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Abstract: A syngas production process was studied cyclically, exploiting the redox properties of
Ce-based oxygen carriers. The two steps of the looping cycle were investigated through thermogravi-
metric analysis and fixed bed experiments. While TGA experiments were focused on the identification
of the optimal temperatures ranges for methane partial oxidation (900–1000 ◦C) and carrier regen-
eration (400–900 ◦C), fixed bed testing was performed isothermally (at 900 or 950 ◦C), with a 10%
CH4 feed stream in N2 to investigate material stability and cyclic performance reproducibility. The
effect of the process times on carbon deposition, specific syngas yields, and selectivity was inspected,
together with the investigation of best conditions to fully regenerate the carrier, adjust the syngas
final ratio, and to ensure stable performances. The obtained results ensured the possibility to work
in fully isothermal operations, with CH4 conversion of up to 38% and specific yields of syngas per
mass of O2 carrier between 4.0–6.8 mmol·g−1, preserved even across cycles, thus paving the path to
the development of alternative and effective processes for syngas production. Under the operating
conditions of the lab-scale experiment, an effective reforming time was 20 min, corresponding to
1.16 times of the characteristic time of reaction kinetics at 950 ◦C.

Keywords: reforming; chemical looping; cerium dioxide; process optimization; syngas

1. Introduction

Steam methane reforming (SMR), (R1), is the most employed process for hydrogen
and syngas production, despite its notable contributions to global CO2 emissions [1–3] and
the high production costs connected with heat supply at high temperature (650–1000 ◦C)
and pressure (5–40 bar) [4–6].

CH4 + H2O ⇌ CO + 3H2 ∆H0
298K = +205.8

kJ
mol

(R1)

The need to reduce greenhouse gas emissions in terms of the decarbonization of the
chemical and energy industry requires the development of novel processes and technologies
to enable more sustainable production. Carbon capture can be coupled with conventional
SMR processes to reduce emissions [7–9]; however, steam reforming also produces syngas
with a very high (3 or more) H2 to CO ratio, which is useful for hydrogen production but is
often too high for chemical synthesis such as Fischer–Tropsch and methanol production,
requiring costly post-treatment to correct the ratio [10,11]. Other technologies for syngas
production therefore have been the subjects of increasing interest. For example, methane
partial oxidation (PO) exploits an exothermic reaction, which is energetically more favorable
than endothermic steam reforming and provides H2/CO at a ratio of 2 (R2) [12,13]. The
main critical points of such processes are temperature control and selectivity towards
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partial oxidation (compared to complete combustion (R3)), as well as catalyst sintering or
deactivation due to parasitic coke deposition side reactions.

CH4 +
1
2

O2 ⇌ CO + 2H2 ∆H0
298K = −36.0

kJ
mol

(R2)

CH4 + 2O2 ⇌ CO2 + 2H2O ∆H0
298K = −802.6

kJ
mol

(R3)

Carbon deposition may occur either through methane thermal decomposition (R4) or
the Boudouard reaction (R5):

CH4 ⇌ C + 2H2 ∆H0
298K = +74.5

kJ
mol

(R4)

2CO ⇌ C + CO2 ∆H0
298K = −172.4

kJ
mol

(R5)

A tight control of methane to oxygen ratio in the feed is needed to ensure selectiv-
ity [14,15]. Non-catalytic, thermal partial oxidation processes for syngas production also
need to operate at very high temperatures (above 1000 ◦C) [16] to achieve sufficient selec-
tivity, necessitating the good control of reaction conditions to avoid temperature runaway
as well as presenting limits in the construction of reactors capable of withstanding such
high temperatures in oxidizing environments. While catalytic processes can potentially
operate at lower temperature while maintaining high selectivity, they nonetheless can
suffer from problems related to hotspot formation in the catalytic bed due to heat and mass
transport limitations, which can lead to a loss of selectivity, thermal stresses in the bed, and
catalyst sintering and degradation [17,18]. The coupling of thermo-catalytic process with
photocatalysis has been proposed as a solution to increase selectivity and reduce operating
temperature for PO processes [19], but optimal catalysts for this application are also yet to
be found. Despite recent advancements in the development of novel catalysts, catalytic PO
processes are generally still greatly hindered by carbon deposition, which causes very rapid
catalyst deactivation and remains a major obstacle to the development of the process on a
large scale [20]. The influence of the cracking reaction can also increase the product syngas
H2/CO ratio significantly above the stoichiometric 2, which renders the product syngas
unsuitable for direct implementation for processes such as methanol synthesis, requiring
again costly post-treatment and the adjustment of the ratio to the desired value.

