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Abstract

Deep Learning methods have become state-of-the-art for solving tasks such as

Face Recognition (FR). Unfortunately, despite their success, it has been pointed

out that these learning models are exposed to adversarial inputs — images to

which an imperceptible amount of noise for humans is added to maliciously

fool a neural network — thus limiting their adoption in sensitive real-world

applications. While it is true that an enormous effort has been spent in order to

train robust models against this type of threat, adversarial detection techniques

have recently started to draw attention within the scientific community. A

detection approach has the advantage that it does not require to re-train any

model, thus it can be added on top of any system. In this context, we present our

work on adversarial samples detection in forensics mainly focused on detecting

attacks against FR systems in which the learning model is typically used only as

a features extractor. Thus, in these cases, train a more robust classifier might

not be enough to defence a FR system.

In this frame, the contribution of our work is four-fold: i) we tested our

recently proposed adversarial detection approach against classifier attacks, i.e.

adversarial samples crafted to fool a FR neural network acting as a classifier; ii)

using a k-Nearest Neighbor (kNN) algorithm as a guidance, we generated deep

features attacks against a FR system based on a DL model acting as features

extractor, followed by a kNN which gives back the query identity based on

features similarity; iii) we used the deep features attacks to fool a FR system
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on the 1:1 Face Verification task and we showed their superior effectiveness

with respect to classifier attacks in fooling such type of system; iv) we used

the detectors trained on classifier attacks to detect deep features attacks, thus

showing that such approach is generalizable to different types of offensives.

Keywords: Deep Learning, Face Recognition, Adversarial Attacks,

Adversarial Detection, Adversarial Biometrics

1. Introduction

Deep Learning (DL) quickly occupied a central role in recent AI-related

technological breakthroughs covering multiple fields and applications: vision

(e.g., image classification [1], object detection [2]), natural language processing

[3] and the combination of them (e.g., multi-modal [4], sentiment analysis [5]).

Despite achieving state-of-the-art performance in many scenarios, deep learning

models still suffer from deficiencies that strongly limit their adoption in sensit-

ive applications. Among others, the vulnerability of DL models in adversarial

settings still poses challenges: it is relatively easy for an attacker to manipulate

the output of a model by tampering its input often in an imperceptible way.

The existence of these perturbed inputs — known as adversarial examples [6, 7]

— constitutes one of the major roadblocks in security-related applications such

as DL-based biometrics systems for surveillance and access control that, despite

performing brilliantly in natural settings [8], can be easily evaded by knowledge-

able adversaries. Face Recognition enabled by Deep Neural Networks (DNN) is

a case in point. Several successful applications of deep models to FR have been

proposed in the literature [9–11]. Indeed, this kind of technology enables AI

surveillance programs in multiple countries [12] and has already found its way

into consumers products [8]. However, researchers already showed how this kind

of systems can be jeopardized by adversarial attacks both in the digital [13, 14]

and physical domain [15, 16].

In order to counteract adversarial vulnerability, a considerable research effort

provided a multitude of defensive approaches for adversarial attacks that can be
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roughly categorized in two methodologies, that is rectification and adversarial

input detection. In rectification methods, the goal is to recover the intended

output of the model by increasing the robustness of the system, e.g. by trying

to remove adversarial perturbation from the input [17, 18] or by increasing the

robustness of the model itself [19, 20]. On the other hand, adversarial detection

aims at detecting an occurred attack by analyzing the behavior of the model

(without changing it) and signaling anomalous events [21–24]. Notwithstand-

ing, many of the proposed adversarial detection methods fall prey to strong

adversaries too [25], recent techniques exploiting the training data manifold to

ground the predictions of a model [26, 27] exhibit good trade-offs between de-

tection performance and resilience to attacks [28] (as well as tackling a more

general problem, that is obtaining good confidence measurements for predictions

of deep models [29]).

While most of the adversarial detection schemes are tested on small or low-

resolution benchmarks (such as MNIST and CIFAR datasets), this work aims

at evaluating one of the aforementioned training-manifold-based adversarial de-

tection methodologies, specifically [30], in a realistic security-related application

that is facial recognition.

Facial recognition systems usually do not usually implement recognition

based on deep-learning classifiers but rather follow a similarity-based approach:

deep models are used to extract features from visual facial data, and decisions

rely on similarity measurements among those features. Indeed, standard bench-

marks for facial recognition, such as IJB-B [31] and IJB-C [32], define two

evaluation protocols, that is 1:1 Face Verification and 1:N Face Identification.

The former requires to investigate if a person’s identity is known or not by

comparing its features vector against a database of known identities, while the

latter requires to match two images to assess if they belong to the same person

or not.

