as $^{13}C/^{12}C$ ratios, were converted into $F^{14}C$ and $\delta^{13}C$ values, respectively, by 249 250 performing a blank subtraction, and a standard normalization and correction for isotope fractionations 251 (only for F¹⁴C) using ¹⁴C-free CO₂ and CO₂ produced from the primary NIST standard oxalic acid II 252 (SRM 4990C), respectively, that were applied as ~5% mixtures with He. Multiple samples from the 253 same soil-gas site have been analysed (Table S3).

254

255 *3.3.5 Microbiological analysis of soil samples.*

256 Forty soil samples from seven drilling points were collected at multiple depths ranging from 10 to 257 105 cm below the ground's surface. Five samples were obtained within two zones with high CH₄ 258 concentrations (P1 and P8). Two samples were obtained at control sites, where CH4 was not detected 259 (at the time of soil sampling). Soil conditions are described in the Supplementary Material. To 260 identify the presence and abundance of methanogens, the methyl coenzyme M reductase A genetic 261 determinant (mcrA) was quantified using RealTime Polymerase Chain Reaction, PCR). We extracted 262 DNA and amplified two types of gene targets via PCR: the first target, (16S) encoding the small 263 protein subunit of the ribosome, is universally used to quantify total bacterial communities, while the 264 second target, mcrA, is specific for methanogens. Three replicates for each of the genes were 265 performed. Total DNA was extracted from 0.25 g of dried soil using the Qiagen DNeasy PowerSoil 266 kit as described by the manufacturer. Extracted DNA was quantified with a Qubit 3.0 fluorimeter

(Thermo Fisher Scientific, USA) using the Qubit[™] DNA HS Assay Kit (Thermo Fisher Scientific) 267 and stored at -20°C. RealTime qPCR was performed by a QuantStudio 5 system (Life Technologies, 268 269 USA). The qPCR reaction volume was equal to 5 μ L, 1 μ L of purified DNA solution and 4 μ L of 270 reaction mix, composed using 1.2 µL of PCR-grade water, 0.15 µL each of F and R primers (Table 271 S5), and 2.5 µL of Power SYBR Green PCR Master Mix with Taq polymerase (Applied Biosystems, 272 USA). qPCR thermal conditions were set to a pre-denaturing stage at 95°C for 10 minutes, followed by 40 cycles with a denaturation step at 95°C for 15 sec, an annealing step at 57°C for 60 sec, and an 273 274 extension at 72°C for 60 sec. For each amplification, a negative control of sterile MilliQ water was 275 run with three replicates.

- 276
- 277 **4. Results**
- 278

279 4.1 H₂, CH₄, and CO₂ concentrations in soils

280 We observed, both in the Pusteria and Anterseva valley, that H₂ was typically coupled to high CH₄ 281 and CO₂ concentrations (Table S2). During the first survey, H₂ was detected at 106 points (43% of 282 measured points), with concentrations ranging from 10 to 610 ppmv. In September 2021, at the P1 283 site, H₂ reached 1,700 ppmv (Fig. 1; Fig. S1), with 14 vol.% CH₄ and 27 vol.% CO₂. At site A14, H₂ 284 reached 10,000 ppmv (CH₄ reached 51 vol.% and CO₂ reached 15.5 vol.%). Repeated analysis at site 285 A14 (point 14a in Table S2) indicated a peak, with H₂ sensor saturation at 5 vol.% (although the 286 signal rapidly decreased and is not reported within the data table). The second and third surveys confirmed three sites with the highest H₂-CH₄-CO₂ concentrations (P1, P8, and A14) and revealed an 287 288 additional gas-rich site (A15, near the Salomone spring). Repeated measurements at the same soil-289 gas probe position revealed that H₂ concentrations frequently decreased over time, suggesting a 290 limited amount of gas available within intercepted aerated soil layers (see "Intercomparison of H₂ 291 sensors in the Supplementary Material). Interestingly, gas-rich soils (P1, P8, and, especially, A14 and

292	A15) were the only sites where H_2S was also detected (up to 200 ppmv, sensor upper range limit, at				
293	A14).				
294	The spatial distribution of soil-gas H_2 , compared with that of CO_2 (interpolation of the July 2021				
295	survey data), is shown in Fig. 2. The H ₂ distribution only partially coincides with two fault lineaments,				
296	the Pusteria Fault (PF) and the Kalkstein-Vallarga Fault (KV) (described in Supplementary Material).				
297	H ₂ concentrations exceeding 100 ppmv also occurred far from fault zones.				
298					
299	Figure 2				
300					
301					
302	4.2 Isotopic and radiocarbon composition CH_4 and CO_2				
303	The stable C and H isotope composition of CH_4 at the four H_2 -rich sites is reported in Table 1 and				
304	Fig. 3. The values are typical of microbial methanogenesis in peatlands and wetlands (Whiticar,				
305	1999). The ¹³ C-enriched CH ₄ of P1 (-41.6 ‰; Table 1) is coupled to a relevant concentration of				
306	slightly ¹³ C-enriched CO ₂ (up to 27 vol.% detected on-site; $\delta^{13}C_{CO2}$: -17.9 ‰, which is within the				
307	range of the isotopic composition of CO ₂ in freshwater environments; Whiticar, 1999; Figure 3). The				
308	radiocarbon content of CH_4 in all four sites ($F^{14}C > 1$; Table 1) confirmed modern microbial origin.				
309	The paired CH ₄ clumped isotopes ($\Delta^{12}CH_2D_2 - \Delta^{13}CH_3D$) of CH ₄ measured at P1 and A15 are in				
310	thermodynamic disequilibrium (Fig. 3B), which is typical of CH4 generated via microbial pathways				
311	at relatively low temperatures (Young et al., 2017; Sivan et al., 2023). CO ₂ at all four H ₂ -rich sites is				
312	also modern ($F^{14}C: 0.8$ to >1; Table 1).				
313					
314	Figure 3				
315					
316	Figure 4				

318

319 4.3 Gas flux measurements

The CH₄ and H₂ flux measurements by closed-chamber technique performed in 5 points at the P1 (Pusteria Valley) and A14 (Anterselva Valley) sites (Figures 1 and S1) did not show any exhalation of the two gases. No gas concentration build-up was recorded within the chamber. Three measurements showed a negative CH₄ flux (-4, -4 and -5 mg m⁻² day⁻¹), indicating methanotrophic consumption.

325

326 *4.4 Analysis of gaseous hydrocarbons heavier than methane.*

327 C₂₊ volatile hydrocarbons (ethane, propane, butane, pentane, and hexane) in the four, high-CH₄ soil-

328 gas samples were below the FTIR detection limit of 1 ppmv (Table S4).