In addition, the direct mixing of methane with pure oxygen implies safety issues
with risks of explosions [21] and requires the utilization of an expensive air separation
unit (ASU) to provide pure oxygen instead of air in order to avoid the dilution of reaction
products with N2 [22], limitations that cannot be solved by catalyst optimization.

These issues may be overcome by implementing PO in a chemical looping (CL) fashion.
The chemical looping approach was first proposed for the combustion of natural gas,

hydrocarbons, and solid fuels but can also be applied to SMR and PO reactions [23]. The
base concept of the approach is that the reaction can be divided into two separate steps by
exploiting the redox properties of a solid carrier material, commonly a metal oxide [24].
Briefly, the metal oxide acts as an oxygen carrier (OC): first, methane is oxidized (either
completely for combustion or to syngas in the case of PO or SMR) by the reduction in
the OC, then the OC is regenerated (oxidized) through reaction with a source of oxygen
(i.e., air, O2, CO2, H2O) to start another cycle. During the regeneration step, coke can also be
removed by oxidation, thus limiting its accumulation across repeated cycles. By performing
a PO reaction with a CL scheme, direct contact between methane and oxygen is avoided,
and the product streams are inherently separated without the need of utilizing a pure
oxygen feed. Furthermore, the proper selection of the carrier allows the replacement of a
high-quality heat supply with isothermal redox operation improving the system efficiency.
Therefore, in recent years, the benefits of a chemical looping approach to combustion and
reforming processes have drawn increased interest from researchers [25–27]. The selection
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of a proper oxygen carrier is essential to ensure selectivity towards partial oxidation to
syngas rather than complete combustion [28]. Furthermore, an ideal oxygen carrier should
be economically competitive while at the same time ensuring stable productivity and
structural stability across several repeated looping cycles, without loss in selectivity and
yields due to the sintering or poisoning of the carrier, particularly due to coking [29].

Of various possible oxygen carriers, cerium dioxide (CeO2) possesses very promising
properties for reforming reactions [30], both as support for Fe- [31,32], Ni- [33–35], or
Co [36]-based OCs and catalysts or when directly employed. Despite cerium classification
as a rare-earth element, its abundance in Earth’s crust is comparable to copper [37] and
it can be extracted fairly easily from rare-earth-containing minerals [38,39]. Furthermore,
cerium dioxide displays excellent redox properties, namely high oxygen storage capacity
for the transition between Ce4+ and Ce3+; a stable cubic fluorite structure which is preserved
even over a wide range of non-stoichiometric reductions [40,41]; fast and easily reversible
reduction and oxidation reactions [42,43]; fast oxygen diffusion [44]; and high resistance
to coke formation due to the re-oxidation of the deposited carbon thanks to the reaction
with lattice oxygen [45,46]. The oxidation of methane on cerium dioxide is also selective
towards syngas production.

Previous work based on its utilization has defined the reactions involved and high-
lighted the critical points that should be addressed to implement CeO2 on a large scale [47].

The reactions of a complete PO looping cycle are listed below:

1. Partial oxidation step:

CH4 + 2CeO2 ⇌ CO + 2H2 + Ce2O3 ∆H0
298K = 332.3

kJ
mol

(R6)

CH4 + 8CeO2 ⇌ CO2 + 2H2O + 4Ce2O3 ∆H0
298K = 670.7

kJ
mol

(R7)

2. Carrier regeneration (REG) step:

Ce2O3 + O2 ⇌ 2CeO2 ∆H0
298K = −368.3

kJ
mol

(R8)

C +
1
2

O2 ⇌ CO ∆H0
298K = −110.5

kJ
mol

(R9)

C + O2 ⇌ CO2 ∆H0
298K = −393.5

kJ
mol

(R10)