Sticking to those protocols, we provide an analysis of adversarial attacks and

further detection in facial recognition systems that implement face identification

and verification relying on state-of-the-art deep learning models. In particular,
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our contributions are the following: i) we tested our recently proposed detec-

tion technique [30] against classifier attacks, i.e. adversarial samples crafted to

fool a state-of-the-art FR neural network acting as a classifier; ii) we generated

deep features attacks, using a kNN algorithm as a guidance, to attack a FR

system that fulfills the Face Identification task by means of a DL model, acting

as a backbone features extractor, followed by a kNN which gives back the query

identity based on features similarity; iii) we used deep features attacks to fool

a FR system on the Face Verification task, and we showed their superior effect-

iveness with respect to classifier attacks in fooling such type of system; iv) we

used the detectors trained on classifier attacks to detect deep features attacks,

thus showing that such approach is generalizable to different types of attacks.

The rest of the paper is organized as follows. In Section 2, we briefly reviewed

some related works. In Section 3, we described the algorithms used to craft

adversarial examples, while in Section 4, we described the adversarial detection

technique used in our study. In Section 5, we presented the experimental cam-

paigns that we conducted, and finally, in Section 6, we reported the conclusions

of our work.

2. Related Work

2.1. Adversarial Attacks

After the seminal work of [7] in which adversarial examples were first studied

in DNN, in the last years an exploding growth in studies of adversarial attacks

and defenses has been witnessed. Since the early works, the abundant presence

of adversarial examples for standard deep neural networks was confirmed by

researchers who proposed multiple crafting algorithms to efficiently find them.

Among the most relevant attacking algorithms available in the literature, there

are the box-constrained L-BFGS [7], FGSM and its variants [16, 33, 34], and

CW [35]. We dedicated Section 3 for a more detailed review of these algorithms,

as we adopted them in this work to generate adversarial examples.
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2.2. Face Recognition Adversarial Attacks

Face Recognition is among the most important topics in computer vision.

This field has drawn the attention of the scientific community since the early 90s,

when [36] proposed the Eigenfaces approach. DL models, especially leveraging

on the properties of Deep Convolutional Neural Network, started to dominate

this field since 2012 reaching performances up to 99.80% [37], thus overcoming

human performance on this task. Despite the effort in training very robust DL

models, such systems still show some weaknesses. For example, it has been

shown that state-of-the-art face classifiers experience a performance drop when

tested against low resolution images [38].

Moreover, they are vulnerable to adversarial attacks considering both the

black-box [13] and white-box [14, 15] settings.

Concerning the attacks to face recognition systems, Sharif et al. [15] demon-

strated the feasibility and effectiveness of physical attacks by dodging recogni-

tion and impersonating other identities using eyeglass frames with a malicious

texture. Dong et al. [13] successfully performed black-box attacks on face re-

cognition models and demonstrated their effectiveness in a real-world deployed

system. Modern attacks on facial recognition systems either exploit generative

models obtaining a more natural perturbation [14] or find natural adversarial

examples by modifying identity-independent attributes [39, 40], such as hair

color, makeup, or the presence of glasses.

Pautov et al. [41] focused on physical world attacks to the LResNet100E-IR FR

system. Specifically, they realized adversarial patches that when attached to the

area of the face of a person, such as eyes, nose or forehead, or when projected

on wearable accessories, allowed the attacker to fool the FR system by leading

it to recognize him or her with a different identity.

2.3. Adversarial Defenses

Obtaining a system that is robust to adversarial examples turned out to be

a challenging and still open task. The robustness of a model can be increased

via adversarial training [33, 42] or model distillation [43]. In general, techniques
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that try to smooth, change, or hide the gradient surface of the model seen by

an attacker called gradient-masking defenses, are able to increase the attack

effort needed to find an adversarial example, but the enhanced model is still

vulnerable to stronger attacks.

Another strategical direction consists of detecting adversarial examples, that

is creating robust systems composed by a vulnerable model and a detection sys-

tem that signals occurring attacks. Detection subsystems are often implemented

as binary detectors that discern authentic and adversarial inputs. Gong et al.

[21] proposed to train an additional binary classifier that decides whether an

input image is pristine or tampered. Grosse et al. [22] adopted statistical tests

in the pixel space to demonstrate the discernibility of adversarial images and

proposed to introduce the ”adversarial” class in the original classifier which is

contextually trained with the model. Similarly, Metzen et al. [24] proposed a

detection subnetwork that relies on intermediate representations constructed

by the model at inference time. However, many detection schemes have been

proven to be bypassable [25].

Novel detection methods rely on the training data manifold for grounding

the model prediction and detect anomalies. Carrara et al. [30] and Papernot and

McDaniel [27] showed that a kNN scheme based on intermediate representations

of the training set can be used to define a score that measures the confidence

of the classification produced by a deep model: such score can then be used

to filter out adversarial examples but also authentic errors occurring. To cope

with the computational cost incurred by a kNN scheme on huge training sets,

Carrara et al. [26] proposed a method that embeds multiple representations

in the training space via a distance-based transformation and then performs

detection in this space.