329

330 4.5 Analysis of H₂ and CH₄ dissolved in spring waters

331 In the five springs along the Pusteria and Anterselva Valleys (Fig. 1), CH₄ concentrations were always

in equilibrium with the atmosphere, and H₂ concentrations were below detection limits (1.5-2 ppmv

333 CH₄ and 5 ppmv H₂ within the extracted head-space, respectively).

334

335 4.6 DNA and mcrA gene quantitative polymerase chain reaction –qPCR- analyses

The microbiological analyses, performed on 40 soil samples from seven drilling points, clearly indicate that CH₄-rich sites (P1 and P8) host higher amounts of methanogenic bacteria as compared to the two control (no CH₄) sites (P1-BG and P8-BG) (Table S6). As expected, the quantity of methanogens initially increased with depth following lower redox potential. However, at approximately 40-60 cm the increase was attenuated and a decrease occurred, likely due to overall harsher conditions. At one of the richest CH₄ sites (P8b), the highest concentration of active bacteria was shallower (30 cm) than for the other sites.

344 **5. Discussion**

345

346 5.1 Multiple isotopic analyses unveiled a modern microbial origin for CH₄ and CO₂

347 The bulk isotopic composition of CH₄ and CO₂ suggest a biological origin of these gases (Figures 3 and 4). The ¹³C-enrichment of CH₄ at P1 (δ^{13} C: -41.6 ‰) could be related to substrate depletion or 348 oxidation (Whiticar, 1999). Although oxidation is commonly observed at shallow depths above 349 350 water-logged sediments (e.g., Hornibrook et al. 1997), there is no corresponding ²H-enrichment in P1 (Fig. 3). Overall, the isotopic CH₄ and CO₂ data were compatible to signatures of methyl-351 352 fermentation (Fig. 4; Whiticar, 1999). The radiocarbon content of CH₄ and CO₂ in all four CH₄-CO₂rich sites ($F^{14}C > 1$) confirmed modern microbial origin. Accordingly, an attribution to the 353 overlapping abiotic genetic field in the clumped isotope diagram (Fig. 3B) is excluded. Therefore, 354 355 the observed CH₄ is not a geological carrier of H₂.

The radiocarbon data represent a key finding because they clarifies that H_2 is only associated with modern microbial gases, which are all typical of fermentation. Since methanogens may thrive on any type of H_2 , microbial CH₄ alone does not allow us to exclude a geological origin for H_2 ; but the presence of microbial CO₂ corroborates an exclusion because it is typically co-produced with H_2 during acetogenesis (Ye et al. 2014).

Understanding specific CH₄ and CO₂ sources, and potential isotopic C fractionation in the soil, was beyond the scope of this study; such an undertaking requires gas and organic matter ¹⁴C analyses at multiple depths (e.g. Wordell-Dietrich et al. 2020). The unequivocal isotopic data demonstrated that microbial and modern CH₄ and CO₂ can reach elevated concentrations in aerated soil (up to >50 vol.% CH₄ and >20 vol.% CO₂). Similar CH₄ and CO₂ concentrations are common in landfill soils, where waste is decomposed by aerobic methanogenesis. However, we were unable to locate any reports of such high levels of microbial gas in natural aerated soils.

368 Whether or not the observed large quantities of CH_4 (up to 51 vol.%) were totally or partially 369 produced in aerated soil portions (using CO_2 and H_2 migrating from fermentation sites) remains 370 undetermined. Methanogenesis in the aerated soils is a known process: as in our case, it was reported 371 around wetlands (Angle et al. 2017) and in Tyrol Alpine soils (Hofmann et al., 2016). Due to the 372 inherent reversibility of hydrogenase-encoding enzymes, leading to either the emission or 373 consumption of H₂, depending on fluctuating metabolic requirements (Ogata and Lubitz, 2021), the 374 detection of specific H₂ producing bacteria remained elusive. Nevertheless, the overall bacterial 375 population (universal for the 16S ribosomal gene), which was several orders of magnitude higher 376 than the methanogenic population, was particularly high at the P1 site. Therefore, it is possible that 377 such an extra population included H₂ producers. H₂-generating metabolism is widespread across very 378 diverse prokaryotic groups, and encompasses anaerobic gram positives, enterobacteria, symbiotic or 379 free-living nitrogen-fixing bacteria, photosynthetic cyanobacteria, and sulphur bacteria.

380

381 5.2 No evidence of crustal degassing

382 H_2 and tectonic faults. The Pusteria Valley develops along a regional fault system, but the spatial 383 distribution of soil-gas H₂, derived by interpolation of the July 2021 survey data (Fig. 2), only partially 384 coincides with two fault lineaments, the Pusteria Fault (PF) and the Kalkstein-Vallarga Fault (KV) 385 (see Supplementary Material). The P1 H₂-rich site, located near the PF trace, actually hosts high 386 concentrations of microbial modern CO_2 , which obviously is not a result of fault degassing (Fig. 2). 387 Rather than faults, H_2 and CO_2 appear to generally follow the valley slope and bottom, which include 388 flat areas, channels and depressions. These are zones of low relative elevation, inducing water 389 accumulation, shallow groundwater flows, and increased soil moisture, factors that contribute to near-390 surface microbial gas production (e.g., Morozumi et al. 2019). Further ¹⁴C analyses should be performed in other soil-gas sites along the PF to unambiguously identify possible geological 391 392 degassing processes.

393 *No gas exhalation to the atmosphere*. Dry soil is known to be a net sink of H_2 , with rapid H_2 394 consumption corroborated by negative fluxes (Conrad, 1996; Hammer and Levin, 2009; Chen et al., 395 2015). The presence of advective exhalation of H_2 from the soil to the atmosphere is, therefore, 396 considered to be a potential proxy for subsurface gas migration (Etiope, 2023). The flux 397 measurements of CH₄ and H₂ obtained using the closed-chamber technique within the richest gas 398 sites during September 2021 (Fig. 1) did not show the presence of active seepage. Gas concentrations 399 within the chamber were monitored over a five-minute interval, an interval that, with the specific 400 chamber-sensor system used, is generally sufficient to detect fluxes typical of active seeps (Etiope et 401 al. 2017; Etiope, 2023). The measurements suggest that the CH₄-H₂ concentrations within the soil are 402 not due to active, pressure-driven gas migration (seepage). High gas concentrations in soil pores 403 associated with a lack of fluxes to the atmosphere are more frequently related to small, low-pressure pockets of in situ originated gas (Forde et al. 2018; Etiope, 2023). Despite the possibility that silty 404 405 material and wet layers may restrict the gas flow above the soil-gas sample depth (60-80 cm), the 406 negative CH₄ flux observed in three locations, which suggests methanotrophic consumption, typical 407 of dry soil, still points to the presence of air movement in the upper soil layers.

