Contents lists available at ScienceDirect

Journal of Alloys and Metallurgical Systems

journal homepage: www.journals.elsevier.com/journal-of-alloys-and-metallurgical-systems

Crystal structure and physical properties of the new *Ac*Ni₆Si₆ compounds (*Ac*: Th, U)

A. Martinelli^{a,*,1}, G. Lamura^{a,2}, P. Solokha^{b,3}, A. Provino^{b,4}, C. Bernini^{a,5}, M. Ceccardi^{c,6}, M. Pani^{b,7}, M. Ferretti^{b,8}, S.K. Dhar^{d,9}, P. Manfrinetti^{a,b,10}

ABSTRACT

^a Institute SPIN-CNR, 16152 Genova, Italy

ARTICLE INFO

Actinide intermetallics

Crystal structure

Electrical resistivity

Magnetic properties

Group theory

Keywords:

AcNi₆Si₆

^b Department of Chemistry, University of Genova, 16146 Genova, Italy

^c Department of Physics, University of Genova, 16146 Genova, Italy

^d Department of Condensed Matter Physics and Materials Science, T.I.F.R., 400005 Mumbai, India

The crystal structure of the new ternary ThNi₆Si₆ and UNi₆Si₆ intermetallic compounds has been investigated by means of both single crystal and powder X-ray diffraction followed by Rietveld refinement. Both compounds adopt the tetragonal CeNi₆Si₆-type structure, crystallizing in the space group P4/nbm (No. 125) (Pearson's symbol tP52). This prototype is a ternary defect-derivative of the binary NaZn₁₃-type. A group-theoretical analysis carried out in this work illustrates the structural relationship occurring among the aristotype NaZn₁₃-type, the partially disordered CeNi₆Si₆ and the fully ordered YNi₆Si₆ hettotype crystal structures.

Zero-field low-temperature electrical resistivity data show a metallic behaviour for both materials. DC magnetic measurements from room temperature down to 2 K reveal diamagnetic behaviour for ThNi₆Si₆, indicating that Ni atoms do not carry any magnetic moment. On the other hand, the effective magnetic moment per formula unit for UNi₆Ni₆ is found to be $\mu_{eff} = 3.07(1) \mu_B$, suggesting a trivalent (U³⁺) or tetravalent (U⁴⁺) state for U atoms with partial delocalization of 5 *f* electrons. No magnetic ordering down to 2 K is seen in UNi₆Si₆. No superconducting transition was detected, neither in UNi₆Si₆ nor in ThNi₆Si₆ in the available temperature interval (2 K $\leq T \leq 300$ K).

1. Introduction

Heavy-fermions superconductors (HFSs) are unconventional superconductors containing rare earth (R) or actinide (Ac) as one of the constituent elements, where the hybridization of the *f*-electrons with the normal conduction electrons near the Fermi level is responsible for their unusual and peculiar physical behaviour. The first HFSs that were discovered are CeCu₂Si₂ [1] and UBe₁₃ [2,3] and since then many other Ce and U based HFSs were identified and characterized.

UBe₁₃ is one of the most interesting HFSs ($T_c = 0.9$ K) because the superconductivity appears from a state characterized by a strongly temperature-dependent electrical resistivity [4]. This compound crystallizes in the cubic NaZn₁₃-type structure [Pearson's symbol *cF*112, space group *Fm*3*c* (No. 226)] [2,5], which is also the pristine prototype of several ternary compounds such as the RNi₆Si₆. Previous systematic

* Corresponding author.

https://doi.org/10.1016/j.jalmes.2023.100051

Received 26 October 2023; Received in revised form 7 December 2023; Accepted 16 December 2023 Available online 19 December 2023 2949-9178/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC l

2949-9178/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

E-mail address: alberto.martinelli@spin.cnr.it (A. Martinelli).

¹ ORCID 0000-0001-8391-3486

² ORCID 0000-0001-5629-1319

³ ORCID 0000-0002-5252-635X

⁴ ORCID 0000-0002-7577-6642

⁵ ORCID 0000-0003-4807-0924

⁶ ORCID 0000-0001-7977-7215

⁷ ORCID 0000-0002-4711-1504

⁸ ORCID 0000-0003-0709-3281

⁹ ORCID 0000-0003-3074-9058

¹⁰ ORCID 0000-0002-3346-5619

structural investigations on RNi_6Si_6 compounds identified two different ternary prototype derivative of $NaZn_{13}$: $CeNi_6Si_6$ -type (tP52, P4/nbm, No. 125) and YNi_6Si_6 -type (tP52, $P\overline{4}b2$, No. 117) [6,7]. It was ascertained that the $CeNi_6Si_6$ -type structure is adopted only for R = La and Ce, whereas the YNi_6Si_6 prototype is formed by R = Y, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm and Yb. Although both prototypes show two Wyckoff sites for the R atoms (2a and 2b for the former and 2c and 2d for the latter), the two structures differ from each other in the ordering of Ni and Si atoms. In the $CeNi_6Si_6$ -type, two out of the four 8 m sites are occupied by Ni atoms and the other two 8 m sites are filled by Si atoms; the remaining 16 n site is randomly occupied by both Ni and Si in a ratio 50:50% [1]. In the YNi_6Si_6 -type, Ni atoms fully occupy three 8i positions and Si atoms fill three additional 8i sites with a full occupation factor; thus, giving rise to an ordered crystal structure [1].

We were interested to explore if heavy-fermion superconductivity occurs in the ternary derivatives of uranium based NaZn₁₃-type compounds, besides the already well known UBe₁₃ [2,3]. In this regard, we synthesized and characterized alloys on the composition U(Ni,Si)₁₃ and, as a result, we identified the new UNi₆Si₆ compound. As the Th-substituted UBe₁₃ system, $U_{1-x}Th_xBe_{13}$, has been found to have a more intriguing unconventional superconductivity than the parent UBe₁₃ compound [8], for as a comparison we also synthesized and investigated the non-magnetic counterpart ThNi₆Si₆. Therefore, in this work, we will discuss the crystal structure, electrical resistivity and magnetic properties of the newly identified UNi₆Si₆ and ThNi₆Si₆ silicide compounds.