To our knowledge, the most relevant work that copes with detecting tampered

facial recognition is Goswami et al. [44], in which the authors attacked facial

recognition systems in a classification setting and devised a detection approach

to decide whether to recover the original input. In the detection part, they

proposed to compare intermediate network activations to their average val-
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ues defined over a training set, and used layer-wise distances as features in

a two-class SVM adversarial detector. However, their analysis only included

the recognition-by-classification setting, while we covered additional real-world

settings, such as attacks on kNN identification and verification systems.

3. Adversarial Attacks

In this section, we described some of the most famous algorithms used for

adversarial samples generation.

3.1. L-BFGS

Szegedy et al. [7] formalised the adversarial attack as an optimization prob-

lem that is solved by means of the L-BFGS algorithm. Specifically, it can be

expressed as

min
r

c · ‖ r ‖2 +L(x+ r, t)

subject to Lm ≤ x+ r ≤ Um , (1)

where [L, U ]m represents the range of validity for pixel values, and the value

of c > 0 is found by line-search. The goal of the optimizer is then to find

the minimum adversarial perturbation r to the input image x which causes the

model to classify xadv = x+ r as belonging to the target class t.

3.2. FGSM

The Fast Sign Gradient Method [33] (FGSM) is a one-step method in which

the optimal max-norm constrained perturbation is found by following the dir-

ection of the gradient ∇xJ(θ, x, y) of the objective function used to train the

DL model with respect to the input image x ∈ Rm. The adversarial example is

then given by

xadv = x+ ε · sign(∇xJ(θ, x, ytrue)) , (2)

where θ are the model parameters, x is the input image, ytrue is its label, and

ε is the maximum distortion allowed on the input such that ‖ x− xadv ‖∞< ε.
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3.3. BIM

The Basic Iterative Method [16] (BIM) applies the FGSM [33] attack mul-

tiple times with small step size. It is given by

xadv0 = x, (3)

xadvN+1 = Clipx,ε
{
xadvN + α · sign(∇xJ(θ, xadvN , ytrue))

}
,

where the Clip(·) function clips the values of the pixels at each iteration step

to the allowed pixel range, and α is the used step size.

3.4. MI-FGSM

The MI-FGSM method [34] is an iterative procedure that can be generalized

to other types of attacks by substituting the current gradient with the accu-

mulated ones from all the previous steps. The velocity vector in the gradient

direction is given by

gN+1 = µ · gN +
J(xadvN , y)

‖ ∇xJ(xadvN , y) ‖1
, (4)

where xadv0 = x, g0 = 0, µ is the decay factor of the running average, and y is

the ground truth label. Subsequently, the adversarial example in the ε-vicinity

measured by L2 distance is given by

xadvN+1 = xadvN + α · gN+1

‖ gN+1 ‖2
, (5)

where α = ε/T with T being the total number of iterations.

3.5. Carlini-Wagner Attacks

Carlini and Wagner [35] (CW) proposed three gradient-based attacks each

based on a different distance metric, namely L0, L2 and L∞ attacks.

Given an input x and a target class t, different from the original class of the

sample, the L2 attack is given by

min

∥∥∥∥1

2
(tanh(w) + 1)− x

∥∥∥∥2
2

+ c · f
(

1

2
(tanh(w) + 1)

)
with

f(xadv) = max(max{Z(xadv)i : i 6= t} − Z(xadv)t,−k) , (6)
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where f is the objective function, Z(·) are the logits before the softmax layer, w

is the variable that represent the adversarial noise in the tanh(·) space, and k is a

parameter that allows to control the confidence with which the misclassification

occurs.

Concerning the L∞ attack, it is not fully differentiable, and the standard

gradient descent does not perform well for it. Equation 7 shows the L∞ version

of the attack:

minimize c · f(x+ δ) +
∑
i

[(δi − τ)+] . (7)

where τ is a threshold value for the adversarial perturbation. Finally, the L0

attack is based on the idea of iteratively use L2 to find a minimal set of pixels

to be modified to generate an adversarial sample.

3.6. Deep Features Attack

All the previous attacks were based on the goal of generating noise which

fools the DL model to output a wrong class label for the specific input. Sabour

et al. [45] proposed an approach in which the guiding principle was to create a

perturbation of the input image in such a way that its internal representation

was similar to the one of a target image. Starting from a source image Is and a

guide image Ig, the goal was to perturb Is thus generating a new image Iα such

that its internal representation, at a layer k in the model, φk(Iα), generated by

the DL model under attack, had an Euclidean distance from φk(Ig) as small as

possible, while Iα remained close to the source Is. Specifically, Iα was defined

to be the solution to the constrained optimization problem

Iα = arg min
I

‖ φk(I)− φk(Ig) ‖22,

subject to ‖ I − Is ‖∞< δ , (8)

where δ was the maximum allowed perturbation on each pixel of the source

image.
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4. Adversarials Detection Method

The ultimate goal of our work was to detect adversarials samples. In order

to accomplish that, we started from the approach we exploited in [30]. Dur-

ing the forward step of the threatened model, we collected the deep features,

at the output of specific layers, to which we subsequently applied an average

pooling operation, thus obtaining a single features vector at each selected layer.