408 No heavier hydrocarbons in soils and no geological gas in springs. The lack of gaseous hydrocarbons 409 heavier than methane in the soil, which may be produced in deep C-rich rocks either by thermogenesis 410 or abiotic processes (Etiope and Sherwood Lollar, 2013), and the absence of H₂ associated with CH₄ 411 in atmospheric equilibrium in the several springs, are additional indicators that the investigated 412 Alpine valleys do not host an appreciable crustal degassing. Other springs in the valleys did not have 413 any features that may suggest deep geothermal or serpentinization processes (no bubbling; pH < 9; 414 https://geoportale.retectivica.bz.it/geodati.asp). There were also no manifestations of gas seepage 415 within the area (no mofettes, no vegetation stress).

416

417 5.3. Microbiological activity in the soil

418 Although a large methanogenic population was detected in the investigated soils, whether or not the 419 observed large quantities of CH_4 (up to 51 vol.%) were totally or partially produced in aerated soil 420 portions (using CO_2 and H_2 migrating from fermentation sites) remains undetermined. 421 Methanogenesis in the aerated soils is a known process: as in our case, it was reported around 422 wetlands (Angle et al. 2017) and in Tyrol Alpine soils (Hofmann et al., 2016). Due to the inherent 423 reversibility of hydrogenase-encoding enzymes, leading to either the emission or consumption of H₂, 424 depending on fluctuating metabolic requirements (Ogata and Lubitz, 2021), the detection of specific 425 H₂ producing bacteria remained elusive. Nevertheless, the overall bacterial population (universal for the 16S ribosomal gene), which was several orders of magnitude higher than the methanogenic 426 427 population, was particularly high at the P1 site. Therefore, it is possible that such an extra population 428 included H₂ producers. H₂-generating metabolism is widespread across very diverse prokaryotic 429 groups, and encompasses anaerobic gram positives, enterobacteria, symbiotic or free-living nitrogen-430 fixing bacteria, photosynthetic cyanobacteria, and sulphur bacteria.

431

432 5.4 Potential biogenic sources of H₂ and CO₂

433 Although it can be hypothesized that methanogenic activity in the meadows could have been caused 434 by crustal H₂ degassing (where bacteria use geological H₂ as an energy source), the simultaneous 435 presence of high quantities of microbial CO₂ and H₂S is indicative of fermentation activity. CO₂, H₂S, 436 and H₂ are, in fact, all typical co-products of two stages of anaerobic digestion, acetogenesis (the 437 transformation of alcohols, and carbonic and fatty acids into gases) and, subordinately, acidogenesis 438 (the conversion of sugars and amino acids; Valdez-Vazquez and Poggi-Varaldo, 2009). H₂ is a key 439 intermediate in anaerobic environments and these fermentation stages are particularly enhanced in 440 wet soils (Ye et al. 2014). While it is known that methanogenesis can occur in aerated soils (Angle et al. 2017; Hoffmann et al, 2016), fermentation requires anoxic conditions. The ¹⁴C content of CO₂ 441 suggests that the C feedstock (organic matter) is approximately 1200-1400 years old at P8 ($F^{14}C_{CO2}$: 442 0.846) and younger, influenced by the bomb spike ($F^{14}C_{CO2}$: >1), at the other three sites. These data 443 444 are typical of fermentation observed in wetlands, fens, bogs, and peat soils (Chanton et al. 2008; 445 Trumbore et al. 1999). Although we can assume that normal soil respiration (a common process in 446 aerobic soils, leading to CO₂ concentrations typically <1 vol.%) exists in all investigated sites, we 447 hypothesize that the large quantities of CO₂ (up to 27 vol.%), observed at depths of 60-80 cm, are

448 allochthonous (as well as the associated H₂, CH₄ and H₂S), and migrated from shallow wet soil layers 449 and/or adjacent water-logged strata (wetland, fens) that are widespread in Tyrol Alpine grasslands (Fig. 1; Hilpold et al. 2023). The A14 site is, in fact, located between two wetland zones (bogs; Fig. 450 451 1 and Fig. S1; Supplementary Material). The P8 and A15 sites are located near diffuse water-logged soils, and are likely impacted by the emergence of shallow groundwater (and by the spring in A15). 452 453 High H_2 concentrations in the apparently dry meadows of P1 and other sites, such as n. 12 and 22, as 454 observed in the September 2021 survey (Table S2), were less expected. We could not obtain specific 455 information regarding the depth of local aquifers. However, we could not exclude the existence of 456 substantial organic matter under anaerobic conditions at shallow depth, induced by near surface water 457 flows (the meadows around P1 host drainage channels), as is typical of Alpine proglacial zones and 458 hillslopes (e.g., Müller et al. 2022; Penna et al. 2015).

459 Delving into the particular microbiological and environmental factors that could contribute to the 460 high amounts of H₂, CH₄, and CO₂ was beyond the purview of our study, since our goal was to 461 exclusively figure out whether H₂ and associated gases are geological. Additional research is required 462 to broaden the current understanding of the soil's capacity for H₂ production and syntrophic 463 consumption (Piché-Choquette and Constant, 2019; Meinel et al. 2022). Oxygenation (H₂ was extracted from aerated soils) and H₂S (observed at the richest H₂ sites) are known to be strong 464 465 inhibitors of H₂ consumption. These and other potential inhibitors, such as organic acids and alcohols 466 (Oremland and Taylor, 1975; Hoeler et al. 1998; Schmidt et al. 2016), will be considered in future 467 studies. Studying the variation of H_2 with depth within the soil (as suggested in Zgonnik et al., 2015) 468 could also be considered in a future work, but in our case this approach may not be effective in 469 determining the source of H₂: in fact, in the vadose zone H₂ may increase with depth either if the gas 470 migrates from deeper geological formations or is generated in moist subsoil and aquifers. Geological 471 seepage could potentially be detected exclusively through boreholes that penetrate the bedrock 472 beneath aquifers, on the condition that artificial H₂ production associated with drilling (as 473 documented in Halas et al. 2021) can be disregarded.

474

475 5.5 Geological or biological H_2 ?