2. Materials and experimental methods

The polycrystalline samples (total mass $\approx 2-3$ g) were prepared by arc melting the elements weighed in stoichiometric proportion, under a static TiZr-gettered Ar atmosphere. The starting metals used were commercial high-purity products; the purities were: 99.7 wt% for Th, 99.9 wt% for depleted U, 99.99 wt% for Ni and 99.9999 wt% for Si. The surface of depleted U was cleaned in nitric acid in a chemical hood before arc melting. Weighing and handling of all samples were carried out inside a glove-box under an Ar atmosphere. The buttons were melted three times, turning them upside down each time to ensure their homogenization. The total weight loss after melting was less than 0.3 wt%. After melting, the ingots were placed inside sealed-under-Ar outgassed Ta crucibles, and then sealed under vacuum in silica ampoules. Annealing was carried out in a resistance furnace at high temperature (800 °C–1000 °C) for 7–8 days. Samples were then slowly cooled down inside the furnace (not quenched).

Phase analysis was performed by optical and scanning electron microscopy (SEM) (Leica Cambridge S360), in conjunction with an energydispersive X-ray (EDX) microprobe (Oxford X-Max 20) for semiquantitative elemental analysis. The micrographic specimens were prepared by standard polishing technique of a vertical section of the samples. Both the EDX analysis on the overall area of the specimens and known binary line compounds present as secondary or impurity phases were used as references to check for the accuracy of the elemental analyses, which, in this way, was estimated to be within 0.5 at% for U, Th, Ni and Si.

Single crystals were selected from fragments of the sample crushed in a mortar and affixed to a glass fiber with grease. A complete dataset was obtained in a routine manner at ambient conditions on a three-circle Bruker D8 QUEST diffractometer with PHOTON III photon counting detector equipped by the graphite monochromatized Mo K α ($\lambda = 0.71073$ Å) radiation, operating in ω -scan mode. Intensity data were collected over the reciprocal space up to $\approx 36^{\circ}$ in θ (achieving a ≈ 0.6 Å resolution) with exposures of 10 s per frame. Data collection was performed, and the unit cell was initially refined, using APEX4 [9]. Successively, data were reduced using SAINT [10] and XPREP [11]. Lorentz, polarization, and absorption effects were corrected using

SADABS [12]. The structure was solved and refined with the aid of SHELXL-2019/1 [13].

Powder X-ray diffraction (PXRD) patterns were collected on either a Stoe Guinier camera (Cu $K_{\alpha 1}$ radiation and Si as an internal (a = 5.4308 Å) or on a X'Pert PRO Philips diffractometer (Cu $K_{\alpha 1}$ radiation; data collected over the range $10^{\circ} \leq 20 \leq 100^{\circ}$, with a step size of 0.02°). The Guinier powder patterns were indexed with the aid of LAZY PUL-VERIX [14] and accurate lattice parameters obtained by using least squares methods. Structural refinements by Rietveld method were carried out using the FullProf software [15].

DC magnetisation data both as a function of temperature and applied magnetic field were collected using a commercial Magnetic Properties Measurement System (SQUID, Quantum Design, Inc., USA), whereas electrical resistivity as a function of temperature, $\rho(T)$, was measured in between 2 and 300 K by the standard four-probe technique using the AC transport option of a Physical Properties Measurement System (PPMS, Quantum Design, Inc. USA).

3. Group-theoretical analysis

In order to discuss the group-theoretical analysis carried out in this work, it is worthwhile to highlight again that the RNi_6Si_6 compounds crystallize in either the tetragonal CeNi₆Si₆-type (tP52, P4/nbm, No. 125) for RE = La and Ce or in the tetragonal YNi₆Si₆-type (tP52, $P\overline{4}b2$, No. 117) for R = Y, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tb and Yb [6,7]. Both structural models are defect derivatives of the NaZn₁₃ structure type, the latter being isotypic with the heavy-fermion superconductor UBe₁₃ [2, 3].

In particular, a translationgleiche transition of index 3 transforms the cubic structure of NaZn₁₃ (cF112; $Fm\overline{3}c$) into the tetragonal structure of LaCo₉Si₄ (tI56, I4/mcm, No. 140) (Fig. 1). A further klassengleiche transition of index 2 yields the CeNi₆Si₆ structure (tP52, P4/nbm, No 125), from which the YNi_6Si_6 structure (tP52, $P\overline{4}b2$, No. 117) is finally obtained by a translationgleiche transition of index 2. In particular, Co atoms are found at three different Wyckoff sites in the LaCo₉Si₄ structure: 16 l, 16k and 4d. The 16 l site splits into two different 8 m sites in the CeNi₆Si₆ structure (which are occupied by Ni and Si atoms, respectively), whereas the 16k site is transformed into the 16n site, where Ni and Si atoms are randomly distributed. Conversely, no corresponding site can be found for the 4d site; as a consequence the $CeNi_6Si_6$ structure is a defective derivative of the LaCo₉Si₄ structure. The ordering of the Ni and Si atoms in the 16 n site of the CeNi₆Si₆ structural model leads to the formation of the YNi₆Si₆ structure type, where Ni and Si atoms are distributed in separated 8i sites (Fig. 1 and Fig. 2). Whatever the adopted crystal structure is, the R atoms are in an irregular snubcube coordination.

4. Results and discussion

4.1. SEM observation and EDX analysis

The microstructure of the UNi_6Si_6 sample after annealing at 800 °C is characterized by elongated grains constituted by both UNi_6Si_6 in the outer region and a new phase with composition UNi_2Si_3 in the inner core (Fig. 3, left panel). The matrix, in which the elongated grains are dispersed, is constituted by the binary NiSi phase, within which very thin grains of the UNi_6Si_6 precipitate are still visible (Fig. 3, right panel).

Interestingly, after a thermal annealing at 1000 °C the sample contained mainly the UNi₆Si₆ compound; the UNi₂Si₃ phase was still present as a secondary phase in limited regions of the alloy, but no trace of the binary NiSi phase was observed (Fig. 4). This result suggests that a higher annealing temperature is needed for the formation of UNi₆Si₆ and preparation of single phase materials.