It should be mentioned that the (R6) and (R7) Equations represent simplified forms of
the reactions schemes for the reduction step, as it is known that several non-stoichiometric
cerium oxides species (CeOx, with 1.5 < x < 2) are formed during the process [48], and the
same holds true for the corresponding scheme for the oxidation/regeneration process (R8).
To avoid the complication of the description of various non-stoichiometric compounds
participating in the process, the overall Ce/O ratio in the system will be referred to as the
“bed-average” non-stoichiometric coefficient δ in the general oxide formula CeO2−δ [49],
with 0 ≤ δ ≤ 0.5. Thus, the bed-average non-stoichiometry δ indicates the extent of the
oxygen released by the cerium oxide lattice, from the value of zero indicating completely
oxidized CeO2 to the maximum value of 0.5 corresponding to a complete reduction to
Ce2O3 (which is to say, CeO1.5). During the carrier regeneration step, the deposited coke
is also oxidized and removed (R9) and (R10), which is a considerable advantage of the
chemical looping operation compared to conventional catalytic processes.

After the solid–gas reaction, the reduced carrier and potentially deposited carbon are
normally regenerated by air or an O2/N2 mixture (R8, R9, R10). However, an interesting
approach for this latter step relies on the utilization of CO2, according to the reaction
(R11) [50]:

Ce2O3 + CO2 ⇌ 2CeO2 + CO ∆H0
298K = −85.4

kJ
mol

(R11)
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This reaction is particularly interesting as it offers a pathway for CO2 valorization
from the perspective of integrating carbon capture and utilization technologies to lower
greenhouse gas emissions [51]. The produced CO stream can be valorized either on its own
or mixed with the syngas of partial oxidation step in order to modulate the H2/CO ratio.
Overall, when the regeneration step utilizes carbon dioxide for OC oxidation, the complete
looping cycle amounts to an endothermic dry reforming (DR) reaction [52].

CH4 + CO2 ⇌ 2H2 + 2CO ∆H0
298K = +247

kJ
mol

(R12)

Conventional catalytic dry reforming processes are limited by very high coke depo-
sition, leading to rapid catalyst poisoning [53], but in a chemical looping operation, the
deposited coke can be removed during each regeneration step. Therefore, chemical looping
offers a promising pathway for carbon dioxide utilization in chemical synthesis.

The use of CeO2 for reforming processes has been studied from several perspectives to
assess kinetic dependencies in relation to changes in flow rate and temperature. Warren et al.
determined that an increase in operating temperature improves methane conversion and
syngas yields, as expected from the endothermic nature of the reaction, and that decreasing
methane residence time during the reduction enhances syngas yields while reducing CO2
and H2O formation due to further syngas oxidation [54]. Nevertheless, excessively high
methane flow rates cause carbon deposition to prevail, as the rate of the release of oxygen
from the cerium dioxide lattice becomes the limiting factor [49,55]. Therefore, while high
temperature operations are thermodynamically and kinetically favorable for methane re-
forming, the methane flowrate must be properly regulated and the cycle duration selected
in order to avoid the insurgence of carbon deposition as lattice oxygen is depleted. Con-
versely, carrier re-oxidation was found to be always complete between 900 and 1170 ◦C,
even in the presence of different oxygen sources other than air, such as CO2, which means
it is not kinetically limited by temperature changes [49].

The introduction of dopant, supports, and the use of mixed oxides can considerably
increase oxygen carriers’ performance [56–58]. Alumina is a common, cheap support mate-
rial, and its interaction with cerium dioxide has been studied in a number of applications.
The ceria–alumina composite has demonstrated improved performance as a support for
nickel-based catalysts in methane dry reforming reactions, displaying increased coke resis-
tance and structural stability [59]. It has been observed that mixed alumina–cerium dioxide
showed improved performance as a catalyst for the pyrolysis of waste oil, with decreased
carbon deposition [60] and improved thermal stability for a water–gas shift catalyst [61].
The formation of a CeAlO3 spinel structure has also been found to enhance cerium dioxide
reducibility [62,63]. Previous work on fluidized beds evidenced a beneficial effect on carrier
performance when 30% weight of alumina was added to cerium oxide [47].