476 Table 2 summarizes multiple indicators, considered in this work, which may suggest a geological or 477 biological origin for the H₂ observed within the Pusteria and Anterselva Valleys. No single indicator unequivocally demonstrates that H₂ is geological. Microbial origin is, instead, supported by multiple 478 479 lines of evidence. The ¹⁴C-enrichment of CO_2 is, in particular, a strong indication that H_2 is also microbial. While methanogenesis near the surface may develop through the use of geological H₂, 480 481 modern CO₂ is compatible with acetogenesis during fermentation, for which H₂ and H₂S (the latter 482 was observed at high CH₄-H₂-CO₂ sites) are typical products (i.e. Ye et al. 2014). The existence of 483 geological H₂ degassing at sites dominated by microbial gas would be a tremendous coincidence. The 484 coexistence of crustal helium (⁴He) anomalies and hydrogen in the soil was suggested as a crucial element in determining the deep source of hydrogen, hence minimizing the possibility of 485 486 misinterpreting surface biological hydrogen detection (e.g., Prinzhofer et al. 2024). Nevertheless, this concept is valid only if the potential ⁴He radiogenic source rocks, such as granite basement and 487 488 intrusions, are quite deep (e.g., within sedimentary basins). It is well known that in areas with shallow 489 or outcropping crystalline basement, crustal helium in soil-gas is not a deep gas tracer, but it reflects 490 groundwater circulation in fractured igneous rocks at shallow depths (e.g., Gregory and Durrance, 491 1987; Gascoyne et al. 1993). Therefore, detecting ⁴He soil-gas anomalies in the Pusteria region, where 492 the Australpine crystalline basement is exposed (Supplementary Material), may not be conclusive. 493 Mantle-derived ³He is virtually absent in near-surface groundwaters of the Central and Eastern Alps 494 (Marty et al. 1992).

495

- 496
- 497

498 **6.** Conclusions

The results of this work suggest that aerated soils may host considerable amounts of microbial H₂, as observed for CH₄. This phenomenon should be considered in surface H₂ exploration guidelines. Caution should, then, be paid when interpreting concentrations of H₂ in the soil in the order of 10^{2} - 10^{3} ppmv, as in the case of the so-called "fairy circles" or "sub-circular depressions", which may host wet ground. Cursorily attributing a geological origin to H₂ in the soil, without a rigorous analysis of the isotopic composition of the associated gases, can be misleading. We demonstrated that radiocarbon analysis of CH₄ and CO₂ is a decisive interpretative tool.

506 The detected concentrations of microbial CH₄ and CO₂ also appear to be the highest ever reported in 507 the scientific literature for aerated soils. In this respect, our study represents a new reference for the 508 potential of microbial C-bearing gas production and greenhouse-gas cycle in surface environments. 509 Future research should address the biological reasons for the high H₂ levels, and related modern CO₂ 510 and CH_4 , focusing on the potential H_2 consumption inhibitors, such as oxygen, sulphide, organic acids 511 and alcohols. Acquiring further soil-gas and flux data in aerated and wet soils will be beneficial not 512 only for improving natural CH₄ emission estimates, but also for expanding the dataset of surface 513 biological H₂ generation, an essential baseline for the ongoing geological and geochemical 514 exploration of natural hydrogen.

515

516 **Data availability.**

517 All data acquired in this study are available in this paper and Supplementary data file.

518

519 **Declaration of competing interests**

520 The authors declare no competing interests or personal relationships that could have appeared to influence the 521 work reported in this paper.

522

523 Acknowledgements

We acknowledge support from the Istituto Nazionale di Geofisica e Vulcanologia ("Sezione Roma 2 - Etiope"
project funds) and the Project SID (Investimento Strategico di Dipartimento) 2021 of University of Padova.
M. Sivan and the Thermo Ultra instrument are supported by the Netherlands Earth Science System Center
(NESSC), funded by the Ministry of Education, Culture and Science (OCW) and Utrecht University. We thank
c. van der Veen for the isotopic analyses at Utrecht University. R. Conrad, C. Vogt, and M.E. Popa offered

530	DNA amplification analyses and P. Stevanato for the availability of required facilities. We also thank L.
531	Ruggiero for help with soil sampling.
532	
533	Author contributions. GE designed the multidisciplinary study, executed field measurements and laboratory
534	FTIR analyses, interpreted all data, and developed the manuscript. GC, EB, RS and CM executed field
535	measurements, contributed to geological analysis and mapping. TR and MS performed methane bulk and
536	clumped isotope analyses. AS performed the microbiological analyses. TL, SS and NH performed the ¹⁴ C
537	analyses. All authors contributed to data interpretation and manuscript refinement.
538	
539	Supplementary Material
540	Supplementary text, figures and tables are annexed to this paper.
541	
542	References
543	
544	Angle, J.C., Morin, T.H., Solden, L.M., Narrowe, A.B., Smith, G.J., Borton, M.A., et al. (2017).
545	Methanogenesis in oxygenated soils is a substantial fraction of wetland methane emissions. Nature
546	Comm., 8, 1567, doi.org/10.1038/s41467-017-01753-4.
547	
548	Benà, E., Ciotoli, G., Ruggiero, L., Coletti, C., Bossew, P., Massironi, M., et al. (2022). Evaluation
549	of tectonically enhanced radon in fault zones by quantification of the radon activity index. Scientific
550	Reports, 12, 21586.
551	
552	Boreham, C.J., Edwards, D.S., Czado, K., Rollet, N., Wang, L., van der Wielen, S., et al. (2021).
553	Hydrogen in Australian natural gas: occurrences, sources and resources. The APPEA J., 61, 63-91.
554	
555	Brass, M., Röckmann, T. (2010). Continuous-flow isotope ratio mass spectrometry method for
556	carbon and hydrogen isotope measurements on atmospheric methane, Atmos. Meas. Tech., 3, 1707-
557	1721.
558	
559	Carrillo Ramirez, A., Gonzalez Penagos, F., Rodriguez, G., Moretti, I. (2023). Natural H ₂ emissions
560	in Colombian ophiolites: first findings Geosciences 13 358
561	in colonicium opinionico, mot micingo, ocobeloneos, 15, 550.
567	Chapton ID Glaser DH Chaser IS Burdige DI Uines ME Siegel DI Trembley I D
502	Chanton, J.I., Olasci, I.I., Chasai, L.S., Duluige, D.J., Hilles, W.E., Siegel, D.I., Helliblay, L.D.,

fruitful discussions on biological H₂ production. A. Tondello is gratefully acknowledged for assistance in the