Then, we computed the distance among each vector and the class representat-

ives, centroids or medoids, of each class, at each layer, obtaining an embedding

which represented the trajectory of the input image in the features space. Such

a trajectory was then fed to a binary classifier that is used as adversarial de-

tector.

In our experiments, we used the test set of the VGGFace2 [9] dataset, which

comprises 500 identities, and the state-of-the-art Se-ResNet-50 from [9]. Spe-

cifically, we extracted the deep features at the end of each of the 16 bottleneck

blocks of the model. As the adversarial detector, we tested two different ar-

chitectures: a Multi Layer Perceptron (MLP) and a Long-Short Term Memory

(LSTM) network. The former was made by a hidden layer of 100 units followed

by the ReLU non-linear function and a Dropout layer. The latter had a hidden

state size of 100. In both cases, the output of the detector was fed into a Fully

Connected (FC) layer followed by a sigmoid activation function. A schematic

view of the entire system is shown in Figure 1.

Considering the 16 bottlenecks of the model from which we collected the deep

features and the 500 different identities of the dataset, each embedding was then

represented by a 8000-dimensional vector. In this vector, each i -th dimension

represented the distance between the i -th internal representation and a class

representative in a specific layer.

5. Experimental Results

In this section, we reported the experimental results we have obtained so

far. First, we focused on the detection of the attacks against a state-of-the-
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2D Average Pooling 

Features Embedding

Adversarial Detector: MLP / LSTM

      0/1

Pivots

Figure 1: Schematic view of the detection algorithm. The deep features are extracted at the

end of each of the bottlenecks of the Se-ResNet-50 model.

art FR model acting as a classifier. We crafted adversarial inputs by means of

known algorithms, and then we trained and tested our detector against them.

Afterwards, we generated deep features (DF) attacks (Subsection 3.6) using a

kNN algorithm as guidance for the optimization procedure.

The goal of this approach was to fool a FR system in which the CNN was

only used as a features extractor, while the final identity was assigned accord-

ing to the output of a similarity measurement among deep features. In our

experiments, we considered a system that used a kNN algorithm to assign an

identity to the probe image. This is a typical solution for FR systems to fulfill

the Face Identification task. Thereafter, we used these deep adversarial features

to attack a FR system against the Face Verification task. Finally, we used the

detectors, trained on the classifier attacks, to detect deep features attacks thus

showing the generalization property of the detection approach.

5.1. Dataset

As we already stated, in our experiments we employed the test set of the

VGGFace2 [9] dataset. It comprises 500 identities, with an average of ∼340

images for each identity.

As a first step, for each of the 500 classes of the dataset, we randomly selected

10 images to be used as “natural” images and 10 to be used for adversarial
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synthesis. These selected images were then used to train and test the adversarial

detector.

We then split the remaining part of the dataset into train, validation and

test sets and used them to train a FC layer on top of the state-of-the-art CNN

we used in the study presented in Subsection 5.2.

5.2. Classifier Attacks and Detection

In the first set of experiments, we focused on the classifier attacks. As a first

step, we replaced the classifier layer of the state-of-the-art facial recognition

model [9] with a 500-ways FC layer, and we trained it. To train the model,

we used the SGD optimizer with batch size of 256 and a learning rate of 10−3

halved every time the loss plateaus. As a preprocessing step, we resized the

images so that the shortest side measured 256 pixels. Afterwards, we randomly

cropped a 224x224 region of the image, and we subtracted the average pixel

value channel-wise. For model evaluation, we used the same preprocessing with

the exception that the random crop was substituted by a central crop.

In order to produce adversarial samples, we used the foolbox 1 implementation

of the BIM [19], MI-FGSM [34], and CW [35], with L2 norm, attacks. As far

as the first two are concerned, we considered a maximum perturbation ε ∈

{0.03, 0.07, 0.1, 0.3}, number of iterations ∈ {30, 50}, and for each combination,

we considered the targeted and the untargeted versions of the attacks. The ε

values were considered as fractions with respect to the maximum pixel value,

which is 255. Instead, for the CW [35] attack, we considered the implemented

default value of the parameters, i.e. 5 binary search steps and a number of max

iterations equals to 1000. After the adversarial samples generation, we trained

the detectors. The MLP and the LSTM were both trained using the Adam

optimizer [46] for 150 epochs with a batch size of 256 and an initial learning

rate ranging from 10−4 to 10−3 which was reduced by a factor 10 every time

the loss reached a plateau. Moreover, to balance the sample distribution within

1https://foolbox.readthedocs.io/en/stable/
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mini-batches, we employed a weighted random sampler thus avoiding a bias

towards attacks with higher multiplicity.