	Ft	$m\overline{3}c$	-220	6	t3		I4/	тст	m - 140)	k	2	P4/n	bm	-125			<i>t</i> 2	$P\overline{4}$	b2-	-11	7
	NaZn ₁₃ $\frac{1}{2}(a-b),\frac{1}{2}(a+b),c;$ LaCo ₉ Si ₄					1/4,1/	, ¹ /4	С	eNi	₆ Si ₆		1/4	,³⁄4,0	١	'Ni ₆	Si ₆						
					1/4,1/2	,0						Ce	2 <i>a</i>	3⁄4	3/4	0		Ce	2c	1/2	0	0
					/	La	4 <i>a</i>	1⁄4	1⁄4	1⁄4		Ce	2b	3⁄4	3/4	$\frac{1}{2}$		Ce	2d	1/2	0	1⁄2
Na	8 <i>a</i>	1⁄4	1⁄4	1⁄4	7,	Si	16 <i>l</i>	x	x+1/2	Z		Ni	8 <i>m</i>	x	x+1/2	z		Ni	8 <i>i</i>	x	y	Ζ
Zn	96 <i>i</i>	x	у	Ζ	\rightarrow	Co	16 <i>l</i>	x	x+1/2	Z		Si	8 <i>m</i>	x	x+1/2	Z		Si	8 <i>i</i>	x	y	Ζ
Zn	8 <i>b</i>	0	0	0		Co	16 <i>k</i>	x	У	Z	$\langle \rangle$	Ni	8 <i>m</i>	x	x+1/2	Z		Ni	8 <i>i</i>	x	y	Z
						Co	4 <i>d</i>	0	1/2	0		Si	8 <i>m</i>	x	x+1/2	Z		Si	8 <i>i</i>	x	y	Ζ
											7	Ni/Si	16 <i>n</i>	x	у	Z		Ni	8 <i>i</i>	x	у	Ζ
																		Si	8 <i>i</i>	x	y	z

Fig. 1. Group-subgroup transformations from the cubic NaZn₁₃ structure to the tetragonal YNi₆Si₆ one; transformation type (*t: translationgleiche*; *k: klassengleiche*), transformation index and origin shift are indicated.

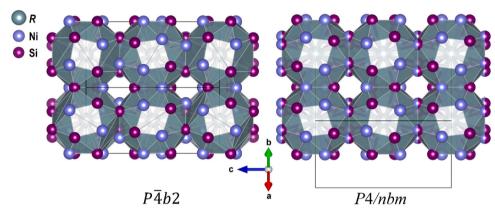
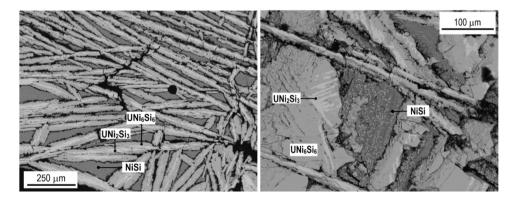



Fig. 2. Representation of the YNi₆Si₆ (on the left) and CeNi₆Si₆ (on the right) structure types; the atomic coordination around the R atoms is highlighted.

Fig. 3. SEM microphotographs [backscattered electrons (BSE) mode] showing the microstructure of the UNi_6Si_6 sample after thermal annealing at 800 °C; two different magnifications of the sample are shown. The grey phase surrounding the elongated grains (outer region) is UNi_6S_6 , while the light grey phase (elongated grains, as inner core) is UNi_2Si_3 ; the darker matrix is made up of NiSi containing thin precipitates of UNi_6S_6 .

4.2. Single-crystal X-ray diffraction

A total of 2725 frames were collected for UNi₆Si₆ single crystal dataset. The integration of the data using a primitive tetragonal unit cell yielded a total of 29690 reflections of which 884 were independent (average redundancy 33, completeness of 99.9%, $R_{\rm int} = 4.26\%$, $R_{\rm sig} = 1.33\%$). Analysis of systematic absences performed by XPREP [11] clearly indicates *P4/nbm* (n° 125) as the only possible space group type (see Table 1).

At this point, a preliminary structural model was derived by direct methods giving a reasonable result. UNi $_6$ Si $_6$ crystallizes in the CeNi $_6$ Si $_6$ -

type structure, with space group type P4/nbm (No. 125) and 52 atoms per unit cell tP52. The U atoms are situated in a 2a and 2b sites (occupied by Ce atoms in CeNi₆Si₆) and the four 8 *m* sites are fully occupied by two Ni and two Si species, respectively. The only 16 *n* Wyckoff position available in the structure clearly indicates the statistical mixture of Ni/Si to be very close to 1:1 ratio. Further EXYZ and EADP restrictions were applied during the refinement for this position [16]. The final anisotropic refinement converged to comparably good residuals of R1 = 0.017, wR2 = 0.037 and GOF = 1.14; this is complemented by a flat difference Fourier map with residual electron densities lower then 2 e⁻/Å³. The single crystal and refinement details are collected in Table 2;

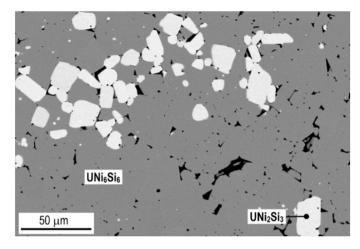


Fig. 4. SEM microphotograph (BSE mode) showing the microstructure of the UNi₆Si₆ sample after thermal annealing at 1000 °C; the dark grey grains pertain to the UNi₆Si₆ phase while the white grains are the UNi₂Si₃ phase. The analysis was carried out on a selected area of the specimen rich in the secondary phase UNi₂Si₃.

the final refined atomic coordinates and thermal parameters, U_{eq} , are collected in Table 3. The corresponding CIF file has been deposited at the Cambridge Database with the following depository number: CSD-2189461.