529

563 Cooper, W.T. (2008). Radiocarbon evidence for the importance of surface vegetation on fermentation

- and methanogenesis in contrasting types of boreal peatlands. Global Biogeoch. Cycles 22, GB4022,
 doi:10.1029/2008GB003274.
- 566
- 567 Chen Q., Popa M.E., Batenburg A.M., Röckmann T. (2015). Isotopic signatures of production and 568 uptake of H₂ by soil. Atmos. Chem. Phys., 15, 13003-21.
- 569
- 570 Conrad, R. (1996). Soil microorganisms as controllers of atmospheric trace gases (H₂, CO, CH₄, OCS,
 571 N₂O, and NO). Microbiol. Rev., 60, 609-640.
- 572
- 573 Conrad, R., Seiler, W. (1980) Contribution of hydrogen production by biological nitrogen fixation to
 574 the global hydrogen budget. J. Geoph. Res., Oceans, 85(C10), 5493-5498.
- 575
- Dunham, E.C., Dore, J.E., Skidmore, M.L. (2021). Lithogenic hydrogen supports microbial primary
 production in subglacial and proglacial environments. PNAS, 118, e2007051117.
- 578
- 579 Espic, C., Liechti, M., Battaglia, M., Paul, D., Röckmann, T., Szidat, S. (2019). Compound-specific
 580 radiocarbon analysis of atmospheric methane: a new preconcentration and purification setup.
 581 Radiocarbon, 61, 1461-1476, doi.org/10.1017/RDC.2019.76.
- 582
- Etiope, G. (2023). Massive release of natural hydrogen from a geological seep (Chimaera, Turkey):
 gas advection as a proxy of subsurface gas migration and pressurised accumulations. Int. J. Hydrogen
 Energy, 48, 9172-9184, doi.org/10.1016/j.ijhydene.2022.12.025.
- 586
- Etiope, G., Doezema, L., Pacheco, C. (2017). Emission of methane and heavier alkanes from the La
 Brea Tar Pits seepage area, Los Angeles. J. Geophys. Res. Atm., 122, 12,008-12,019. doi:
 10.1002/2017JD027675.
- 590
- 591 Etiope, G., Oze, C. (2022). Microbial vs abiotic origin of methane in continental serpentinized
 592 ultramafic rocks: a critical review and the need of a holistic approach. App. Geochem., 143, 105373,
 593 doi.org/10.1016/j.apgeochem.2022.105373
- 594
- 595 Etiope, G., Sherwood Lollar, B. (2013). Abiotic methane on Earth. Rev. Geophys. 51, 276–299,
 596 doi.org/10.1002/rog.20011.
- 597

598	Forde, O.N., Mayer, K.U., Cahill, A.G., Mayer, B., Cherry, J.A., Parker, B.L. (2018). Vadose zone
599	gas migration and surface effluxes after a controlled natural gas release into an unconfined shallow
600	aquifer. Vadose Zone, 17, 180033.
601	
602	Frery, E., Langhi, L., Maison, M., Moretti, I. (2021). Natural hydrogen seeps identified in the north
603	Perth Basin, western Australia. Int. J. Hydrogen Energy, 46, 31158-73.
604	
605	Gascoyne, M., Wuschke, D.M., Durrance, E.M. (1993). Fracture detection and groundwater flow
606	characterization using He and Rn in soil gases, Manitoba, Canada. Appl. Geochem., 8, 223-233.
607	
608	Gaucher, E.C. (2020). New perspectives in the industrial exploration for native hydrogen. Elements
609	16, 8-9.
610	
611	Geymond, U., Briolet, T., Combaudon, V., Sissmann, O., Martinez, I., Duttine, M., Moretti, I. (2023).
612	Reassessing the role of magnetite during natural hydrogen generation. Frontiers in Earth Science, 11,
613	1169356.
614	
615	Gregory, R.G., Durrance, E.M. (1987). Helium in soil gas: a method of mapping groundwater
616	circulation systems in fractured plutonic rock. Appl. Geochem., 2, 11-23.
617	
618	Halas, P., Dupuy, A., Franceschi, M., Bordmann, V., Fleury, J.M., Duclerc, D. (2021). Hydrogen
619	gas in circular depressions in South Gironde, France: Flux, stock, or artefact? App. Geochem., 127,
620	104928.
621	
622	Hammer, S., Levin, I. (2009). Seasonal variation of the molecular hydrogen uptake by soils inferred
623	from continuous atmospheric observations in Heidelberg, southwest Germany. Tellus B: Chemical
624	and Physical Meteorology, 61, doi:10.1111/j.1600-0889.2009.00417.x.
625	
626	Hilpold, A., Anderle, M., Guariento, E., Marsoner, T., Mina, M., Paniccia, C., Plunger, J., Rigo, F.,
627	Rüdisser J., Scotti, A., Seeber, J., Steinwandter, M., Stifter, S., Strobl, J., Suarez-Muñoz, M., Vanek,
628	M., Bottarin, R., Tappeiner, U. (2023). Biodiversity Monitoring South Tyrol - Handbook,
629	Bozen/Bolzano, Italy, Eurac Research, doi.org/10.57749/2qm9-fq40
630	

- Hinkle, M. (1994). Environmental conditions affecting concentrations of He, CO₂, O₂ and N₂ in soil
 gases. Appl. Geochem. 9, 53–63.
- 633
- Hoehler, T.M., Alperin, M.J., Albert, D.B., Martens, C.S. (1998). Thermodynamic control on
 hydrogen concentrations in anoxic sediments. Geochim. Cosmoch. Acta, 62, 1745-1756.
- 636
- Hofmann, K., Praeg, N., Mutschlechner, M., Wagner, A.O., Illmer, P. (2016). Abundance and
 potential metabolic activity of methanogens in well-aerated forest and grassland soils of an alpine
 region. FEMS microbiology ecology, 92(2), fiv171.
- 640
- Hornibrook, E.R., Longstaffe, F.J., Fyfe, W.S. (1997). Spatial distribution of microbial methane
 production pathways in temperate zone wetland soils: Stable carbon and hydrogen isotope evidence.
 Geochim. Cosmoch. Acta, 61, 745-753.
- 644
- 645 IEA (2023). Global Hydrogen Review 2023, IEA, Paris https://www.iea.org/reports/global646 hydrogen-review-2023,
- 647

Kinnaman, F.S., Valentine, D.L., Tyler, S.C. (2007). Carbon and hydrogen isotope fractionation
associated with the aerobic microbial oxidation of methane, ethane, propane and butane. Geochim.
Cosmochim. Acta 71, 271–283.