The present study aims to assess the effect of process time optimization, for both the
reduction and oxidation steps of methane, in presence of a Ce-based oxygen carrier and
mixed CeO2-Al2O3 (30% wt. in Al2O3) oxides, at the gram scale, by means of thermo-
gravimetric analysis and cyclic reaction testing in a fixed bed apparatus, thus reporting
the clear results of the effect of process time on overall syngas yields, selectivity, and
carbon deposition.

In this research, the conditions needed to reach the highest syngas production rates as
well as the ones needed to convert accumulated coke into additional CO, improving syngas
yields and adjusting its final ratio, were identified. Furthermore, carrier regeneration by
CO2 in cycles with optimized partial oxidation step duration was also verified.

2. Materials and Methods
2.1. Material Preparation

CeO2 commercial powder (PI-KEM, Tamworth, UK, purity 99.9%) was processed in a
hydraulic press under an effective pressure of 250 MPa and then crushed and sieved into
pellets sized between 0.595 mm and 0.841 mm. The sample was further calcined in air at
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900 ◦C for 1 h, with a heating rate of 3 ◦C/min starting from room temperature, and the
resulting pellets (tap density: 2.78 g cm−3, superficial area: 5.20 m2 g−1) were used for
characterization and testing without further treatments.

The composite carrier was instead achieved by the mechanical mixing of CeO2 with a 30%
mass fraction of Al2O3 powder (KMS96, Martinswerk GmbH, Bergheim, Germany) followed
by pressing, sieving, and thermal treating at the same conditions of pure cerium samples.

2.2. Thermogravimetric Analysis (TGA)

CeO2 redox properties were preliminarily investigated on a STA 449 C Jupiter thermo-
gravimetric balance (NETZSCH, Selb, Germany).

In a typical analysis, a flow rate of 180 mL/min at 4% CH4 in Ar and an air flow rate
of 100 mL/min were used on a sample of ∼80 mg to study the reduction and oxidation,
respectively, employing pure argon for the pre-heating while keeping the previous gaseous
atmosphere in the transition between stages (reduction and oxidation) for tests carried out
under non-isothermal conditions.

Details of the operative conditions employed are listed below:

• Heating in the Ar atmosphere at 30 ◦C/min;
• Reduction for 40 min in 4 vol.% CH4/Ar at a flow rate of 180 mL/min;
• Oxidation for 15 min with an air flow rate of 100 mL/min.

Two different types of tests were carried out: (i) at variable reduction temperatures,
within the range of 900–1000 ◦C, while keeping the oxidation temperature constant at
900 ◦C; (ii) at variable oxidation temperatures, within a range of 400–900 ◦C, with the same
reduction temperature of 900 ◦C.

TGA curves were elaborated by NETZSCH Proteus software (Version 6.1.0), and the
results were reported as mass variations in the functions of time and temperature. The
TGA results were then examined to be used in a pre-screening of the material performance
in order to assess operating conditions in the chemical looping tests.

2.3. Chemical Looping Tests

The employed test rig, shown in Figure 1, consists of three main parts: the feeding
system, the reaction area, and the gas detector.
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Figure 1. Schematic of experimental rig.

O2, methane, and inert (N2) feed flow rates were set and controlled by Bronkhorst
mass flowmeters, while the composition of the outgoing gases was monitored continuously
through an online syngas analyzer (GEIT 3100 P+ Syngas) equipped with a thermal conduc-
tivity detector (TCD), an infrared detector (NDIR), and an electrochemical oxygen sensor.

An AISI-316 stainless steel reactor (ID 10 mm) in fixed bed configuration was enclosed
within a tubular furnace, while layers of quartz wool were used to ensure thermal insulation
and to guarantee isothermal operation. A K-type thermocouple, from the upper end of the
reactor up to the height of the cerium dioxide, was inserted to measure the bed temperature
at the middle point. Each reactor test was run isothermally, and the chemical looping
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operation was achieved by switching the feed composition and flowrate between the
partial oxidation and carrier regeneration phases. The separation of the two reaction steps
was achieved by the introduction of an intermediate step of purging with nitrogen to ensure
the complete removal of the previous gas stream before the next reaction step. Coarse
quartzite filler was loaded above and below the carrier layer to ensure its proper placement
inside the reactor and to avoid the fluidization and entrainment of the bed. In a typical
experiment, ∼15 g of sample was loaded.