The interatomic distances for $d_{obs}/\Sigma r_{M} \leq 1.376$ (where d_{obs} is the observed interatomic distance and $\Sigma r_{\rm M}$ is the sum of the single metallic radius, $r_{\rm M}$) and atomic coordination numbers (CN) for UNi₆Si₆ are listed in Table 4. The first coordination sphere around U atoms features pseudo Frank-Kasper polyhedra with CN = 24 and composition U@Ni₁₂Si₁₂ for both U1 (in 2a) and U2 (in 2b) atoms, respectively. The U-Ni, U-Si and U-Ni/Si interatomic distance values range between 3.130 Å and 3.260 Å, all of them showing values of $d_{obs}/\Sigma r_M > 1$ (Table 4). The shortest interatomic distances in this structure are formed between Ni-Si and Ni-Ni/Si atoms; these values range between 2.301 Å and 2.628 Å, and all of them are lower than the sum of their corresponding metallic radii ($d_{obs}/\Sigma r_M < 1$). In particular, the atomic coordination around the two Ni atoms (in 8 m) is characterized by icosahedra with CN = 12 and composition Ni@U₂Ni₅Si₅ and Ni@U₂Ni₃Si₇ for Ni1 and Ni2 atoms, respectively; the atomic coordination around the two Si atoms (in 8 m) is also characterized by icosahedra with CN = 12 and composition Si@U2Ni5Si5 for Si1 and Si@U2Ni7Si3 for Si2. The atomic coordination around Ni/Si atoms (in 16 n) is described again by icosahedra with CN = 12 and a composition of (Ni/Si)@U₂Ni₅Si₅.

4.3. X-ray powder diffraction analysis and Rietveld refinement

In order to confirm the results obtained by single crystal X-ray diffraction, both structural models of the CeNi_6Si_6 and the YNi_6Si_6 -type were tested by Rietveld refinement method PXRD data collected for UNi_6Si_6 and ThNi_6Si_6 . For ThNi_6Si_6 , no good quality crystals were available to perform a single crystal investigation. Therefore, its crystal

structure was refined by Rietveld method only. The two Rietveld refinement fits are shown in Fig. 5a and b, respectively.

As a result, although the difference in the *R*-factors for both structural models is low, the CeNi₆Si₆ structural model (*P*4/*nbm*; *tP*52) provides the best result in terms of agreement factors for both compounds ($R_B = 3.43$ and 3.89 and $R_F = 3.84$ and 4.55 for UNi₆Si₆ and ThNi₆Si₆ adopting the CeNi₆Si₆-type structure against $R_B = 3.91$ and 4.00 and $R_F = 4.21$ and 4.81 for the two compounds adopting the YNi₆Si₆-type

Table 2

Details of the $\rm UNi_6Si_6$ crystal structure investigation and refinement at ambient conditions.

758.702				
CeNi ₆ Si ₆				
tP52				
Tetragonal				
P4/nbm (No. 125)				
7.7507(1)				
11.1202(3)				
668.03(2)				
4				
7.5				
41.7				
1376				
irregular form				
$3.664^{\circ} \leq \vartheta \leq 36.270^{\circ}$				
$-$ 12 \leq h \leq 12				
$-12 \leq k \leq 12$				
$-18 \leq l \leq 18$				
29690				
884				
multi-scan method				
Full-matrix least-squares on F^2				
884/40				
1.14				
R1 = 0.017, wR2 = 0.037				
R1 = 0.024, wR2 = 0.039				
0.043/0.013				
+ 1.90, -0.96				

Table 3

Atomic coordinates (standardized setting) and isotropic displacement parameters (U_{eq}) for UNi₆Si₆ as obtained from single-crystal investigation.

Atom	Wyckoff site	x	у	Z	Occ.	$U_{\rm eq}$ [Å ²]
U1	2a	1/4	1/4	0	1	0.00619(7)
U2	2b	1/4	1/4	1/2	1	0.00662(7)
Ni1	8 m	0.61702	0.38298	0.07226	1	0.0102(1)
		(5)	(5)	(5)		
Ni2	8 m	0.57865	0.07865	0.37619	1	0.0143(1)
		(5)	(5)	(6)		
Si1	8 m	0.63014	0.13014	0.57818	1	0.0122(2)
		(11)	(11)	(12)		
Si2	8 m	0.58827	0.41173	0.86725	1	0.0106(2)
		(11)	(11)	(11)		
Ni3	16 n	0.44423	0.19084	0.75035	0.498(4)	0.0116(1)
		(8)	(7)	(5)		
Si3	16 n	0.44423	0.19084	0.75035	0.502(4)	0.0116(1)
		(8)	(7)	(5)		

Symmetry elements	4 ¹ /4 ³	4 ²	n–	-b-	-C-	-n-	-21-	-c
Total	77	52	866	2335	2257	2258	93	1455
N (I > 3)	68	46	2	46	742	728	0	793
$\langle I \rangle$	51.7	34.6	0.3	0.4	4.1	4.0	0.2	5.9
$\langle I/\sigma \rangle$	15.7	15.3	0.5	0.7	3.6	3.5	0.5	4.9

N = number of reflections that should be absent for the corresponding lattice centering type;

N(I > 3) = number of reflections that are observed but should be absent;

 $\langle I \rangle =$ mean intensity; $\langle I / \sigma \rangle =$ mean intensity divided by sigma.

