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Abstract 

Numerical Weather Prediction (NWP) models are often used to predict meteorological events in a 

deterministic way. In recent years, operational Ensemble Prediction Systems are able to take into 

account some of the errors affecting the NWP models, and allow to estimate the probability of 

occurrence. In the traditional approach, this probability is given by the percentage of ensemble 

members predicting the event. In this study, we propose an alternative method to estimate the 

probability of occurrence, based on the ensemble probability density function (PDF), which takes 

into account only random errors unavoidably affecting the model. To estimate its reliability, we 

compare this method with classical categorical and probabilistic approaches by using different global 

models: ECMWF, GFS, and GEFS.  

In particular, we focus on wind speed forecasts in the area around the city of Taranto, located in 

Apulia region (southeastern Italy), to simulate the events called “Wind Days”, i.e. northwesterly wind 

above 7 m/s for 3 consecutive hours. Our analysis concerns 34 case studies covering 2016, 

opportunely chosen to have a balanced dataset of WD and no WD, the latter category mainly 

including cases that are very difficult to predict, at the border of the two categories. The results show 

that the probabilistic approaches have a better skill than the categorical ones. Among the probabilistic 

approaches, the best result (accuracy of 82%) is obtained using the method proposed here, with the 

control run of GEFS used to estimate the true value and the gamma distribution to model the error 

distribution.  

To reduce the systematic error, we test different thresholds and numbers of consecutive hours when 

the definition of WD is applied to model outputs. All the models show remarkably better 

performances after these parameters are changed. In particular, our method shows the best 

performance, with an accuracy of 94%. The analysis on test (leave-one-out strategy in 2016) and 

validation datasets (66 cases in 2017) confirms the previous outcomes. We test our procedures 

considering the forecast time intervals of 49-72 and 25-48 hours, where similar performances are 

found. In conclusion, our analysis show that the proposed method presents better performances 

compared to the traditional approaches for different statistical performance indicators. 

 
Keywords: probabilistic prediction approaches, GEFS, wind day, heavy events prediction 

 

1.1 Introduction 

Despite the exponential growth of computational power in the last years, the numerical models for 

weather prediction are still affected by errors (Boisserie et al., 2014; Wang, 2015). These errors are 

due to different causes, such as the inability of the models to represent correctly both the atmospheric 

dynamics and the relevant physical processes, and the sensitivity of simulations to the initial 

conditions, which is unavoidable. 
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Although this kind of errors cannot be prevented, due to the intrinsic limitation in the observing 

systems and in numerical models, some efforts can be done to reduce the limitation of deterministic 

numerical systems. A typical way to surmount this problem is to develop a probabilistic approach, by 

using ensembles of simulations, which somehow take into account the errors in the initial conditions 

and/or in the model formulation.   

To deal with the first kind of problem, a simple approach is the use of a multiphysics ensemble, where 

relevant physical parameters in a fixed model are varied within a range of plausible values, as in 

Berner et al. (2011). An alternative simple approach is the use of a poor man’s ensemble, where the 

outputs of different models (Ebert E. E., 2001; Corazza, 2018), or same model but with different 

implementations (e.g., starting at different initial times; time-lagged forecast (Miglietta et al., 2015; 

Miglietta et al., 2016)), are considered as independent members of the ensemble (Ebert E. E., 2001; 

García-Ortega, 2017). 

About the second kind of problem, it is known that the chaotic nature of the atmosphere amplifies the 

unavoidable errors in the initial conditions. Thus, small variations in the initial state can lead to large 

variations in the final state (Lorenz, 2000). For these reasons, in recent years weather centers all over 

the world have developed operational Ensemble Prediction Systems (EPSs), to take into account 

errors associated with parameterizations (Buizza et al., 1999) and with the uncertainty in the initial 

condition (Magnusson et al., 2008). 

As an example, the US National Oceanic and Atmospheric Administration (NOAA; 

http://www.noaa.gov/) has developed the Global Ensemble Forecast System (GEFS) (Guan et al., 

2015), while the European Center for Medium-range Weather Forecasts (ECMWF) has developed its 

own Ensemble Prediction System, operational since 1992 (Molteni et al., 1996). Many studies have 

shown that the ensemble mean is more accurate than a deterministic forecast (Leith, 1974; Zhang and 

Krishnamurti, 1997), while the prediction using the ensemble mean is better than individual member 

forecasts (Murphy, 1988). However, the key added value in using the ensemble systems is that each 

member provides a different scenario that should be taken into account within a probabilistic 

approach. The ensemble forecasts of Lothar windstorm affecting northern Europe on December 24, 

1999 represent a paradigmatic example of the relevance each single member may have especially in 

the prediction of extreme events (Palmer and Hagedorn, 2006). 

Whitaker and Loughe (Whitaker and Loughe, 1998) evaluated the relationship between ensemble 

spread and ensemble mean skill, showing that the ensemble spread can be used to estimate the forecast 

uncertainty (Zacharov, 2009), although they are correlated only in a limited way (Stensrud et al., 

1999). Also, for an EPS to be reliable, it is expected that the future atmospheric state should fall 

within the predicted ensemble spread; however, as shown in Wilks (2011), the outputs of NWP 

models could be systematically biased with respect to local observations (provided, for example, by 

ground weather stations). Thus, in the case of site specific applications, reducing this systematic error 

component is of primary importance (Perera et al., 2014; Pelosi et al., 2016; Cassola and Burlando, 

2012).  

To take into account these model limitations, several statistical postprocessing techniques have been 

implemented to improve the model output (Vannitsem, 2008). These statistical approaches consist of 

estimating the model correction during a training period, in a statistical or dynamical way. In the first 

case, we need a large training set, consisting of couples of forecasts and observations, in order to fix, 

once and for all, the correction parameters. An overview of this topic is exposed in Wilks  (2011) and 

in Schefzik (2017).  