- 651
- Krämer, H., Conrad, R. (1993). Measurement of dissolved H₂ concentrations in methanogenic
 environments with a gas diffusion probe. FEMS Microbiology Ecology, 12, 149-158.
- 654
- Langhi, L., Strand, J. (2023). Exploring natural hydrogen hotspots: a review and soil-gas survey
 design for identifying seepage. Geoenergy, 1, doi.org/10.1144/geoenergy2023-014.
- 657
- Larin, N., Zgonnik, V., Rodina, S., Deville, E., Prinzhofer, A., Larin, V.N. (2015). Natural molecular
 hydrogen seepage associated with surficial, rounded depressions on the European craton in Russia.
 Nat. Resour. Res., 24, 369-383.
- 661
- Lefeuvre, N., Truche, L., Donz., F.-V., Ducoux, M., Barr., G., Fakoury, R.-A., et al. (2021). Native
 H₂ exploration in the western Pyrenean foothills. Geochemistry, Geophysics, Geosystems, 22,
 e2021GC009917, doi.org/10.1029/2021GC009917

665

Lévy, D., Roche, V., Pasquet, G., Combaudon, V., Geymond, U., Loiseau, K., Moretti, I. (2023). 666 667 Natural H₂ exploration: tools and workflows to characterize a play. Sci. Tech. Energ. Transition, 78, 668 27, doi.org/10.2516/stet/2023021 669 670 Marty, B., O'Nions, R.K., Oxburgh, E.R., Martel, D., Lombardi, S. (1992). Helium isotopes in Alpine 671 regions. Tectonophysics, 206, 71-78. 672 673 Mathur, Y., Awosiji, V., Mukerji, T., Scheirer, A.H., Peters, K.E. (2023). Soil geochemistry of 674 hydrogen and other gases along the San Andreas fault. Int. J. Hydrogen Energy, 50, 411-419. 675 676 McMahon, C.J., Roberts, J.J., Johnson, G., Edlmann, K., Flude, S., Shipton, Z.K. (2023). Natural 677 hydrogen seeps as analogues to inform monitoring of engineered geological hydrogen storage. Geol 678 Soc Spec Publ., 528, doi.org/10.1144/SP528-2022-5. 679 680 Meinel, M., Delgado, A.G., Ilhan, Z.E., Aguero, M.L., Aguiar, S., Krajmalnik-Brown, R., Torres, 681 C.I. (2022). Organic carbon metabolism is a main determinant of hydrogen demand and dynamics in 682 anaerobic soils. Chemosphere, 303, 134877. 683 684 Milkov, A.V. (2022). Molecular hydrogen in surface and subsurface natural gases: abundance, origins 685 and ideas for deliberate exploration. Earth Sci. Rev., 104063. 686 687 Milkov, A.V., Etiope, G. (2018). Revised genetic diagrams for natural gases based on a global dataset 688 of >20,000 samples. Org. Geochem. 125, 109–120. 689 690 Moretti, I., Geymond, U., Pasquet, G., Aimar, L., Rabaute, A. (2022). Natural hydrogen emanations 691 in Namibia: field acquisition and vegetation indexes from multispectral satellite image analysis. Int. 692 J. Hydrogen Energy, 47, 35588-607. 693 694 Morozumi, T., Shingubara, R., Suzuki, R., Kobayashi, H., Tei, S., Takano, S., et al. (2019). 695 Estimating methane emissions using vegetation mapping in the taiga-tundra boundary of a northeastern Siberian lowland. Tellus B: Chem. Phys. Meteor., 71(1), 1581004. 696 697

698	Müller, T., Lane, S.N., Schaefli, B. (2022). Towards a hydrogeomorphological understanding of
699	proglacial catchments: an assessment of groundwater storage and release in an Alpine catchment.
700	Hydrology and Earth System Sciences, 26(23), 6029-6054.
701	
702	Newell, K.D., Doveton, J.H., Merriam, D.F., Gilevska, T., Waggoner, W.M., Magnuson, L.M.
703	(2007). H ₂ -rich and hydrocarbon gas recovered in a deep Precambrian well in Northeastern Kansas.
704	Nat. Resour. Res., 16, 277–292.
705	
706	Ogata, H., Lubitz, W. (2021). Bioenergetics Theory and Components Hydrogenases Structure and
707	Function, Editor: J. Jez, Encyclopedia of Biological Chemistry III (Third Edition), Elsevier, 66-73.
708	
709	Oremland, R.S., Taylor, B.F. (1975). Inhibition of methanogenesis in marine sediments by
710	acetylene and ethylene: validity of the acetylene reduction assay for anaerobic microcosms. App.
711	Microbiol., 30, 707-709.
712	
713	Osselin, F., Soulaine, C., Fauguerolles, C., Gaucher, E. C., Scaillet, B., Pichavant, M. (2022).
714	Orange hydrogen is the new green. Nature Geoscience, 15, 765-769.
715	
716	Pal, D.S., Tripathee, R., Reid, M.C., Schäfer, K.V., Jaffé, P.R. (2018). Simultaneous measurements
717	of dissolved CH ₄ and H ₂ in wetland soils. Environm. Monitor. Assess., 190, 1-11.
718	
719	Pathirana, S.L., van der Veen, C., Popa, M.E., Röckmann, T. (2015). An analytical system for stable
720	isotope analysis on carbon monoxide using continuous-flow isotope-ratio mass spectrometry, Atmos.
721	Meas. Tech., 8, 5315-5324, 10.5194/amt-8-5315-2015.
722	
723	Paulot, F., Paynter, D., Naik, V., Malyshev, S., Menzel, R., Horowitz, L.W. (2021). Global modeling
724	of hydrogen using GFDL-AM4.1: Sensitivity of soil removal and radiative forcing. Int. J. Hydrogen
725	Energy, 46, 13446-13460.
726	
727	Penna, D., Mantese, N., Hopp, L., Dalla Fontana, G., Borga, M. (2015). Spatio-temporal variability
728	of piezometric response on two steep alpine hillslopes. Hydrological Processes, 29, 198-211.
729	
730	Piché-Choquette, S., Constant, P. (2019). Molecular hydrogen, a neglected key driver of soil
731	biogeochemical processes. Appl. Environm. Microbiology, 85, e02418-18.