Journal of Alloys and Metallurgical Systems 5 (2024) 100051

Table 4	4
---------	---

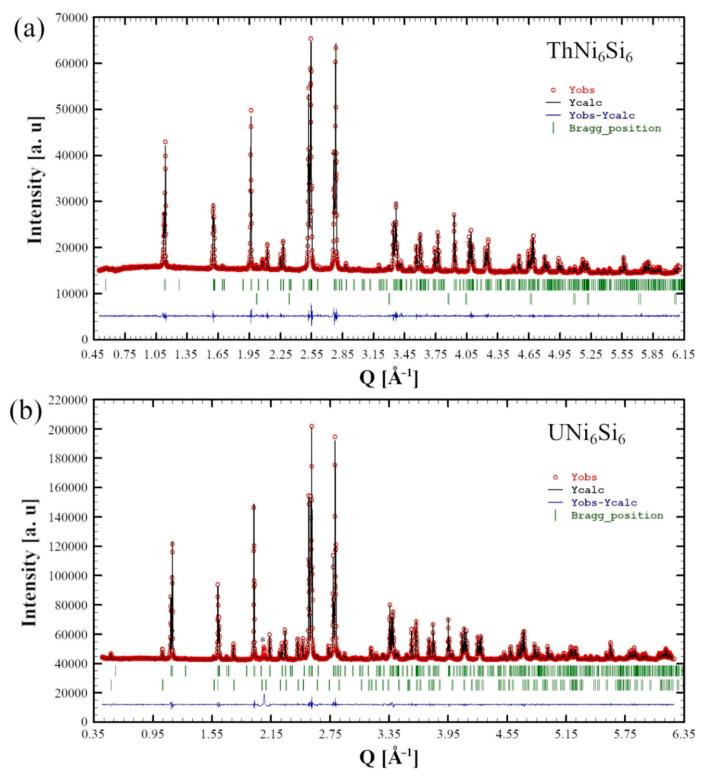
Central atom	Ligands	d [Å]	$d_{\rm obs}/\Sigma r_{\rm M}$	Central atom	Ligands	d [Å]	$d_{\rm obs}/\Sigma r_{\rm M}$
U1 (2a)	8 Ni1	3.1305(4)	1.116	Si1 (8 m)	1 Ni2	2.3160(15)	0.903
(CN = 24)	8 Ni3/Si3	3.1912(6)	1.123	(CN = 9)	1 Ni2	2.3442(10)	0.914
	8 Si2	3.2595(9)	1.132		2 Ni2	2.3476(10)	0.915
					2 Ni3/Si3	2.4420(13)	0.939
U2 (2b)	8 Ni2	3.1856(5)	1.135		2 Si1	2.5447(16)	0.965
(CN = 24)	8 Ni3/Si3	3.1979(6)	1.125		1 Si1	2.6276(12)	0.996
Ni1 (8 m)	1 Si2	2.3014(13)	0.897	Si2 (8 m)	1 Ni1	2.3014(13)	0.897
(CN = 8)	1 Si2	2.3486(10)	0.916	(CN = 9)	1 Ni1	2.3486(10)	0.916
	2 Si2	2.3916(10)	0.932		2 Ni1	2.3916(10)	0.932
	2 Ni3/Si3	2.4520(8)	0.970		2 Ni3/Si3	2.4223(11)	0.931
	2 Ni1	2.6138(6)	1.049		2 Ni3/Si3	2.5364(11)	0.975
					1 Ni2	2.7092(14)	1.056
Ni2 (8 m)	1 Si1	2.3160(15)	0.903				
(CN = 13)	1 Si1	2.3442(10)	0.914	Ni3/Si3 (16 n)	2 Ni3/Si3	2.2255(8)	0.867
	2 Si1	2.3476(10)	0.915	(CN = 9)	1 Si2	2.4223(11)	0.944
	2 Ni3/Si3	2.5015(8)	0.989		1 Si1	2.4420(13)	0.952
	2 Ni3/Si3	2.5247(8)	0.998		1 Ni1	2.4520(8)	0.984
	1 Si2	2.7092(14)	1.056		1 Ni2	2.5015(7)	1.004
					1 Ni2	2.5247(7)	1.013
					1 Si2	2.5364(11)	0.989
					1 Ni3/Si3	2.7031(8)	1.054

structure (Table 5). However, another important consideration is worth to be noted: while in the YNi₆Si₆-type structure there are 20 independent structural parameters to be refined (18 at. positions + 2 lattice parameters), there are only 13 independent structural parameters (11 at. positions + 2 lattice parameters) in the CeNi₆Si₆ structural model. As a consequence, the fitting improvement obtained with the CeNi₆Si₆-type which must, therefore, be rejected.

Structural data refined by Rietveld method for UNi6Si6 are in fair agreement with those obtained by single-crystal X-ray diffraction analvsis. Table 6 lists the atomic coordinates and structural parameters obtained from Rietveld refinement on ThNi6Si6. Trace amount of secondary phases are detected in both samples: NiSi₂ (\approx 1.0 vol%) for the ThNi₆Si₆ sample and UNi₂Si₃ (\approx 5.5 vol%) for the UNi₆Si₆ sample. The lattice parameters and the unit cell volumes obtained from the Rietveld refinement on both compounds [a = 7.7498(1) Å, c = 11.1186(1) Å, $V_{cell} = 667.78(1)$ Å³ for UNi_6Si_6 and a = 7.8021(1) Å, c = 11.1636(1) Å, $V_{cell} = 679.56(1)$ Å³ for ThNi₆Si₆] are in agreement with the expected trend on the basis of the tabulated atomic volume of U and Th $(20.73 \text{ Å}^3 \text{ and } 32.95 \text{ Å}^3 \text{ for U and Th, respectively } [17])$: the unit cell of UNi6Si6 being smaller than that of ThNi6Si6. Moreover, the volume of formation (or contraction volume) { ΔV %, where $\Delta V = [(V_{obs} - V_{obs})]$ V_{calc} / V_{calc} × 100]; V_{calc} is the volume of the compound calculated from the atomic volumes of the individual atoms [17] calculated for both compounds is - 19.2% for UNi_6Si_6 and - 22.3% for $ThNi_6Si_6.$ The ΔV % is proportional to the formation enthalpy of a compound. As the volume of formation is quite negative for both compounds, this indicates their formation to be thermodynamically favoured; moreover, the value for ThNi₆Si₆ is even lower than that of the homolog UNi₆Si₆, thus suggesting ThNi₆Si₆ to be more stable than UNi₆Si₆.

The crystal structure of UNi₆Si₆ is strictly related to that of UNi₇Si₆. In fact, UNi₇Si₆ crystallizes with the LaCo₉Si₄-type structure (t/56, I4/mcm) (Fig. 1), where Wyckoff sites with multiplicity equal to 16 (two 16 *l* and one 16*k*) are all disorderly occupied by both Ni and Si atoms [18]. In this context, the crystal structure of UNi₆Si₆ can be therefore considered as a partially ordered defect-derivative of the UNi₇Si₆ structure.

Combining the structural data reported for RNi_6Si_6 compounds in previous works [6,7] with those obtained in the present study about UNi_6Si_6 and $ThNi_6Si_6$, a structural map (Fig. 6) can be drawn by plotting the atomic size ratio defined as $SZ_{aMD}/(SZ_{aMD})_{max}$ (see Villars *et al.* [19] for the detailed definition of this quantity) of the rare earth or actinide element as a function of the unit cell volume. From this plot, it is evident how the stability of the P4/nbm and $P\overline{4}b2$ structures is proportionally dependent on the atomic size of the rare earth or actinide element. According to Villars *et al.* [19], the partially disordered CeNi₆Si₆-type structure is more stable for larger atomic sizes, whereas the ordered YNi₆Si₆ -type structure forms for lower atomic sizes.