In the dynamic training, the correction parameters are continuously updated by considering the most 

recent observations. Many of these methods are based on the Kalman Filter (Libonati, 2008). Pelosi 

et al. (2017) provides a rich overview and presents an original adaptive kalman filtering procedure 

for single-model ensemble forecasts. The skill of all these methods is evaluated with respect to their 

ability to reduce the error of the ensemble mean.  
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Another important aspect of an EPS is the possibility to associate the probability of occurrence of an 

event to a numerical prediction. This probability can be estimated as the fraction of ensemble 

members predicting the event (Sokol, 2017), which thus allows an immediate evaluation of the 

reliability of a given forecast (Alpert and Wang, 2005). In this way, an EPS may provide not only a 

probabilistic forecast (by means of the ensemble mean) but also the probability of occurrence. 

In this paper, we propose an alternative way to estimate the probability of occurrence of a local event 

(i.e., the presence of moderate-intense northwesterly wind in a fixed station), by combining 

probabilistic and deterministic information in a statistical way. In particular, we focus our attention 

on 10 m wind forecasts in the area around the city of Taranto, located in Apulia region (southeastern 

Italy), comparing the method we propose with both a categorical approach, based on deterministic 

weather forecasts, and a traditional probabilistic procedure, based on an ensemble model.  

After a short section, describing the motivation of the present study, in the following two sections the 

analyzed data and a detailed description of the proposed new approach are provided. In the discussion 

section, we show that the proposed approach has better performances with respect to both the 

categorical and probabilistic approach in the prediction of WD. For the categorical approach, 

deterministic model outputs, such as GFS and ECMWF Integrated Forecasting System, the control 

member of GEFS, and the ensemble average are considered. For the probabilistic approach, we 

compare three alternative methods based on GEFS data. An additional correction, taking into account 

the model bias, is proposed. Discussion and conclusions are drawn in the final section. 

 

1.2 Environmental problems in the area of interest 

 

        
Fig. 1: (Left) Geographical position of Apulia region (red area) in the Mediterranean. Red marker identifies the 

location of Taranto city in Apulia region. (Right) The industrial area: the largest European steel plant, ILVA 

(blue-bordered area); oil refinery (red-bordered area); cement plant (green-bordered area); port area (orange 

area); Tamburi neighborhood (yellow-bordered are), located less than 1 km far from the industrial area. Red 

marker identifies the location of the ground weather station, located in San Vito neighborhood.  

 

The present analysis is relevant for environmental purposes: in fact, as shown in fig. 1, the city of 

Taranto, and in particular the neighborhood named Tamburi, is in close proximity of a large industrial 

complex, including the largest integrated steel plant in Europe (ILVA), an oil refinery, a big cement 

plant and a port area. The ILVA plant covers a surface of 15 million square meters, with the presence 

of a large open air mineral stockyard. The Tamburi neighborhood is located less than 1 km far from 

the stockyard, downwind of the plant with respect to the prevailing northwesterly winds. 

The air quality network of the Apulia Region Environmental Protection Agency (ARPA) has 

registered, in the last few years, exceedances of the limit permitted by law  (European Air Quality 

Directive 2008/50/EC) both for PM10 (suspended particles with diameter under 10 µm)  and for 

benzo(a)pyrene (B(a)P) concentrations in the Tamburi neighborhood (Trizio et al., 2016). Amodio et 
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al. (2013) have demonstrated a close correlation of limit exceedances with wind conditions, due to 

short-range transport of air pollution from the industrial site to the adjacent urban area. 

In order to improve the air quality in the Tamburi neighborhood, in 2012 the Apulia Government 

adopted a Regional Air Quality Plan (Regione, 2012). This Act constrains industrial plants to reduce 

the mean daily B(a)P and PM10 emissions by diffuse and point sources by 10%, during events named 

as "wind days" (WD) (Fedele et al., 2014). WD are characterized by at least 3 consecutive hours of 

wind coming from the NW quadrant and speed higher than 7 m/s; the Air Quality Plan requires that 

WDs must be forecasted 72 hours in advance. For these reasons, it is necessary to accurately simulate 

wind speed and direction in order to predict the occurrence of WD several hours ahead.  

Studies aimed at reducing the error of numerical models in simulating the wind field near Taranto 

were performed, showing that a significant improvement in the model predictions can be reached 

using post-processing techniques (Fedele et al., 2015). In Tateo et al. (2017), the outputs of a multi-

physics ensemble using different boundary layer parameterization schemes in the WRF model were 

post-processed by means of Artificial Neural Networks in order to improve the forecast of 10 m wind 

speed. Other postprocessing techniques have been proposed in Mastrantonio et al. (Mastrantonio et 

al., 2018), and in Tateo et al. (2015). 

 

2. Material  

The skill of large scale models in the prediction of WD is analyzed using the Global Forecast System 

(GFS) and the Integrated Forecasting System (IFS) of the European Center for Medium-range 

Weather Forecasting (ECMWF) as deterministic models. The horizontal grid spacing of these models 

is respectively about 50 km and about 16 km (the actual resolution for both models is better than this; 

however, the considerations descending from our method do not depend on the resolution of the data 

we used). The initial time of the runs we consider in our analysis is 00:00 UTC, and the model outputs 

are available every 3 hours. 

Additionally, we use the weather forecast dataset generated by the 2012 version of NCEP's Global 

Ensemble Forecasting System (GEFS, Version 10) in the ESRL/PSD 2nd-generation Reforecast 

Project. This Reforecast V2 dataset consists of an 11-member ensemble; the forecasts are produced 

every day (00 UTC as initial time) from December 1984 to present. The horizontal grid spacing of 

GEFS is T254 (about 50 km) out to 8 days, and T190 (about 70 km) from day 8 to day 16 (Hamill et 

al., 2013). The use of this dataset will allow to compare the deterministic simulations with the 

probabilistic approach, and to draw some considerations on their use for operational purposes. 