Before the start of the experiment, blank tests, in an inert atmosphere of N2 with the
reactor filled with quartzite only, were performed to rule out eventual contributions of the
filler or of reactor walls to reaction yields, collecting the output gas signal at all the flow
rates and composition explored during the actual testing phase.

For the half cycle of reduction, 1 NL/min of CH4 10 vol.% in N2 was selected as a
fixed condition, while several flow rates (1, 3, and 5 NL/min) with different O2 contents
(3, 5, and 21 vol.% in N2) were evaluated for regeneration in an attempt to contain the
overheating triggered by the exothermic reaction without loss of regeneration efficiency.

For the isothermal cycle, 900 and 950 ◦C were tried as trial temperatures, and the
results were analyzed in terms of gas production rates, carbon build-up, carrier regeneration
efficiency, syngas selectivity, yields, and final ratio.

SEM microscopy images (Field Emission GUN-FEG MIRA 3 XMU) were taken of
samples both before and after reaction cycles to inspect structural changes linked to the
reaction cycles.

2.4. Data Analysis

A method for data processing, where thermogravimetry data were processed based
on the rate of oxygen release and the fixed bed tests in terms of outlet gas composition,
was developed.

Specifically, in the thermogravimetric analysis, the average reaction rate of partial
oxidation and carrier regeneration was determined from the time (tF − t0) required to
achieve the maximum carrier conversion calculated as follows:

PO rate =

 (ω PO
0 −ωPO

F

)
/(ωst)

tF − t0

/yCH4 , (1)

REG rate =

 (ω REG
0 −ωREG

F

)
/(ωst)

tREG
F − tREG

0

/yO2 , (2)

where ω0 and ωF represent the initial and final weights of the sample as weight percentage
and are normalized for the maximum stoichiometric weight loss, ωst = 4.65 wt.%; calculated
for the complete transition from CeO2 to Ce2O3; The rates are also normalized for the CH4
or O2 molar fraction in the feed during reaction step, yCH4

and yO2
.

For fixed bed experiments, the data were evaluated assuming the ideal behavior of
the gas stream, with the consumed reagent (CH4, O2) and formed products (CO, CO2,
H2) calculated from the numerical integration of mass balances based on the continuously
known inlet and the outlet compositions.

All mass balances were solved assuming the conservation of N2, used as the basis for
determination of the outlet mass flowrate, and the moles number of the generative term of
all components, ni,g(t), was obtained as follows:

ni,G(t) =
∫ t

t0

.
nin

(
yi,in −

yN2,in

yN2,out
yi,out

)
dt (3)

where
.
nin is the inlet flowrate; yN2,in and yN2,out are the inlet and outlet molar fractions of

nitrogen, respectively; yi,in and yi,out are the inlet and outlet molar fraction of species i; and
t0 is the starting time of the partial oxidation/carrier regeneration step. As H2O was not
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directly detected by the gas analyzer, its total produced amount was calculated as result of
the total hydrogen balance.

nPO
H2O =

4 nCH4, in − 4 nCH4, out − 2 nH2, G

2
=

4 nCH4,G − 2 nH2,G

2
(4)

The instantaneous rates of production/consumption were determined as the deriva-
tive over time of the amount produced:

dni,g

dt
(ti) ≈

ni,g(ti+∆t)− ni,g(ti)

∆t
(5)

The amount of carbon deposited during the partial oxidation step was obtained by a
molar balance of carbon, calculated as follows:

nPO
C = nPO

CH4,g − nPO
CO2,g − nPO

CO,g (6)

From this value, the amount of H2 produced by methane cracking was estimated and
denoted as nC

H2
according to the stoichiometry of reaction (R4), and consequently, the net

H2 obtained by the desired reaction (partial oxidation, PO).

nPO
H2

= ntot
H2

− nC
H2

= ntot
H2

− 2nPO
C (7)

The bed-average oxygen non-stoichiometric coefficient δ of cerium dioxide achieved
during partial oxidation was calculated based on the total oxygen species obtained in
the same step, assuming that the regeneration step is complete, while cerium dioxide
conversion was calculated with reference to the (R6) reaction scheme.