4.4. Physical properties measurements

The temperature dependence of the zero-field cooled (ZFC) mass magnetic susceptibility, $\chi_m(T)$, of UNi₆Si₆ sample was measured between 2 and 300 K by applying a magnetic field H = 10 kOe; the data are presented in Fig. 7. As the field-cooled (FC) data are completely superposed to the ZFC ones, they were omitted for sake of clarity. The $\chi_m(T)$ data follow a paramagnetic Curie-like behavior from 300 K down to about 60 K where an anomaly occurs at 40–60 K suggesting the presence of a magnetic transition. Below such transition $\chi_m(T)$ still shows a Curie-like *T*-dependence. The predominance of a paramagnetic-like behavior is confirmed also by $1/\chi_m(T)$ data displayed in the lower panel of Fig. 7: $1/\chi_m(T)$ is clearly linear with almost the same slope except in the 40 K < T < 70 K range where the above mentioned transition takes place.

It is worth to note that UNi_6Si_6 sample contains a small amount (5.5 vol%, as detected from Rietveld refinement) of a new ternary UNi_2Si_3 as extra phase. In order to determine the values of Curie-Weiss temperature (θ) and effective magnetic moment (μ_{eff}) for UNi_6Si_6 we took into account the results obtained from the magnetic measurements on pure samples of UNi_2Si_3 . Both structural and magnetic properties of such new phase will be the object of a next article. We performed a two component Curie-Weiss fit in the range 100–300 K (red line in upper panel of Fig. 7) by the following model function:

$$\chi_m(T) = \chi_0 + w \bullet \frac{C_1}{T - \theta_1} + (1 - w) \bullet \frac{C_2}{T - \theta_2}$$
(1)

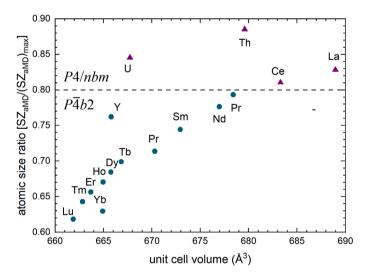
where χ_0 is a T-constant contribution, w = 0.055 is the relative weight of the spurious phase (5.5 vol%, as determined by Rietveld refinement) and $C_1 = 231(1) \cdot 10^{-5} \frac{emu \cdot K}{g \cdot Oe}$ is the Curie constant as determined by a Curie-Weiss fit above the magnetic ordering temperature on a pure sample of UNi₂Si₃. Such value corresponds to an effective magnetic moment of $\mu_{exp} = 2.85(4) \mu_B$ ascribed to the U-free magnetic ions of UNi₂Si₃. $\theta_1 = +5(1)$ K represents the Curie-Weiss temperature of UNi₂Si₃. By fixing the parameters of such impurity phase (w, C_1 and θ_1) we could determine the Curie-Weiss temperature $\theta_2 = -20(6)$ K, the

Fig. 5. Rietveld refinement plots for ThNi₆Si₆ (1000 °C - 7 days) (a) and UNi₆Si₆ (900 °C for 4 days + 1000 °C for 3 days) (b) by adopting the CeNi₆Si₆ structural model (space group *P4/nbm*, No. 125); the observed powder patterns are highlighted in red. The lower profile (blue line) gives the difference between observed and calculated data; the Bragg angle positions are indicated by vertical bars (green). The upper and low rows of Bragg positions for ThNi₆Si₆ indicate the ThNi₆Si₆ and NiSi₂ phases, respectively. The upper and lower rows of Bragg positions for UNi₆Si₆ and UNi₂Si₃ compounds, respectively.

Curie constant $C_2 = 155(1) \bullet 10^{-5} \frac{emu \bullet K}{g \bullet \partial e}$ and the temperatureindependent term $\chi_0 = 7.3(3) \bullet 10^{-7} \frac{emu}{g \bullet \partial e}$ for the pure UNi₆Si₆ phase. We can argue the following:

- (i) the Curie-Weiss temperature is negative suggesting the presence of antiferromagnetic (AFM) correlations between U ions;
- (ii) U ions do not magnetically order down to 2 K;
- (iii) The Curie constant C_2 gives the effective moment $\mu_{eff} = 3.07(1) \mu_B$ for the U ions. Such value is lower than the expected one for the

Table 5


Agreement factors obtained after Rietveld refinements by adopting both the CeNi₆Si₆ (*P*4/*nbm*) and YNi₆Si₆ structural models (*P*4*b*2) for both UNi₆Si₆ and ThNi₆Si₆ compounds.

	UNi ₆ Si ₆		ThNi ₆ Si ₆				
	CeNi ₆ Si ₆ -type	YNi ₆ Si ₆ -type	CeNi ₆ Si ₆ -type	YNi ₆ Si ₆ -type			
	P4/nbm	$P\overline{4}b2$	P4/nbm	P4b2			
R _{Bragg} (%) R _{F-factor} (%)	3.43 3.84	3.91 4.21	3.89 4.55	4.00 4.81			

Table 6

Structural data (standardized setting) for ThNi_6Si_6 (CeNi₆Si₆-type; *tP*52, *P*4/*nbm*, No. 125) as obtained by the Rietveld refinement.