WD predictions are compared with the observed WD at a ground weather station, which is located in 

San Vito neighborhood (marker icon in fig.1), in the neighborhood of Taranto, and belongs to ARPA 

Puglia. Starting from the definition of WD (wind speed greater than 7 m/s for at least three 

consecutive hours blowing from the north-western quadrant) and from the consideration that 

systematic model errors may affect the results, we will look for a different wind speed threshold and 

number of consecutive hours in the model output in order to maximize the performance in WD 

predictions. Considering that WDs are characterized by large wind speed, dominated by synoptic 

forcing that the model is able to reproduce properly, we do not consider the wind direction in the 

evaluation of WDs (the wind is always predicted from the north-western quadrant for each observed 

WD event), but we focus only on wind speed.  

We perform our analysis considering 34 case studies covering 2016. We built a balanced dataset, by 

including 16 observed WDs and 18 cases with no WDs. The latter set includes situations difficult to 

predict, characterized either by a wind speed above the threshold only for two consecutive hours, or 

by a wind speed slightly below the threshold. In fig. 2, as an example, we report the wind speed 

measured on July 17, 2016 by the ground station in San Vito: the wind is above the threshold of 7 

m/s for only two consecutive hours, thus it is not a WD, although very close to it.  
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In contrast, among the observed WDs, the dataset includes, in addition to days when the WD criterion 

is satisfied sharply, also days characterized by wind speed just above the threshold either with long 

persistence (fig. 3A) or for exactly three consecutive hours (fig. 3B).  

 
Fig 2: No WD case: there are only two consecutive hours with wind speed above the 

threshold, while in the previous hour the wind was just below the threshold. 

The horizontal dashed line represents the threshold of 7 m/s. 

 

 
Fig. 3: Two observed WD cases: (A) persistence of wind speed just above the threshold for 

several hours; (B) only three consecutive hours of wind, just above threshold. The 

horizontal dashed line represents the wind speed threshold of 7 m/s. 

 

In the full list of WDs, there are both isolated events and sequences of several consecutive wind days 

(up to 3 consecutive WD events). Particular attention will be devoted to the latter group of events, for 

which we noted that the first and the last of several consecutive wind days are often predicted 

inaccurately. In the following analysis, the predictions in the time window 25-48 hour and 49-72 hour 

are considered separately.  

 

3. Methods 

Our study deals with two different approaches, respectively a categorical and a probabilistic one. The 

former refers to deterministic outputs, such as the GFS and ECMWF global forecast data, the control 

member of GEFS, and the GEFS mean (we found similar performances for the median). Since the 

WD definition requires hourly data, the three-hourly global data have been interpolated to provide 

hourly outputs using a spline interpolation method. 
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The probabilistic approach is based on GEFS data. In our study, we consider three different 

methodologies to treat with ensembles. The first is the traditional approach (Ebert E. E., 2001), based 

on the percentage of ensemble members that predict the occurrence of the event (WD). The second 

method is based on the quantiles of the distribution. The third approach uses the ensemble probability 

density function, where we suppose that the prediction error of a reference run (e.g., a deterministic 

run or the ensemble control member) can be estimated from the ensemble distribution at the same 

time. Unlike the categorical approach, the probabilistic approach assigns a probability to each 

prediction.  

For each of the 34 cases considered here, four categorical WD predictions (GFS, ECMWF, the GEFS 

control run starting at 00 (c00), and GEFS mean) and the probabilistic predictions based on GEFS, 

using the three different approaches mentioned above, are compared. 

The categorical approach is based on the definition of WD adopted for the observed data: a wind day 

event is predicted 72 (48) hours in advance if, within the interval 49-72 (25-48) hours, there are at 

least 3 consecutive hours with wind speed greater than 7 m/s. From now on, we will indicate 72 (48) 

hours in advance to represent the time window from 49 to 72 (25 to 48) hours.  

The first probabilistic approach considered here is the traditional way to use the ensemble members 

of a generic Ensemble Prediction System (EPS). This method, here called as percentage method 

(WDP%), consists in counting the ensemble members predicting a WD event. This is equivalent to 

apply the categorical approach to each ensemble member. The probability of occurrence of a WD for 

this method is given by the percentage of ensemble members predicting a wind day: 

 

 
%  100

members) ensemble of(number 

 WDpredicting ensembles ofnumber 
% WDP    (1) 

 

The second approach proposed here is based on the percentiles of the hourly ensemble distributions, 

with percentile ranks ranging from 0 to 100, every 1. For each hour of the day, we evaluate the 

percentiles of the ensemble distribution. Then, instead of ensemble members, we consider the hourly 

percentile curves. The lowest hourly percentile curve predicting the wind day in accordance with the 

categorical approach provides the wind day probability for the quantile method (WDPq):  

 

 %  day]  wind thepredicting curve percentilehourly lowest [100qWDP  (2) 

 

As an example, in fig. 4 we show the estimation of WDPq on January 5, 2016, at the forecast range 

+72h. The lowest percentile that meets the WD conditions is the 70th percentile (starting from the 

bottom), so WDPq for January 5, 2016 is 30%.  
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 Fig. 4: The lowest percentile meeting the WD conditions is the 70th percentile, so the wind day probability for 05 

January, 2016, is 30%. The horizontal dashed line represents the wind speed threshold of 7 m/s. On the right, 

only the WD hours are shown. 