In Figure 2, we showed the Receiving Operating Characteristics (ROC)

curves from the adversarial detection considering targeted and untargeted at-

tacks for each architecture, distance metric, and class representative combin-

ation. As a summary, in Table 1 and Table 2, we reported the Area Under

the Curve (AUC) values relative to each attack considering their targeted and

untargeted versions, respectively.
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Figure 2: ROCs for each model and distance metric combination. Top: targeted attacks.

Bottom: untargeted attacks
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Table 1: Area Under the Curve (AUC) values for each configuration of architecture, pivot-

selection and embedding function considering each targeted attack independently. The last

column is a summary of the single-attacks AUCs.

Configuration BIM CW MI-FGSM Macro-

AUC

LSTM + M + L2 0.977 0.871 0.986 0.944

LSTM + C + L2 0.970 0.857 0.982 0.936

LSTM + M + cos 0.986 0.904 0.991 0.960

LSTM + C + cos 0.968 0.895 0.981 0.948

MLP + M + L2 0.964 0.793 0.979 0.912

MLP + C + L2 0.962 0.808 0.979 0.916

MLP + M + cos 0.890 0.668 0.940 0.832

MLP + C + cos 0.868 0.720 0.915 0.834

Table 2: Area Under the Curve (AUC) values for each configuration of architecture, pivot-

selection and embedding function considering each untargeted attack independently. The last

column is a summary of the single-attacks AUCs.

Configuration BIM CW MI-FGSM Macro-

AUC

LSTM + M + L2 0.878 0.615 0.889 0.794

LSTM + C + L2 0.863 0.596 0.869 0.776

LSTM + M + cos 0.929 0.599 0.930 0.819

LSTM + C + cos 0.884 0.568 0.886 0.779

MLP + M + L2 0.885 0.559 0.882 0.775

MLP + C + L2 0.874 0.557 0.874 0.768

MLP + M + cos 0.763 0.460 0.769 0.664

MLP + C + cos 0.730 0.467 0.739 0.645

As it was made clear from Figure 2, Table 1, and Table 2, the LSTM with the

medoids strategy gives the best results. We can also notice how the CW [35]
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algorithm generates samples which are more difficult to be detected with re-

spect to other algorithms. Moreover, it is clear how the untargeted attacks are

typically more difficult to detect with respect to targeted attacks. A possible

explanation is that these attacks typically find the closest adversarial to the

input image, thus an embedding method based on the distance between repres-

entation may have difficulties in detecting such attacks. More details on this

intuition were given in Subsection 5.3.

Finally, to visually understand the difference among the performances of the

best detector on the various attacks, in Figure 3, we showed the relative ROCs.
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Figure 3: ROCs for each attack considering the best trained detector. Left: targeted attacks.

Right: untargeted attacks.

According to Figure 3, it was made even clearer how hard it could be to

detect adversarial samples generated by means of the CW [35] attack, especially

considering untargeted attacks.

5.3. Deep Features Attacks

As previously described in Subsection 3.6, it is possible to use the distance

among deep representations as a guiding principle to craft adversarial samples

instead of wrong label assignment. Thus, nurturing this idea, we conducted new

experiments in which we synthesized adversarial samples by using the distance

among deep features as a guidance [45].

The main idea behind this approach was to emulate a real world application
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scenario for a FR system in which a learning model is used as a features extractor

whose output is used to fulfill the FR task by means of a similarity measurement.

5.3.1. Face Identification

As a real-world application case, we considered a system relying on a CNN

and a kNN algorithm to accomplish the task of Face Identification. Specifically,

what typically happens in this case is that the features vector extracted from the

probe face image has to be compared against a database of known identities to

identify the person. Each identity in the database is commonly represented by a

template vector, i.e. a vector of features obtained by averaging several deep rep-

resentations extracted from different images of the same person. Subsequently,

the similarity among the probe vector and the available templates is computed.

This is what is required, for example, when testing FR model performances on

the IJB-B [31] and IJB-C [32] benchmark datasets. Following this principle, we

evaluated the centroids for each of the 500 classes of the dataset. To conduct

our experiments, we used the original state-of-the-art model from Cao et al. [9]

as a features extractor.

The adversarial generation was formulated as an optimization problem [45]

solved by using the L-BFGS-B algorithm. Specifically, the constraint was used

to set a threshold, δ, on the maximum perturbation on each pixel of the ori-

ginal image as defined in Equation 8. In order to adapt the adversarial samples

generation to our needs, we used a kNN classifier as guidance through the op-

timization procedure. The optimization was then stopped once the targeted

or untargeted attack’s objective were met, that is, the kNN had classified the

adversarial as belonging to the guide-image class or it had simply misclassi-

fied the face image considering targeted and untargeted attacks respectively. A

schematic view of the algorithm is shown in Figure 4. In our experiments we

considered the values of δ ∈ {5.0, 7.0, 10.0}. An example of adversarial samples

generated for each threshold value is shown in Figure 5. As we can see from

Figure 5, the generated images look equal to the original ones, i.e. there is not

evident trace of the guide image into the adversarial one. Considering targeted
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attacks we obtained a success rate of 95.6%, 96.2% and 96.3% considering a

value for δ = 5.0, 7.0, 10.0, respectively. Instead, concerning untargeted attacks

we obtained 96.8% success rate for δ = 5.0, 7.0, 10.0, respectively. In all the

samples generations we considered a maximum number of iterations equals to

700.