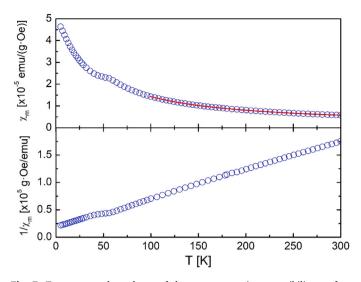

[Å]	parameters Il volume	c = 11.16	a = 7.8021(1) c = 11.1636(1) $V_{cell} = 679.56(1)$							
Atom	Wyckoff site	x	у	z	Occ.	B _{iso} [Å ²]				
Th1	2a	1/4	1/4	0	1	0.63 (1)				
Th2	2b	1/4	1/4	1/2	1	0.37 (1)				
Ni1	8 m	0.6169 (1)	0.3831 (1)	0.0738 (1)	1	1.04 (1)				
Ni2	8 m	0.5770 (1)	0.0770 (1)	0.3772 (1)	1	1.61 (1)				
Si1	8 m	0.6318 (1)	0.1318 (1)	0.5783 (1)	1	0.99 (2)				
Si2	8 m	0.5866 (1)	0.4134 (1)	0.8662 (1)	1	0.36 (2)				
Ni3/ Si3	16 n	0.4457 (1)	0.1918 (1)	0.7578 (1)	0.50/ 0.50(1)	1.11 (1)				

Fig. 6. Structural map for RNi_6Si_6 and $AcNi_6Si_6$ compounds (*Ac*: Th, U). The atomic size ratio is defined as $SZ_{aMD}/(SZ_{aMD})_{max}$ (see Villars *et al.* [19]).

free paramagnetic uranium ions U^{3+} or U^{4+} whose theoretical effective magnetic moments are $\mu_{eff}(U^{3+}) = 3.62\mu_B$ and $\mu_{eff}(U^{4+}) = 3.58 \ \mu_B$, respectively. Analogous low effective free ion-magnetic moments were found in uranium intermetallic compounds in which the *5 f* states are located very close to the Fermi level and tend to be partially delocalized [20–25];

(iv) The temperature-independent term χ_0 could be ascribed to two possible different contributions: a Pauli-like paramagnetic component and/or a saturated ferromagnetic-like impurity present in an amount lower than the threshold of X-ray diffraction

Fig. 7. Temperature dependence of the mass magnetic susceptibility χ_m for UNi₆Si₆ as measured with an applied magnetic field of 10 kOe. Upper panel: $\chi_m(T)$ and a two component Curie-Weiss fit above the magnetic transition of the spurious phase (100*K* < *T* < 300*K*). Lower panel: temperature dependence of $1/\chi_m(T)$. See text for details.

sensitivity (1 - 2%). The presence of such an impurity is supported also by the data of isothermal mass magnetization, M_m , measured at several temperatures (T = 5 K, 50 K, 120 K, 300 K) and presented in Fig. 8. These data show that the magnetization linearly decreases as a function of decreasing applied magnetic field, H, down to T = 50 K, as expected for a paramagnetic compound. Only the data measured at T = 5 K show a tiny curvature, which may be only ascribed to the above-mentioned ferromagnetic-like impurity.

The isothermal mass magnetization, M_m , data for the ThNi₆Si₆ compound measured at T = 120 K and 300 K are shown in the left panel of Fig. 9, The two sets of data are almost superposed showing a negative (diamagnetic) slope almost *T*-independent. The temperature behavior of the mass susceptibility, χ_m , measured with an applied magnetic field H = 10 kOe is presented in the right panel of Fig. 9. The χ_m data show a small negative value almost *T*-independent down to 70 K, below which a 1/*T*-like paramagnetic contribution appears. Such component is likely

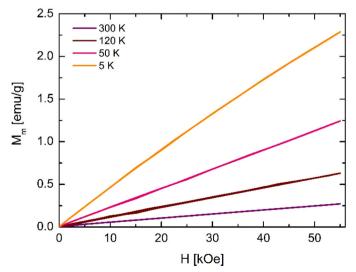


Fig. 8. Field-dependence of the mass magnetization, M_m , for UNi_6Si_6 measured at T = 5, 50, 120 and 300 K.

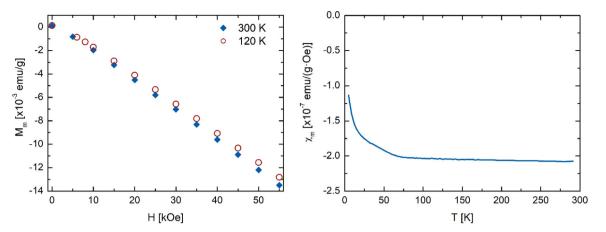


Fig. 9. Magnetic measurements for the ThNi₆Si₆ compound: field dependence of the mass magnetization, M_m , measured at T = 120 K and 300 K (left panel) and temperature-dependent mass susceptibility, $\chi_m(T)$, measured with an applied magnetic field H = 10 kOe (right panel).

ascribed to the presence of a small paramagnetic spurious phase, such as NiSi₂ [present in an amount of at least 1.0(1) vol% as detected by Rietveld refinement]. As a result, both $M_m(H)$ and $\chi_m(T)$ data indicate ThNi₆Si₆ compound is just weakly diamagnetic.

Fig. 10a shows electrical resistivity data of UNi₆Si₆. The data reveal a metallic behaviour for this compound, characterized by a monotonic decrease of the resistivity while decreasing the temperature. The temperature dependence of the resistivity of ThNi₆Si₆ (Fig. 10b) exhibits a metallic-like behavior as well. The Fig. 11 shows the resistances normalized to the room temperature value, R(T)/R(300 K), for both samples to compare their temperature dependence. In both compounds, the variation of the resistivity across temperature is moderate, but the UNi₆Si₆ sample reports a slightly higher residual resistivity ratio RRR=R (300 K)/R(10 K) of 1.6. It is worth to notice that neither in UNi₆Si₆ (for $T \ge 5$ K) nor in ThNi₆Si₆ (for $T \ge 2$ K), any superconducting transition is observed.

5. Conclusions

The crystal structure of the new UNi₆Si₆ and ThNi₆Si₆ intermetallic silicides has been determined by means of both single crystal (for the U compound only) and powder X-ray diffraction. Both compounds crystallize in the CeNi₆Si₆-type structure (*P*4/*nbm*, *tP*52) where one of the Wyckoff site is characterized by a disordered occupation of both Si and Ni atoms. This prototype is a ternary defect derivative of the binary NaZn₁₃-type, as determined by group-theoretical analysis. Magnetic susceptibility measurements reveal no magnetic order down to 2 K for

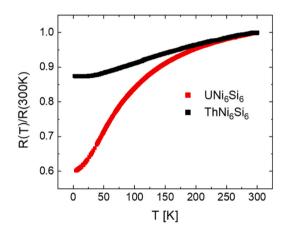


Fig. 11. Temperature dependence of electric resistance normalized to the room temperature value for UNi₆Si₆ and ThNi₆Si₆.