 

 

Note that the latter approach comes out to be useful in cases similar to ours, i.e. when the temporal 

evolution plays an important role. In fact, in case of events defined considering the value of the 

variables only at one time, the percentage and percentile approaches are equivalent. Since the wind 

day prediction concerns three consecutive hours, the two approaches may differ. In order to better 

explain this idea, figures 5 and 6 show an idealized example, considering five ensemble members, 

where the differences between the two methods are evident. None of the members - shown in the 

panels from (B) to (F) of fig. 5 - predicts a wind day in accordance with the categorical approach. 

This means that WDP% is equal to 0. 

 
Fig. 5: An idealized example composed of five ensemble members. (A) five ensemble members all 

together; (B)-(F) single prediction ensemble member. No member predicts wind day in 

accordance with the categorical approach. The prediction hours refer to the third day of 

forecast. The horizontal dashed line represents the wind speed threshold of 7 m/s. 

 

In contrast, with reference to fig. 6, the lowest percentile meeting the conditions for WD in accordance 

with the categorical approach is the 40th percentile, thus WDPq for this idealized example is 60%. 

 

 

 
Fig. 6: The quantile temporal evolution for an idealized example. The lowest percentile meeting the WD 

conditions in accordance with the categorical approach is the 40th percentile. The prediction hours refer 

to the third day of forecast. The horizontal dashed line represents the wind speed threshold of 7 m/s. 

 

The third approach is based on the measurement theory and in particular on the error theory (Ramirez 

et al., 2001; Taylor, 1997), which states that every physical measurement is affected by some error or 
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uncertainty. Although there may be different sources of errors, they can be summarized in two main 

classes: random and systematic errors. 

In the framework of this analysis, the systematic errors may be due to an improper calibration of the 

global forecast model, whereas the random errors may be due to the uncertainty in the initial 

conditions and to numerical approximations.  

The third proposed approach is based on the ensemble Probability Density Function (PDF); each  

ensemble member is supposed to be a specific measure of the observed field, assuming that the 

members are distributed according to a normal distribution (in our analysis, the gamma distribution 

has been evaluated too). Since the ensemble members include the random uncertainty, only random 

errors are taken into account in our third proposed approach. A further analysis, described in the result 

section, is performed to reduce the systematic error. 

In general, the ensemble mean cannot be considered as the “best” estimate of the observations since, 

in our analysis, we found some cases where the ensemble members do not include the measured 

values within the range of possible outcomes. In some cases, the deterministic GFS run is much closer 

to the observed value than the ensemble mean. As an example, in fig. 7 we compare the predictions 

from 49th to 72th hour of the GEFS members (dashed lines) and the deterministic GFS (points and 

segments) with the observed values (thick line) for December 30, 2016. One can see that the 

observation is not included within the ensemble range and, at the same time, the deterministic GFS 

is closer to observations than the ensemble mean. 

 
Fig. 7: Comparison of predictions (72 hours in advance) of the GEFS members (dashed lines) and the 

deterministic GFS (points and segments) with the observed values (thick line) for 30 December, 2016.  

 

In the situation shown in fig. 7, no member “includes” the true values; thus, since all ensemble 

members are greater than 7 m/s for most of the forecast time, the two previous probabilistic 

approaches will fail to predict correctly the occurrence of a WD (all members predict WD condition, 

while the observations do not show WD). In order to take into account this limitation, in the third 

proposed method we extract only the information on the shape of the random error distribution from 

the ensemble PDF. The estimate of the “true” value is taken from different alternative approaches: 

the deterministic GFS, the control member of GEFS, the mean of GEFS, the average between the 

deterministic GFS and the control member of GEFS, and the average between the deterministic GFS 

and the mean of GEFS. We assume that the shape of the ensemble distribution is similar to the shape 

of the forecast error distribution; as a consequence, the ensemble distribution is equivalent to the error 

distribution around the estimate of the true value.  

Hereafter, we describe the proposed procedure in detail. First, we consider an empirical ensemble 

distribution having the same shape of the original ensemble distribution and mean coincident with 

the estimate of the true value. From now on, all quantities refer to the empirical distribution.  

In this way, the probability to observe the event Eh, that is the observation of a value greater than or 

equal to the reference threshold �̃� at a specific forecast time h, is: 

𝑃(𝐸ℎ) = 1 − 𝐶ℎ(�̃�)  (5) 
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where Ch(�̃�) is the Cumulative Distribution Function (CDF) related to the empirical ensemble 

distribution at time h estimated in �̃� (Brownlee, 165). Since the CDF is the probability that the 

variable u will take a value less than or equal to �̃�, eq. (6) provides its definition 

𝐶ℎ(�̃�) = ∫ 𝑥ℎ(𝑢)𝑑𝑢
�̃�

−∞
 (6) 

where 𝑥ℎ(𝑢)𝑑𝑢 is the probability to have, at a specific forecast time h, a value between u and u+du. 

The joint probability to have values greater than or equal to �̃� for three consecutive hours, h, h+1 and 

+2, 𝑃(𝐸ℎ ∩ 𝐸ℎ+1 ∩ 𝐸ℎ+2), is obtained from the probability theory (Jeffreys, 1961), specifically from 

the conditional probability definition. Indeed, given two generic events A and B, we define as 

conditional probability of A given B - 𝑃(𝐴|𝐵) - the probability that the event A occurs when we know 

that B has already occurred:  

𝑃(𝐴|𝐵) =
𝑃(𝐴∩𝐵)

𝑃(𝐵)
  (7) 

where 𝑃(𝐴 ∩ 𝐵) is the joint probability of A and B, the probability that both events will occur. 