Source 
Image

Guide 
Image

Guide Features

Source 
Features

Adversarial 
sample

Source 
Image

Adversarial 
Noise

L-BFGS-B

kNN

kNN
SotA model 

SotA model 

Figure 4: Schematic view of the adversarial generation procedure considering a state-of-the-

art (SotA) model as features extractor and a kNN to asses the face identity.

Source Image Guide Image Adversarial Sample Adversarial Noise

Figure 5: Adversarial samples for three different values of the threshold applied while solving

the optimization problem. Top: δ = 5.0. Middle: δ = 7.0. Bottom: δ = 10.0
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Differently from what was previously done in Subsection 5.2, we formulated

our approach with the purpose of fooling a FR system which was not based

on the simple model classification, but rather on similarities among deep rep-

resentations. Indeed, it is not guaranteed that even if a model misclassifies a

face image the adversarial deep representation will be then close enough to the

representation of the wrong face class predicted by the model to fool the FR

system.

In Figure 6, Figure 7, and Figure 8, we reported some results to justify

our intuition. The figures show the distribution of the distance among the ad-

versarial samples and the centroids of their relative classes considering classifier

attacks (BIM [16], MI-FGSM [34], and CW [35]) and DF attacks [45], using a

kNN as guidance.
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Figure 6: Euclidean distance among deep features of adversarial samples and the assigned

class centroid for classifier attacks (blue and orange) and kNN-guided attacks (green and red).

“ - T” refers to targeted attacks while “ - UT” refers to untargeted attacks.

As we can see from Figure 6, Figure 7, and Figure 8, even though classi-

fier attacks are able to fool a CNN model, the distance among them and the

centroids of their classes is larger than the one obtained when considering ma-

licious samples generated by means of the deep representation-based attack.

Thus, the latter represents a greater threat, with respect to the former types
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Figure 7: Euclidean distance among deep features of adversarial samples and the assigned

class centroid considering each targeted attack singularly. The “δ” values correspond to the

maximum L∞ perturbation allowed, for each pixel, for the kNN-guided attacks.
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Figure 8: Euclidean distance among deep features of adversarial samples and the assigned

class centroid considering each untargeted attack singularly. The “δ” values correspond to the

maximum L∞ perturbation allowed, for each pixel, for the kNN-guided attacks.

of attacks, for a FR model. Moreover, considering targeted and untargeted set-

tings for the classifier attacks, the untargeted attacks are, on average, closer to

the class centroids when compared to the targeted ones. This result supported
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the observation of the lower detection performance when we tested our detectors

against untargeted attacks (Subsection 5.2).

Taking into account Figure 7 and Figure 8, we can also notice that the av-

erage distance among the adversarial samples from its class centroid is quite

stable among the three different values of the threshold we used when consider-

ing malicious images generated with the deep features attack. This behaviour

is supported by the observation that, independently from the threshold applied,

the majority of the pixel perturbations are below, in the sense of an L∞ dis-

tance, a threshold of 5.0. Thus, a higher threshold has the effect that only a

small portion of the image is perturbed above that threshold itself. Specifically,

considering the values of δ ∈ [5.0, 7.0, 10.0], the percentage of pixels whose per-

turbation is within an L∞ distance of 5.0 is 88.3%, 85.6%, 84.7% respectively.

This behaviour is shown in Figure 9 for targeted attacks. In the case of an

untargeted setting, the results were almost identical.

0 2 4 6 8 10
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0.4
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Figure 9: Maximum Pixel Perturbation (MPP) distribution considering targeted deep rep-

resentations with different thresholds

5.3.2. Face Verification

In this section, we studied the ability of adversarial attacks to fool a FR

system tested against the Face Verification protocol in which two face images

are compared to claim if they belong to the same identity or not. In the DL

context, such decision is typically based upon similarity measurements among
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deep features extracted from the input faces. Specifically, once the model has

been trained, the ROC curve is typically evaluated and a threshold value is

chosen to be used as a reference value. Then, two faces are said to belong to

the same identity if their similarity score exceeds the predefined threshold. An

example of a real world application scenario of this kind of (such a) protocol is

a restricted access area control system. Since in this type of applications the

False Positives pose a greater threat than the False Negatives, it is important

to evaluate the ROC curve down to very low values of the False Acceptance

Rate (FAR). Such a demand translates into the requirement of evaluating the

similarity scores among a larger number of negative pairs with respect to the

positive ones.