δ =
nPO

CO + 2nPO
CO2

+ nPO
H2O

nCeO2

(8)

χred
CeO2

=
δ

0.5
× 100 (9)

On the other hand, the conversion for oxidation was calculated from the oxygen
balance during the carrier regeneration step by subtracting the oxygen consumed by the
carbon oxidation to the total moles of reacted oxygen:

χox
CeO2

=
2∗nreg

O2,in
− 2·nreg

O2,out
− nreg

CO,out − 2·nreg
CO2,out

nPO
CO + 2nPO

CO2
+ nPO

H2O

× 100 (10)

Re-oxidable carbon was determined by the detection of CO and CO2, thus allowing
the quantification of carbon build up for each looping cycle:

nreg
C = nreg

CO + nreg
CO2

(11)

nacc
C = nPO

C − nreg
C (12)

Key indicators such as selectivity for partial oxidation (ηPO), total oxidation (ηTO), car-
bon formation (ηC), specific syngas yield (ρ) and ratio, and methane and oxygen conversion
were calculated according to the following equations:

ηPO = nPO
CO/nPO

CH4,G × 100 (13)

ηTO = nPO
CO2

/nPO
CH4,G × 100 (14)

ηC = nPO
C /nPO

CH4,G × 100 (15)
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ρ =
(

nPO
H2

+nPO
CO)/mCeO2,in (16)

Syngas ratio = ntot
H2

/nPO
CO (17)

χCH4 = nPO
CH4,G

/nPO
CH4,in

(18)

χO2 = nreg
O2,G

/nreg
O2,in

(19)

For the regeneration step with CO2, the same formulas were utilized, except for the
calculation for oxidant conversion and for the carbon removed during regeneration, which
were instead obtained as follows:

nreg, CO2
C =

(
nreg,CO2

CO2,out + nreg,CO2
CO,g

)
− nreg,CO2

CO2,in (20)

χCO2 = nreg,CO2
CO2,g

/nreg,CO2
CO2,in

(21)

3. Results and Discussion
3.1. TGA

The effects of temperature on reforming and regeneration kinetics were first inspected
by TGA, tracking the release of lattice oxygen through monitoring CeO2 weight loss. The
purpose of TGA tests was to undertake a first screening of carrier behavior, particularly
regarding the effect of reaction temperature on process kinetics and on more limited sample
mass, in conditions where external transport limitations were expected to be less relevant
compared to reactor tests and a wider temperature range with rapid temperature switches
could be more easily investigated. The available apparatuses for TGA tests are unable to
detect outgoing gas composition; therefore, information on whether oxygen release was
linked to partial oxidation, total combustion, or a combination of both reactions, was not
provided by this type of analysis.

Figure 2 displays profiles obtained, first, under constant methane reforming conditions
(900 ◦C) but different regeneration temperatures (400 ◦C and 600 ◦C), and second, at a con-
stant regeneration temperature (900 ◦C) but with varying methane oxidation temperatures
(950 ◦C and 1000 ◦C).

Looking at the weight loss at different temperatures, i.e., 900 ◦C (Figure 2a,b), 950 ◦C
(Figure 2c), and 1000 ◦C (Figure 2d), it is possible to make a comparison of the average
rates of oxygen release after equal periods of 40 min.

The graphs show that a larger carrier reduction can be observed when increasing the
operation temperature with a weight loss of 4.30% at 950 ◦C and 4.40% at 1000 ◦C, which
are both very close to the stoichiometric value of 4.65% for the transition from CeO2 to
Ce2O3, while highlighting only a weight loss of 2.65% at 900 ◦C after the same period
of analysis. The apparent kinetics are calculated in Table 1, which confirms the positive
effect of an increase in temperature on methane oxidation, as already reported in previous
works [48,51,64]. Increasing reaction temperature from 900 to 950 ◦C nearly doubles the
reaction rate, showing a clear preference to operations at higher temperatures. A further
increase in the temperature to 1000 ◦C, on the other hand, does not appear to enhance the
reaction rate significantly. Together with the limited increase in reduction extent between
950 ◦C and 1000 ◦C evidenced before, this lack of increase in kinetics indicates that the
energy penalty required to operate the process at a temperature beyond 950 ◦C would not
be justified by a significant increase in productivity. Therefore, a temperature of 950 ◦C
appears to be the optimal condition for the PO step.