Through this concept, from the “compound probability theorem” (eq. 8), we can calculate the 

probability of the intersection of the two events, the joint probability. We have 

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴|𝐵) ∙ 𝑃(𝐵)  (8) 

Then, we get: 

𝑃(𝐸ℎ ∩ 𝐸ℎ+1 ∩ 𝐸ℎ+2) = 
 

𝑃((𝐸ℎ ∩ 𝐸ℎ+1) ∩ 𝐸ℎ+2) = 

𝑃(𝐸ℎ+2|𝐸ℎ ∩ 𝐸ℎ+1) ∙ 𝑃(𝐸ℎ ∩ 𝐸ℎ+1) = 

𝑃(𝐸ℎ+2|𝐸ℎ ∩ 𝐸ℎ+1) ∙ 𝑃(𝐸ℎ+1|𝐸ℎ) ∙ 𝑃(𝐸ℎ)  
By summarizing, 

 

𝑃(𝐸ℎ ∩ 𝐸ℎ+1 ∩ 𝐸ℎ+2) = 𝑃(𝐸ℎ+2|𝐸ℎ ∩ 𝐸ℎ+1) ∙ 𝑃(𝐸ℎ+1|𝐸ℎ) ∙ 𝑃(𝐸ℎ)  (9) 

 

The conditional probability value of 𝐸ℎ+2 given 𝐸ℎ ∩ 𝐸ℎ+1 and the conditional probability value of 

𝐸ℎ+1 given 𝐸ℎ are empirically estimated. Referring to the empirical ensemble distribution, the first 

conditional probability in eq. (9) is the percentage of ensemble members greater than or equal to the 

reference threshold at time h+2 among all those greater than or equal to the reference threshold at 

both h and h+1 forecast times. Similarly, the second term is the percentage of ensemble members 

greater than or equal to the reference threshold at the time h+1 among all those greater than or equal 

to the reference threshold at h forecast time. 

Once this probability is estimated for each group of three consecutive hours from the 49th to 72th hour, 

we can calculate the wind day probability for this third method based on PDF, WDPpdf. Eq. (10) 

provides the probability of wind day occurrence 72 hours in advance. 

 

𝑊𝐷𝑃𝑝𝑑𝑓 = 𝑚𝑎𝑥ℎ=49
70 [𝑃(𝐸ℎ+2|𝐸ℎ ∩ 𝐸ℎ+1) ∙ 𝑃(𝐸ℎ+1|𝐸ℎ) ∙ 𝑃(𝐸ℎ)]  (10) 

 

As an alternative to the Gaussian distribution, we also considered the gamma distribution to represent 

the error distribution. Gamma is a positive distribution, defined by the shape and scale coefficients, 

but, differently from the normal distribution, because of its asymmetry, the average does not 

necessarily coincide with the median (Hogg et al., 2005).  Due to these properties, it is suitable to 

represent the wind speed distribution.  

Differently from the categorical prediction, the probabilistic prediction needs to compute the best cut-

off in the available set of cases. In other terms, an additional analysis can be applied to define the 

probability threshold that maximizes the skill of the numerical system. This point will be discussed 

later in detail. 

For the estimation of reliability in both approaches, categorical and probabilistic, we have considered 

some indices based on the contingency table (see tab. 1) consisting of True positives (Tp), True 

negatives (Tn), False positives (Fp), and False negatives (Fn).  

https://en.wikipedia.org/wiki/Probability
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Contingency 

Table 

Event 

Observed 

1 0 

Event 

Forecaste

d 

1 Tp Fp 

0 Fn Tn 

Tab. 1: Contingency Table 

 

From this table, we can derive some statistical performance indicators, such as bias (BIAS), 

probability of detection (POD), false alarm ratio (FAR), threat score (TS, also known as Critical 

Success Index, CSI), equitable threat score (ETS), and the accuracy. Only for the probabilistic 

approaches, we have determined the cut-off that maximizes the accuracy index, and we have 

considered also the Brier Score (BS - also known as mean square probability error) and the area under 

the ROC (relative operating characteristic) curve (AUC) representing the hit rate versus the false 

alarm rate.  

For a graphical comparison of the different approaches, we consider the Performance Diagram 

(Roebber, 2009), which is widely used to visualize multiple measures of forecast quality. This method 

allows to represent simultaneously and simply four typical performance measures of dichotomous 

forecasts: BIAS, TS, POD, and success ratio (SR), defined as 1-FAR. In tab. 2, we report the formulas 

of the aforementioned indices. 

 

BIAS POD FAR TS ETS accuracy 

FnTp

FpTp




 

FnTp

Tp


 

FpTp

Fp


 

FnFpTp

Tp


 

Z

Z

HFnFpTp

HTp




 

 

  
FnFpTnTp

FpTpFnTp
H Z




  

 

FnFpTnTp

TnTp




 

 

Brier Score 

 



N

i

ii op
N 1

21
 

Tab. 2: Definition of the indicators used for the statistical evaluation: bias (BIAS), probability of detection (POD), false 

alarm ratio (FAR), threat score (TS), equitable threat score (ETS), accuracy, and Brier Score. 

 

4.Results 

4.1 Results on Training dataset 

 

Different statistical methods are here used to evaluate the skill of probabilistic forecasts in comparison 

with the categorical approach for the prediction of particular meteorological events, such as Wind 

Days. Table 3 shows the statistical indicators (BIAS, POD, FAR, TS, ETS, and accuracy) when the 

categorical approach is considered for: GFS, ECMWF, control member of GEFS (c00), ensemble 

mean (GEFS). POD is equal to 1 for GFS and the ensemble mean, meaning that all the observed WD 

events have been correctly identified (no Fn). At the same time, however, they have a higher FAR 

than the other simulations, thus more FAs (False Alarms or Fp) are present. In particular, the BIAS 

for GFS is equal to 1.88, which means that the number of WD forecasts is almost twice as much the 

observed WDs.  