both compounds. The temperature behavior of the mass magnetic susceptibility for UNi₆Si₆ was analyzed by using a two-component Curie-Weiss model; the fit gives a magnetic moment per formula unit lower than that expected for U^{3+} or U^{4+} free ions, this being likely due to a partial delocalization of U-5 *f* electrons. Analogous lower effective free ion magnetic moments have been reported in U intermetallic compounds in which the 5 *f* states are located very close to the Fermi level

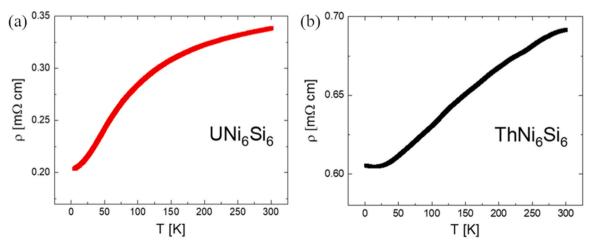


Fig. 10. Zero-field electrical resistivity as a function of temperature for UNi₆Si₆ (a) and ThNi₆Si₆ (b).

and tend to be partially delocalized. In the case of ThNi₆Si₆, the magnetic measurements show it to be diamagnetic. The electric resistivity shows a metallic behaviour for both compounds. Neither in UNi₆Si₆ (for T \geq 5 K), nor in ThNi₆Si₆ (for T \geq 2 K), a superconducting transition was detected.

CRediT authorship contribution statement

A. Martinelli: Formal analysis, Investigation, Writing - original draft, Review & Editing, Visualization. G. Lamura: Formal analysis, Investigation, Writing - original draft, Review & Editing. P. Solokha: Formal analysis, Investigation, Review & Editing. A. Provino: Formal analysis, Investigation, Review & Editing. C. Bernini: Formal analysis, Investigation. M. Ceccardi: Formal analysis, Investigation, Review & Editing. M. Pani: Review & Editing. M. Ferretti: Review & Editing. S.K. Dhar: Formal analysis, Investigation, Review & Editing. P. Manfrinetti: Conceptualization, Methodology, Formal analysis, Writing - review & editing, Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

 F. Steglich, J. Aarts, C.D. Bredl, W. Lieke, D. Meschede, W. Franz, H. Schäfer, Phys. Rev. Lett. 43 (1979) 1892–1896.

- [2] H.R. Ott, H. Rudigier, Z. Fisk, J.L. Smith, Phys. Rev. Lett. 50 (1983) 1595–1598.
- [3] M.W. McElfresh, J.H. Hall, R.R. Ryan, J.L. Smith, Z. Fisk, Acta Cryst. C 46 (1990)
- 1579–1580.[4] P.K. Misra, Physics of Condensed Matter, Chapter 15, Heavy Fermions, in:
- [4] P.K. MISTA, Physics of Condensed Matter, Chapter 15, Heavy Fermions, in: Academic Press, 2011, p. 509.
- [5] M. Wendorff, C. Röhr, J. Alloy. Compd. 421 (2006) 24-34.
- [6] M. Pani, P. Manfrinetti, A. Provino, Fang Yuan, Y. Mozharivskyj, A.V. Morozkin, A. V. Knotko, A.V. Garshev, V.O. Yapaskurt, O. Isnard, J. Solid State Chem. 210 (2014) 45–52.
- [7] A.V. Morozkin, A.V. Knotko, A.V. Garshev, V.O. Yapaskurt, R. Nirmala, S. Quezado, S.K. Malik, J. Solid State Chem. 243 (2016) 290–303.
 - [8] G.R. Stewart, J. Low. Temp. Phys. 195 (2019) 1–25.
 - [9] Bruker, APEX4 V2021.10-0, Bruker AXS Inc., Madison, Wisconsin, USA, 2021.
- [10] Bruker, SAINT v8.30A, Bruker AXS Inc., Madison, Wisconsin, USA, 2012.
- [11] Bruker, XPREP V2014/2, Bruker AXS Inc., Madison, Wisconsin, USA, 2014.
- [12] Bruker, SADABS V2016/2, Bruker AXS Inc., Madison, Wisconsin, USA, 2016.
- [13] G.M. Sheldrick, SHELXL-2019/1, Bruker AXS Inc., Madison, Wisconsin, USA, 2019.
- [14] K. Yvon, W. Jeitschko, E.J. Parthé, Appl. Crystallogr. 10 (1977) 73-74.
- [15] J. Rodriguez-Carvajal, Physica B 192 (1993) 55-69.
- [16] P. Muller, Crystal Structure Refinement: A Crystallographers Guide to SHELXL, Oxford University Press, 2006.
- [17] P. Villars, J.L.C. Daams, J. Alloy. Compd. 197 (1993) 177-196.
- [18] L.G. Akselrud, Visn. Lviv. Derzh. Univ., Ser. Khim. 23 (1981) 33-38.
- [19] P. Villars, J. Daams, Y. Shikata, K. Rajan, S. Iwata, Chem. Met. Alloy. 1 (2008) 1–23.
- [20] J. Grunzweig-Genossar, M. Kuznietz, F. Friedman, Phys. Rev. 173 (1968) 562–573.
 [21] M. Pasturel, M. Szlawska, J. Ćwik, D. Kaczorowski, A.P. Pikul, Intermetallics 131
- (1-7) (2021), 107112.[22] M.S. Henriques, O. Tougait, H. Noel, L.C.J. Pereira, J.C. Waerenborgh, A.
- P. Gonçalves, Solid State Comm. 148 (2008) 159–162.
- [23] F. Canepa, A. Palenzona, R. Eggenhoffner, Physica B 160 (1990) 297–303.
- [24] R. Eggenhoffner, F. Canepa, A. Palenzona, J. Alloy. Compd. 178 (1992) 125–129.
 [25] A. Amorese, M. Sundermanna, B. Leedahl, A. Marino, D. Takegami, H. Gretarsson, A. Gloskovskii, C. Schlueter, M.W. Haverkort, Y. Huange, M. Szlawska,
 - D. Kaczorowski, S. Rang, M.Brian Maple, E.D. Bauer, A. Leithe-Jasper,
 - P. Hansmann, P. Thalmeier, L.H. Tjeng, A. Severing, PNAS 117 (2020).