Even in this case, the architecture of a FR system was made by a features

extractor and a module which worked out the similarity measurements. As a

features extractor we used the state-of-the-art model from Cao et al. [9], while

we considered the cosine among features vectors as similarity measurement.

After training the model, we obtained a ROC curve with an AUC value

equals to 99.03%. Then, we used the Equal Error Rate (EER) threshold which

we found equal to 0.448 as a threshold value for the similarity measurement. At

this point, we hypothesized two possible scenarios for the adversarial attacks:

• Impersonation Attack. In this case, we wanted to fool the system by

leading it to falsely predict that two face images belonged to the same

identity. This situation emulated the case in which an intruder intends to

enter a restricted area or, in a more general case, when someone is made

recognizable as a different person.

• Evading Attack. This case is the opposite of the previous one, i.e., we

wanted the system not to recognize a person by saying that the two images

belonged to different identities. This circumstance imitated the condition

of someone whose identity is made unrecognizable.

From the FR system perspective, in the former we needed the two images,

which belonged to different people, to be “equal enough”, i.e., their similarity
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measurement had to be above the threshold we had previously defined, while

in the latter, we needed the two images to be “distant enough”, i.e. below the

threshold.

To carry out these experiments, we consider the CW [35] attacks and the

kNN guided ones in the targeted and untargeted settings. What we expected was

the deep representation attacks to be more effective with respect to the classifier

attacks. The results for the Impersonation Attack scenario are reported in

Figure 10. In this case, we considered what follows: first, we randomly selected

negative matches, and we kept the second image fix, i.e. we analysed pairs of

faces (x, x−) where x− was an image from a different class of x. Then, we

looked upon an adversarial image, whose adversarial class corresponded to the

one of x−, and used it in place of the first image of the match, i.e. we accounted

the pairs (xadv, x
−) where xadv was an adversarial sample, crafted from x,

whose adversarial class was the same as the x− one. Then, we considered two

similarity measurements:

• “Original” which represents the value of the cosine among the deep fea-

tures of x and x−;

• “Adversarial” which represents the cosine between the deep features of

xadv and x−.

In Table 3, we reported the percentage of matches which overcame the EER

threshold, before and after the attacks, considering the targeted and untargeted

settings.

As we can observe from Table 3, the DF attacks [45] (kNN-guided) are much

more effective in pushing the similarity between the adversarials and the natural

images above the recognition threshold. Such conclusion holds for targeted and

untargeted attacks. Instead, the behaviour of the CW [35] was unpredictable

in this set up, thus we can conclude that even though the CW [35] algorithm

is among the strongest ones concerning classification attacks, although it is not

very effective against the Face Verification protocol.
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Figure 10: Cosine similarity distribution for kNN-guided and CW attacks in the Imperson-

ation Attack scenario. Top: targeted attacks. Bottom: untargeted attacks. “- Org” refers

to the cosine among natural images while “- Pred” refers to the cosine between the natural

image and the adversarial one. The dash-pointed line represents the EER threshold.

As far as the Evading Attack scenario is concerned, the results are reported

in Figure 11. Differently from the previous case, we started by collecting pos-

itive matches, i.e. pairs of images (x, x+) in which x and x+ belonged to the

same class, and then we substituted x with one of its adversarial, xadv, whose

class was different from the x+ one. Thus, we obtained the following similarity

measurements:
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Table 3: Percentage of matches which overcame the EER threshold, before and after the

attacks, considering the targeted and untargeted settings.

Targeted Untargeted

Original Adversarial Original Adversarial

δ = 5 4.0 92.8 19.9 81.5

δ = 7 4.0 93.9 19.9 81.6

δ = 10 4.4 93.6 19.8 81.1

CW [35] 50.5 34.9 8.0 9.3

• “Original” which represents the value of the cosine among the deep fea-

tures of x and x+;

• “Adversarial” which represents the cosine between the deep features of

xadv and x+.

As we explained before, in this scenario the purpose of the attack was to push

the similarity below the operational level of the FR system.

In Table 4, we reported the percentage of the matches that were below

the EER threshold, before and after the attacks, considering the targeted and

untargeted settings.

Table 4: Percentage of matches which are below the EER threshold, before and after the

attacks, considering the targeted and untargeted settings.