In general, a BIAS greater than 1 does not imply that necessarily all cases of WD are correctly 

identified and that a null number of Fn is present; for example, the control member of the GEFS (c00) 

shows a BIAS of 1.50 (> 1) and a POD of 0.94, which means that Fn are also present. Despite the 
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presence of some Fn, the run c00 is characterized by a better performance in terms of accuracy due 

to fewer misclassified (Fp + Fn) events than the other model runs.  

Table 3 shows that, considering the categorical approach, the GEFS model has the best overall 

performance using either c00 or the ensemble mean. For a graphical, more immediate comparison, 

fig. 8 shows the Performance Diagram for the four categorical approaches. Since the best model is 

the closest to the top right corner of the diagram, c00 appears as the best.  

 

DATA BIAS POD FAR TS ETS accuracy 

GFS 1.88 1.00 0.47 0.53 0.12 0.59 

ECMWF 0.75 0.50 0.33 0.40 0.16 0.65 

control member (GEFS) 1.50 0.94 0.38 0.60 0.27 0.71 

ensemble mean (GEFS) 1.69 1.00 0.41 0.59 0.23 0.68 

expectation value 1 1 0 1 1 1 
Tab. 3: Evaluation indices for the four categorical approaches. The last row shows the best 

possible value for each index. 

 

Tables 4 and 5 show the statistical performance indicators (BIAS, POD, FAR, TS, ETS, accuracy, BS, 

and AUC) obtained for the three probabilistic approaches based on the GEFS model. In particular, 

tab. 4 shows the results for the percentile and quantile approaches, while tab. 5 shows the result for 

the approach based on the ensemble PDF using different reference values (GFS, c00, average of GFS 

and c00, and average of GFS and ensemble mean). For each reference value, we have considered both 

the normal and gamma distributions to model the error distribution.  

By comparing the results shown in tables 3, 4, and 5, it is apparent that, overall, the results using the 

probabilistic approaches are better than those using the categorical approach. In fact, except for one 

case (the second row in tab. 5), TS and accuracy are better for probabilistic approaches than for the 

best categorical approach (c00), which means that a lower number of misclassified events and a higher 

number of events classified correctly are simulated. Among the statistical indicators considered here, 

the FAR is one of the most significant indicators of performances because it concerns the false 

positives (“false alarms”). Similar to TS and the accuracy, the FAR performs better with probabilistic 

approaches. Although the categorical approach for ECMWF presents a FAR comparable with that 

shown by probabilistic methods, the POD value is the worst among all simulations, meaning that 

categorical approach for ECMWF shows few Fp but more Fn. Among the probabilistic approaches, 

the best result is obtained using the method based on the ensemble PDF, with c00 as reference and 

the gamma distribution to model the error distribution. In addition to the better accuracy, this 

approach shows improvements in almost all the evaluation indexes. In particular, its FAR and POD 

values are a compromise between the results of percentile and quantile methods. In fact, the percentile 

method shows a better POD while the quantile method shows a better FAR. The selected approach 

based on PDF presents improvements for both indexes. Figure 9 shows the Performance Diagram 

summarizing the performance of the three probabilistic approaches (for the method based on the PDF, 

only the best configuration is shown). 

 

Probabilistic method BIAS POD FAR TS ETS accuracy BS AUC 

percentile 1.31 0.94 0.29 0.68 0.42 0.79 0.24 0.80 

quantile 1.19 0.88 0.26 0.67 0.42 0.79 0.22 0.78 

expectation value 1 1 0 1 1 1 0 1 
Tab. 4: Evaluation indices for the two probabilistic approaches based on the percentile and quantile. The last 

row includes the best possible value for each index. 

 

reference of true value distribution BIAS POD FAR TS ETS accuracy BS AUC 

deterministic GFS Normal 1.63  1.00 0.38 0.62 0.27 0.71 0.33 0.69 

deterministic GFS Gamma 1.19 0.75 0.37 0.52 0.22 0.68 0.35 0.69 

control member (c00) Normal 1.31 0.94 0.29 0.68 0.42 0.79 0.25 0.77 
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control member (c00) Gamma 1.25 0.94 0.25 0.71 0.48 0.82 0.25 0.80 

Average(GFS,c00) Normal 1.56 1.00 0.36 0.64 0.32 0.74 0.29 0.73 

Average(GFS,c00) Gamma 1.44 1.00 0.30 0.70 0.43 0.79 0.29 0.78 

Average(GFS,ensMean) Normal 1.50 1.00 0.33 0.67 0.37 0.76 0.30 0.73 

Average(GFS,ensMean) Gamma 1.38 0.94 0.32 0.65 0.37 0.76 0.27 0.75 

expectation value //    // 1 1 0 1 1 1 0 1 
Tab. 5: Evaluation indices for the probabilistic method based on the PDF, for different distribution models and reference 

true values. The last row includes the best possible value for each index. The best configuration is bolded. 

 

The prediction of WD depends critically on the ability of the models to simulate correctly the wind 

speed. In this framework, it is relevant to analyze tab. 3 again. The latter shows that the ECMWF 

model, differently from other runs, has a BIAS less than one and a smaller POD, meaning that the 

forecasted WDs are less than those actually observed. However, the ECMWF accuracy is comparable 

with the other cases (and is even better than GFS): this means that the ECMWF model has a minor 

number of Tp and Fp, but more Tn. This is a consequence of the underestimation of wind speed in 

the ECMWF run, which is apparent in fig. 10, where the boxplots of the differences between the wind 

speed predicted within 49-72 hours (using respectively GFS, ECMWF, c00, and the ensemble mean) 

and the observed wind speed are shown. A positive mean error leads to a higher number of Tp and 

Fp; conversely, a negative mean error leads to more Tn and less Fp (as in the ECMWF run).  