732 733

734 hydrogen in Bourakebougou (Mali). Int. J. Hydrogen Energy, 43, 19315–19326. 735 736 Prinzhofer, A., Moretti, I., Francolin, J., Pacheco, C., d'Agostino, A., Werly, J., et al. (2019). Natural 737 hydrogen continuous emission from sedimentary basins: the example of a Brazilian H2-emitting 738 structure. Int. J. Hydrogen Energy, 44, 5676-85. 739 740 Prinzhofer, A., Rigollet, C., Lefeuvre, N., Françolin, J., de Miranda, P.E.V. (2024). Maricá (Brazil), 741 the new natural hydrogen play which changes the paradigm of hydrogen exploration. Int. J. Hydrogen 742 Energy, 62, 91-98. 743 744 Rhee, T.S., Brenninkmeijer, C.A.M., Röckmann, T. (2006). The overwhelming role of soils in the 745 global atmospheric hydrogen cycle. Atmos. Chem. Phys., 6, 1611–1625, doi.org/10.5194/acp-6-746 1611-2006. 747 748 Rigollet, C., Prinzhofer, A. (2022). Natural Hydrogen: a new source of carbon-free and renewable 749 energy that can compete with hydrocarbons. First Break, 40, 78-84. 750 751 Röckmann, T., Eyer, S., van der Veen, C., Popa, M. E., Tuzson, B., et al. (2016). In situ observations 752 of the isotopic composition of methane at the Cabauw tall tower site, Atmos. Chem. Phys., 16, 10469-753 10487, doi.org/10.5194/acp-16-10469-2016. 754 755 Ruff, M., Wacker, L., Gäggeler, H.W., Suter, M., Synal, H.-A., Szidat, S. (2007). A gas ion source 756 for radiocarbon 200 kV. 49. 307-314, measurements at Radiocarbon, 757 doi.org/10.1017/S0033822200042235. 758 759 Schmidt, O., Hink, L., Horn, M.A., Drake, H.L. (2016). Peat: home to novel syntrophic species that 760 feed acetate- and hydrogen-scavenging methanogens. The ISME journal, 10, 1954-1966. 761 762 Sherwood Lollar, B., Onstott, T.C., Lacrampe-Couloume, G., Ballentine, C.J. (2014). The contribution of the Precambrian continental lithosphere to global H₂ production. Nature 516, 379-763 764 382. doi:10.1038/nature14017 765

Prinzhofer, A., Cissé, C.S.T., Diallo, A.B. (2018). Discovery of a large accumulation of natural

766	Sivan, M., Röckmann, T., van der Veen, C., Popa, M.E. (2023). Extraction, purification, and clumped
767	isotope analysis of methane (Δ^{13} CDH ₃ and Δ^{12} CD ₂ H ₂) from sources and the atmosphere, EGUsphere,
768	1-35, 10.5194/egusphere-2023-1906.
769	
770	Starkey, R.L., Wight, K.M. (1945). Anaerobic corrosion of iron in soil. American Gas Association,
771	New York, pp.108.
772	
773	Sugimoto, A., Fujita, N. (2006). Hydrogen concentration and stable isotopic composition of methane
774	in bubble gas observed in a natural wetland. Biogeochemistry, 81, 33-44.
775	
776	Sugisaki, R., Ido, M., Takeda, H., Isobe, Y., Hayashi, Y., Nakamura, N., et al. (1983). Origin of
777	hydrogen and carbon dioxide in fault gases and its relation to fault activity. J. Geol. 91, 239–258.
778	
779	Trumbore, S.E., Bubier, J.L., Harden, J.W., Crill, P.M. (1999). Carbon cycling in boreal wetlands: a
780	comparison of three approaches. J. Geophys. Res., Atmospheres 104, D22, 27673-27682.
781	
782	Umezawa, T., Brenninkmeijer, C. A. M., Röckmann, T., van der Veen, C., Tyler, S. C., Fujita, R.,
783	Morimoto, S., Aoki, S., Sowers, T., Schmitt, J., Bock, M., Beck, J., Fischer, H., Michel, S. E.,
784	Vaughn, B. H., Miller, J. B., White, J. W. C., Brailsford, G., Schaefer, H., Sperlich, P., Brand, W. A.,
785	Rothe, M., Blunier, T., Lowry, D., Fisher, R. E., Nisbet, E. G., Rice, A. L., Bergamaschi, P., Veidt,
786	C., Levin, I. (2018). Interlaboratory comparison of $\delta^{13}C$ and δD measurements of atmospheric CH ₄
787	for combined use of data sets from different laboratories. Atmos. Meas. Tech. 11(2), 1207-1231,
788	doi.org/10.5194/amt-11-1207-2018.
789	
790	Vacquand, C., Deville, E., Beaumont, V., Guyot, F., Sissmann, O., Pillot, D., Arcilla, C., Prinzhofer,
791	A. (2018). Reduced gas seepages in ophiolitic complexes: evidences for multiple origins of the H ₂ -
792	CH ₄ -N ₂ gas mixtures. Geochem. Cosmochim. Acta 233, 437–461.
793	
794	Valdez-Vazquez, I., Poggi-Varaldo, H.M. (2009). Hydrogen production by fermentative consortia.
795	Renewable and sustainable energy reviews, 13, 1000-1013.
796	
797	
798	Warr, O., Giunta, T., Ballentine, C.J., Sherwood Lollar, B. (2019). Mechanisms and rates of ⁴ He,
799	⁴⁰ Ar, and H ₂ production and accumulation in fracture fluids in Precambrian Shield environments.

- 800 Chem. Geol. 530, 119322, doi:10.1016/j.chemgeo.2019.119322
- 801

Whiticar, M.J. (1999). Carbon and hydrogen isotope systematics of bacterial formation and oxidation
of methane. Chemical Geology, 161, 291-314.

804

805 Wordell-Dietrich, P., Wotte, A., Rethemeyer, J., Bachmann, J., Helfrich, M., Kirfel, K., Leuschner,

806 C., Don, A. (2020). Vertical partitioning of CO₂ production in a forest soil. Biogeosciences, 17, 6341–
807 6356, doi.org/10.5194/bg-17-6341-2020.

808

Xiang, Y., Sun, X., Liu, D., Yan, L., Wang, B., Gao, X. (2020). Spatial distribution of Rn, CO₂, Hg,
and H₂ concentrations in soil gas across a thrust fault in Xinjiang, China. Front. Earth Sci., 8,
doi.org/10.3389/feart.2020.554924.

812

Ye, R., Jin, Q., Bohannan, B., Keller, J.K., Bridgham, S.D. (2014). Homoacetogenesis: a potentially
underappreciated carbon pathway in peatlands. Soil Biology and Biochemistry, 68, 385-391.

815

Yedinak, E.M. (2022). The curious case of geologic hydrogen: assessing its potential as a near-term
clean energy source. Joule, 6, 503-508.

818

Young, E.D., Kohl, I.E., Sherwood Lollar, B., Etiope, G., Rumble III, D., Li, S., Haghnegahdar, M.
A., Schauble, E.A., McCain, K.A., Foustoukos, D.I., Sutclife, C., Warr, O., Ballentine, C.J., Onstott,
T.C., Hosgormez, H., Neubeck, A., Marques, J.M., Pérez-Rodríguez, I., Rowe, A.R., LaRowe, D.E.,
Magnabosco, C., Yeung, L.Y, Ash, J.L., Bryndzia, L.T. (2017). The relative abundances of resolved
¹²CH₂D₂ and ¹³CH₃D and mechanisms controlling isotopic bond ordering in abiotic and biotic
methane gases. Geochim. Cosmochim. Acta 203, 235-264, doi.org/10.1016/j.gca.2016.12.041.