Targeted Untargeted

Original Adversarial Original Adversarial

δ = 5 5.4 18.9 4.1 9.9

δ = 7 4.3 22.9 4.3 11.4

δ = 10 4.3 26.2 4.1 12.5

CW [35] 4.0 17.1 4.0 6.2

By observing Table 4, it was clear that the DF attacks [45] (kNN-guided)
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Figure 11: Cosine similarity distribution for kNN-guided and CW attacks in the Evading

Attack scenario. Top: targeted attacks. Bottom: untargeted attacks. “- Org” refers to the

cosine among natural images while “- Pred” refers to the cosine among the natural image and

the adversarial one. The dash-pointed line represents the EER threshold.

were more effective that the CW [35] attacks in this case too. We can noticed

that on average the targeted attacks performed better than the untargeted ones,

which was an expected behaviour since an untargeted attack ended as soon as

the the adversarial is associated with a different identity, therefore it would not

have gone any further from the original image.
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5.3.3. Detection

Finally, we tested our detectors, trained on classifier attacks (Subsection 5.2),

on the newly generated adversarial samples. The resulting ROC curves, accord-

ing to a threshold of δ = 5 and δ = 10 for targeted and untargeted attacks

configurations, are shown in Figure 12. We did not report the ROC for the case

δ = 7 since the results were almost identical to the case with δ = 10.
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Figure 12: ROCs for the best models considering adversarial attacks generated with δ = 5.0

(top) and δ = 10.0 (bottom). “ - T” refers to targeted attacks while “ - UT” refers to

untargeted attacks.

As a summary, the AUC values were reported in Table 5 and Table 6 for
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targeted and untargeted attacks, respectively. According to the results shown

Table 5: AUC values for the best performing detectors for each threshold value considered

in our experiments in the case of targeted attacks.

Configuration AUC δ

MLP + L2 0.976 5

LSTM + cos 0.972 5

LSTM + L2 0.969 5

MLP + cos 0.915 5

MLP + L2 0.977 7

LSTM + cos 0.975 7

LSTM + L2 0.968 7

MLP + cos 0.908 7

MLP + L2 0.980 10

LSTM + cos 0.978 10

LSTM + L2 0.972 10

MLP + cos 0.915 10

in Figure 12, Table 5, and Table 6, we could see that, even though the adversarial

detectors were trained on different attacks, they displayed high performances in

detecting kNN-guided attacks too. This result has a relevant significance since it

means that, despite the different attacks’ objectives, adversarial samples share

some common behaviours in the inner layers of a deep model. Moreover, it

highlights the generalization capacity of our detection approach. Furthermore,

we can acknowledged that while the AUC values were very close for the targeted

attacks, in the case of untargeted attacks the LSTM performed considerably

better than the MLP.
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Table 6: AUC values for the best performing detectors for each threshold value considered

in our experiments in the case of untargeted attacks.

Configuration AUC δ

LSTM + cos 0.530 5

MLP + L2 0.492 5

MLP + cos 0.571 5

LSTM + L2 0.671 5

LSTM + cos 0.541 7

MLP + L2 0.481 7

MLP + cos 0.596 7

LSTM + L2 0.688 7

LSTM + cos 0.573 10

MLP + L2 0.467 10

MLP + cos 0.609 10

LSTM + L2 0.700 10

6. Conclusions

Adversarial samples represent a serious threat to DL models, epsecially as

they set a serious limitation especially on the use of learning models in sensitive

applications. Despite the scientific community’s effort in trying to train robust

NN, a knowledgeable attacker usually succeeds in finding ways to attack a model.

Except for the adversarial training, another approach to enhance the robust-

ness of AI-based systems to the adversarial threat is detecting these malicious

inputs. In several previous studies the properties of the offensive samples are

exploited in order to detect them. Compared to adversarially training a model,

the detection of these images has several advantages, e.g. it does not require

to re-train any model nor it does not require to specifically design new training

strategies to flatten the model loss manifold.

In light of these facts, we proposed our study on the detection of the ad-
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versarial samples. Specifically, we exploited the different behaviour of ad-

versarial samples in the inner layers of a DL model with respect to natural

images.

We conducted our experiments in the context of Face Recognition, for which

we crafted adversarial samples considering wrong-label assignment and deep

representation distance as objectives in the targeted and untargeted settings.

We first considered the NN acting as a classifier, and then we conducted our

attacks against a FR system in which the learning model was employed as fea-

tures extractor. As far as the classifier attacks are concerned, the best detector

reached an AUC value of 99% on the adversarial detection task.

The results obtained from the deep features attacks against a FR system

are even more interesting. In this case, we considered a more realistic applic-

ation scenario for a FR system in which the DL model was used as a features

extractor, and the final task was accomplished by means of similarity measure-

ments among the descriptors vectors. Specifically, we observed that i) classifier

attacks are much less effective in fooling a FR system; ii) the detectors, trained

on the first type of attacks, reached an AUC value of 98% and 70% for the

deep representation attacks, which they had never seen before, for targeted and

untargeted attacks, respectively. These last results are of great impact consid-

ering the idea of an “universal” adversarial detector. Moreover, this also means

that, despite the different objectives of the various kind of attacks, they actu-

ally share some common properties that can, or perhaps should, be exploited to

recognize adversarial attacks and build more robust systems without the need

to periodically change the model to increase its robustness.
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