In order to consider the error in the prediction of WD due to the wind speed mean error (i.e., the 

model bias) and to maximize the model accuracy, one can try to change the wind speed threshold and 

the number of consecutive hours used in the definition of WD when this is applied to the model data. 

For this purpose, we tested different wind speed thresholds (between 5 m/s and 9 m/s) and changed 

the number of consecutive hours (from 1 to 5). Table 6 shows the best results in terms of accuracy 

obtained for each approach. As a consequence of the generally positive model bias, all models need 

thresholds greater than 7 m/s, apart from the ECMWF model, which needs a reduced threshold due 

to its average underestimation. Also, the accuracy gain of the ECMWF run, which is lower than for 

the other deterministic runs, as shown in tab. 6, depends on the larger boxplot representing the wind 

speed error for ECMWF in fig. 10; because of the larger errors, there is no wind speed threshold 

suitable for most cases.  

Again, the method based on the ensemble PDF shows the best performance, with an accuracy of 94% 

obtained when we take the average of the deterministic GFS and probabilistic GEFS (ensemble mean 

or control) as reference value. The Performance Diagrams in Figures 11 and 12 show the 

improvement of the categorical and probabilistic approaches after the wind speed threshold and the 

number of consecutive hours are changed, as shown in tab. 6. In particular, fig. 12 shows the methods 

based on the ensemble percentiles, on the ensemble quantiles, the three best configurations in tab. 6 

based on the PDF (obtained when the average between GFS and c00 or the ensemble mean is adopted 

as reference value), and the case showing the best performances in tab. 5 (c00 member as reference 

value and the gamma distribution to model the error distribution). All the models show remarkably 

better performances after the changes in the threshold and in the number of hours are considered. 

 

4.2 Validation 

 

Since our proposed approach requires the evaluation of one or more external parameters (i.e., the cut-

off and the probability threshold), it has become settled practice to apply the method to a test and to 

a validation dataset in order to assess how well it performs in comparison with real data different 

from those used for the analysis. In our work, we used a single dataset of 34 events (including data 

recorded in 2016). For the test analysis, we adopted the leave-one-out cross-validation strategy, i.e. 

using one case as the test dataset and the remaining cases as the training set. In other terms, we have 

fixed the threshold by considering 33 cases (used as training set) and we have estimated the WD 

probability on the remaining case (used as validation set). The statistical analysis is complete when 
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all cases were considered in the validation process. In this way, the result is more reliable because the 

cut-off is chosen independently from the validation data. 

For validation analysis, we have considered an independent dataset of 66 case studies covering 2017, 

including 29 observed WDs and 37 no WDs, representing situations difficult to predict. The analysis 

on test and on validation dataset was carried out only for the GFS and GEFS data by comparing the 

categorical and probabilistic approaches (we do not have considered the ECMWF data in this 

additional analysis). For the analysis on the validation dataset (2017 cases), we have used the best 

cut-off estimated using the 34 case studies in 2016; in the leave-one-out analysis, we have adopted 

for each case study a specific threshold estimated from the 33 remaining case studies in 2016.  

Table 7 shows the result in terms of accuracy for both classical and no classical WD definition, i.e. 

changing the wind speed threshold and the number of consecutive hours. For each method and for 

both test and validation analysis, we have used the values reported in tab. 6. As expected, the 

performance on the test set is similar (although not equal) to the performance on the validation set 

and both are lower than the performance on the training set. 

Furthermore, the results in tab. 7 confirms that, in general, the performance based on probabilistic 

approach is better than the categorical approach. Among probabilistic approaches, the best result is 

obtained using the ensemble PDF method, using as true value a combination of deterministic (GFS) 

and probabilistic information (ensemble mean or control member of GEFS). The validation analysis 

confirms that the improvement due to the use of probabilistic methods consists in the reduction of 

false positives (not shown).   

We test the above procedures also considering the forecast time interval in the range 25-48 hours. 

Similar performances are found (not shown). 

data or method accuracy 

7m/s-3h 

new 

threshold  

[m/s] 

new 

# hours 

Best 

accuracy 

accuracy 

gain 

[%] 

GFS 0.59 9 4 0.82 39 

ECMWF 0.65 6 3 0.76 17 

control member (GEFS) 0.71 8 5 0.88 24 

Ensemble mean (GEFS) 0.68 8 3 0.85 25 

percentile 0.79 8 3 0.88 11 

quantile 0.79 9 5 0.88 11 

PDF-deterministic GFS Normal 0.71 9 3 0.88 24 

PDF-deterministic GFS Gamma 0.68 9 4 0.88 29 

PDF-control member (c00) Normal 0.79 8 5 0.88 11 

PDF-control member (c00) Gamma 0.82 9 2 0.88 7 

PDF-Average(GFS,c00) Normal 0.74 8 5 0.94 27 

PDF-Average(GFS,c00) Gamma 0.79 8 5 0.94 19 

PDF-Average(GFS,ensMean) Normal 0.76 8 5 0.94 24 

PDF-Average (GFS,ensMean) Gamma 0.76 9 5 0.91 20 

Tab. 6: For all considered methods and models: the accuracy related to the classical WD definition and the accuracy 

when a new value for wind speed threshold and number of consecutive hours is used. 