- Zgonnik, V. (2020). The occurrence and geoscience of natural hydrogen: a comprehensive review.
 Earth Sci Rev., 203, 103140.
- 828

Zgonnik, V., Beaumont V., Deville E., Larin N., Pillot D., Farrell K.M. (2015). Evidence for natural
molecular hydrogen seepage associated with Carolina bays (surficial, ovoid depressions on the
Atlantic Coastal Plain, Province of the USA). Prog Earth Planet Sci., 2, 31.

- 834 **Figure captions**
- 835

Figure 1. Location map of soil-gas surveys and the richest H₂-CH₄-CO₂ sites within the Pusteria and
Anterselva Valleys. All data are provided in Table S2. Springs where dissolved gas was examined:
S- Salomone; C- Casanova Neuhaus; T- Teodone fountain; TM- Teodone Museum; G- San Giovanni.
Faults: DAV- Deffereggen-Anterselva-Valles Fault (mylonitic zone); KV- Kalkstein-Vallarga Fault;
PF- Pusteria Fault. Geology and faults are from Benà et al. (2022). Geological details are provided in

- 841 the Supplementary Material. Wetland location was extracted from the WebGIS of the Bolzano
- 842 Province (Geoportale Alto Adige, <u>https://geoportale.retecivica.bz.it/geodati.asp</u>).
- 843

Figure 2. The spatial distribution of H_2 and CO_2 in soil-gas along the Pusteria Valley. Contour lines were derived by Natural Neighbour interpolation of July 2021 soil-gas sampling points (black dots). Green stars refer to the H_2 -CH₄-CO₂ rich sites, also observed in all successive soil-gas surveys. Diamonds indicate other sites with high H_2 and CH₄ concentration (up to 370 ppmv and 9000 ppmv, respectively) observed during September 2021. Map base is from Digital Elevation Model (DEM) with resolution of 2.5 m. Wetland zones (brown squares) and faults are as shown in Fig. 1.

850

851 **Figure 3.** The bulk (A) and clumped (B) CH₄ isotopic composition in H₂-enriched soil-gas samples 852 of the Pusteria (P1, P8) and Anterselva (A14, A15) Valleys. Data from IMAU Lab (Table 1). CR: 853 Carbonate Reduction; F: Fermentation. Genetic plots: A, after Milkov and Etiope, (2018); B, after Etiope and Oze, (2022). Microbial oxidation trend (red dashed arrow in A) based on the $\delta^{13}C_{CH4-}$ 854 δ^2 H_{CH4} correlated variations with Δ H/ Δ C~8–9 (Kinnaman et al., 2007). ¹³C-enrichment of P1 may 855 856 reflect ¹³C-enriched CO₂ (Table 1) and substrate depletion. Paired with the modern ¹⁴C dating (Table 857 1), the bulk and clumped-isotopes signatures (within overlapping microbial-abiotic genetic zonation) 858 are all attributable to microbial origin. Measurement uncertainties do not extend beyond symbol size. 859

- Figure 4. The four H₂-rich samples, P1, P8, A14 and A15, within the combination of $\delta^{13}C_{CH4}$ and $\delta^{13}C_{CO2}$ for microbial gas. The carbon isotope partitioning trajectories resulting from both methanogenesis and oxidation processes are shown (redrawn from Whiticar, 1999). Isotopic data are from the LARA-ETH analyses of CO₂ and CH₄ executed in the same gas samples (Table S3).
- 864
- 865
- 866
- 867

868	
-----	--

869 **Table captions**

871	Table 1. Mean values of the isotopic composition of CH ₄ (bulk, clumped, radiocarbon) and CO ₂ (stable carbon

- 872 and radiocarbon) at the four, H_2 -rich soil-gas sampling sites. The complete dataset is reported in Table S3. Gas 873 samples were collected at the same sampling points at different times (within 30 min) and analysed in two
- 874 different laboratories (see Methods).
- 875
- 876
- 877 Table 2. A synopsis of indicators supporting a biological or geological origin for H₂ within the studied878 Alpine Valleys.

Table 1. Mean values of the isotopic composition of CH_4 (bulk, clumped, radiocarbon) and CO_2 (stable carbon and radiocarbon) at the four, H_2 -rich soil-gas sampling sites. The complete dataset is reported in Table S3. Gas samples were collected at the same sampling points at different times (within 30 min) and analysed in two different laboratories (see Methods).

site	IMAU Lab				LARA – ETH Lab			
	δ ¹³ Ccн4 ‰	δ ² Нсн4 ‰	Δ ¹³ CH ₃ D ‰	$\Delta^{12}CH_2D_2$	δ ¹³ Ссн4 ‰	F ¹⁴ CcH4	δ ¹³ Cco2 ‰	F ¹⁴ Cco ₂
P1	-41.6	-348.2	-0.21	-29.4	-42.4	1.045	-17.9	1.022
P8	-64.4	-321.8	nm	nm	-65.3	1.048	-21.2	0.846
A14	-68.6	-289.1	nm	nm	-67.0	1.163	-20.7	1.095
A15	-62.7	-318.3	1.78	-23.1	-63.5	1.019	-23.4	1.025

nm: not measured. The uncertainties are indicated in Methods and Supplementary Information. Stable C and H isotopic ratios are relative to VPDB (Vienna Pee-Dee-Belemnite) and VSMOW (Vienna Standard Mean Ocean Water), respectively.

Table 2. A synopsis of indicators supporting a biological or geological origin for H_2 within the studied Alpine Valleys.

		Geo	Bio	Notes
		H_2	H_2	
1	High soil-gas H ₂ concentrations	Х	?	Limited literature data on bio-H ₂ in soils
2	H ₂ near wetland or water-logged soil		Х	
3	H ₂ coupled to microbial-modern CH ₄	Х	Х	Surface methanogenesis could be developed
4	Presence of methanogens in the soil	Х	Х	using geological H ₂
5	H ₂ coupled to biological (¹³ C-depleted) CO ₂		Х	
6	H ₂ coupled to modern (14 C-enriched) CO ₂		Х	
7	No positive H ₂ flux from the soil		Х	Wet soil layers may inhibit gas exhalation
8	No H ₂ or CH ₄ in spring water		Х	
9	No clear spatial relationship between H ₂ and faults		Х	
10	Lack of geothermal or serpentinization fluids in springs		Х	

Supplementary Material

Click here to access/download Supplementary Material Etiope et al 2024 STOTEN - SUPPL MATERIAL.pdf

Supplementary Material

Click here to access/download **Supplementary Material** Etiope et al - STOTEN - Table S2- soil-gas data.xls
Declaration of competing interests

The authors declare no competing interests or personal relationships that could have appeared to influence the work reported in this paper.