 

data or method 

Accuracy  

7m/s-3h 

(classical WD definition) 

Best 

accuracy 

(no classical WD definition) 

 Training 

(34 case 

studies - 

2016) 

Test 

(Leave-

one-out 

2016) 

Validation 

(66 case 

studies - 

2017) 

Training 

(34 case 

studies - 

2016) 

Test 

(Leave-one-

out 

2016) 

Validation 

(66 case 

studies - 

2017) 

GFS 0.59 0.59 0.68 0.82 0.82 0.79 

control member (GEFS) 0.71 0.71 0.70 0.88 0.88 0.79 
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Ensemble mean (GEFS) 0.68 0.68 0.68 0.85 0.85 0.80 

Percentile 0.79 0.72 0.71 0.88 0.82 0.79 

Quantile 0.79 0.74 0.77 0.88 0.85 0.80 

PDF-deterministic GFS Normal 0.71 0.68 0.76 0.88 0.85 0.86 

PDF-deterministic GFS Gamma 0.68 0.64 0.74 0.88 0.82 0.86 

PDF-control member (c00) Normal 0.79 0.79 0.80 0.88 0.85 0.82 

PDF-control member (c00) Gamma 0.82 0.79 0.80 0.88 0.85 0.82 

PDF-Average(GFS,c00) Normal 0.74 0.75 0.79 0.94 0.85 0.85 

PDF-Average(GFS,c00) Gamma 0.79 0.77 0.79 0.94 0.85 0.85 

PDF-Average(GFS,ensMean) Normal 0.76 0.75 0.80 0.94 0.85 0.85 

PDF-Average (GFS,ensMean) Gamma 0.76 0.75 0.80 0.91 0.88 0.83 

Tab. 7: For all considered methods (categorical and probabilistic), models (except ECMWF data), and dataset (training, 

test, and validation set): the accuracy for the classical WD definition and the accuracy when a new value for 

wind speed threshold and number of consecutive hours is used.  

 

 
Fig. 8: Performance Diagram of the four models from the categorical approach: ECMWF, 

GFS, c00 (control member of the GEFS), and Ensemble mean of the GEFS.  

 

 
Fig. 9: Performance Diagram of the three considered probabilistic approaches: method based on 

ensemble percentiles, method based on the ensemble quantiles, and method based on the 

PDF. For the last method, we report only the best configuration, obtained with the c00 

member as reference value and the gamma distribution to model the error distribution. 
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Fig. 10: Boxplots of the differences between the wind speed predicted within 49-72 

hours respectively using GFS, ECMWF, c00, and the ensemble mean, and 

the observed wind speed. 

 

 
Fig. 11: Performance Diagram after the wind speed threshold and the number of 

consecutive hours are changed as shown in Tab. 5 in the WD definition applied 

to the model results. The smaller symbols refer to the previous results while the 

larger symbols refer to the improved results. 

 

 
Fig. 12: Performance Diagram after the wind speed threshold and the number of consecutive hours 

are changed as shown in tab. 5 in the WD definition applied to the model results. The 

smaller symbols refer to the previous results while the larger symbols refer to the improved 

results. 



16 
 

 

 

5. Conclusion and discussion 

 

In this study, we propose an alternative approach to estimate the probability of occurrence of a local 

meteorological event covering a time period of a few hours. To estimate its skill, we compare this 

method with classical categorical and probabilistic approaches using different global models: 

ECMWF, GFS, and GEFS. 

In particular, we focus our attention on wind speed forecasts (range 49-72 hours) in the area around 

the city of Taranto, located in Apulia region (southeastern Italy), to forecast the so called “Wind 

Days”, i.e. days with observed northwesterly wind above the threshold of 7 m/s for at least 3 hours; 

these conditions are generally associated with an increase in the concentration of pollutants, and may 

strongly affect the air quality in town. Our analysis includes 34 case studies covering 2016. These 

cases are opportunely chosen in order to have a balanced dataset of 16 WD (all those occurring in 

2016) and 18 no WD, including in the latter category the events that are very difficult to predict, i.e. 

at the border between the two categories.  

Our proposed method aims to reduce the error of a forecast based on an ensemble system. We assume 

that the ensemble spread provides information on the error distribution (ensemble PDF) around the 

estimate of the true value provided by a deterministic run or by a combination of a deterministic run 

and the ensemble mean). To compare this new approach with other more traditional methods, various 

statistical indices are evaluated. 

Results show that, among the categorical approaches based on deterministic model outputs, the GEFS 

model shows the overall best performance, using either the control member or the ensemble mean. In 

general, results using the ensemble systems are better than those using the deterministic runs. Among 

the probabilistic approaches, the best result (accuracy of 82%) is obtained using the ensemble PDF 

method, with the control run as true value and the gamma distribution to model the error distribution.  

Since the systematic error in the WD prediction is related to the wind speed mean error of the model, 

one can try to change the wind speed threshold and the number of consecutive hours used in the 

definition of WD when this is applied to the model data. Apart from the ECMWF model, which needs 

a reduced threshold due to its average underestimation, all models need thresholds greater than 7 m/s 

and a larger number of consecutive hours to improve their skill, as a consequence of the generally 

positive model bias.  

The skill of all the models is remarkably better after the wind speed threshold and the number of 

consecutive hours are changed. In particular, the method based on the ensemble PDF shows the best 

performance (accuracy of 94%) when we take the average of the deterministic GFS and probabilistic 

GEFS (ensemble mean or control) as reference value. 

The analysis on test (leave-one-out strategy in 2016) and validation datasets (66 cases in 2017) confirms 

the previous outcomes. The results presented here concern a dataset of selected WD and no WD cases. 

We select cases at the border of the two categories, which are more difficult to predict. For this reason, 

better results are expected using a more general dataset, consisting also of WD cases predictable in a 

clear-cut manner. 

We test our approach by considering the reliability in the prediction of WD, which is closely related 

to the wind speed and wind direction prediction. The new approach proposed here could be extended 

to other situations where the occurrence of an event, associated with the overcoming of a threshold 

in a time window, should be predicted. Our method could be easily applied to the prediction of other 

extreme events, e.g. to estimate the probability of heavy precipitation at a fixed point.  

The authors are planning to validate this methodology for future real-time predictions of WD, in order 

to check how the value of the statistical parameters changes considering a different sample of events. 
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