However, even if the trends and the calculations are representative, one should keep
in mind that the measured oxygen releases could be underestimated due to the potential
formation of carbon, which implies an increase in weight that could mask further oxy-
gen release in these tests. The formation of carbon and the selectivity of oxidation are
investigated more in depth in the looping tests in the reactor.
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Table 1. Average reactions rates for the partial oxidation averaged across four looping cycles.

Parameter Case i Case ii Case iii Case iiii

TPO (◦C) 900 900 950 1000
TREG (◦C) 400 600 900 900

PO rate (min−1) 0.35 ± 0.01 0.36 ± 0.01 0.58 ± 0.01 0.59 ± 0.08

As per the average PO rates detected by the TGA test, the rates appear to be constant
across the cycles in all examined cases, indicating that material performance is maintained
during cyclic operation, independent of the regeneration temperature selected for the
cycles. Therefore, it appears that the regeneration step with oxygen does not limit the
overall process at any of the temperatures inspected (400, 600, 900 ◦C), which is in line with
previous literature results [49].

For all regeneration temperatures, the sample weight at the end of oxidation reached
the initial value and remained stable, suggesting that the complete re-oxidation of cerium
dioxide is achieved under the present conditions and that any deposited carbon was
completely removed in a maximum of 3 min to achieve full regeneration (Table 2). The
rate of reaction slightly increased with temperature, but at all temperatures, the rate of
regeneration was much greater than the rates observed for the partial oxidation step;
therefore, the regeneration of the carrier with oxygen is demonstrated to not limit the
overall looping process.

Previous works on redox behavior of cerium and cerium oxides also evidence fast
oxidation kinetics even at room temperature [65,66]. Oxygen is adsorbed onto oxy-
gen vacancies on the reduced ceria surface, forming peroxide and superoxide species
which are then quickly dissociated into lattice oxygen atoms [67,68]. A low activation
energy of 36 ± 4 kJ/kmol for the oxygen regeneration of ceria was previously reported by
Bulfin et al. [69], which is compatible with the observed low effect of reaction temperature
on kinetics. On the other hand, the mechanism of CeO2 regeneration through H2O or CO2
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oxidation has been observed to involve the formation of hydride, hydroxyl, and carbonate
species [70–73].

Table 2. Time required to achieve complete carrier regeneration averaged across three cycles.

Parameter Case i Case ii Case iii

TREG (◦C) 400 600 900
TPO (◦C) 900 900 950–1000

tREG (min) 2.5 ± 0.1 2.3 ± 0.1 3.0 ± 0.1
REG rate (min−1) 1.0 ± 0.1 1.2 ± 0.2 1.44 ± 0.05

The easiness of regeneration, together with a carrier reduction close to the theoretical
values, makes ceria a suitable OC to conduct repeated cycles, while 950 ◦C may be identified
as the best operating temperature as it represents a reasonable trade-off between rapid
reforming kinetics, carbon deposition, and energy penalties. In order to determine reaction
yields and selectivity, chemical looping tests with higher carrier masses were performed in
a bench scale reactor and are discussed in the next section.

3.2. Chemical Looping Tests

Experiments were first performed for long partial oxidation (60 min) and carrier re-
generation (40 min) time periods to determine maximum yields and the rates of production
for CO, CO2, and H2 and to obtain the reaction scheme. The results of a complete looping
cycle are displayed in Figure 3.
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950 ◦C (CH4 10 vol.% in N2 and O2 3 vol.% in N2).

At the start of the partial oxidation step, a sharp peak of CO2 was detected. This is
consistent with the previous literature [74], and it is caused by the high availability of
superficial oxygen leading to the complete oxidation of methane. It is likely that water
is also produced during this phase, even though it cannot be detected by the analytical
instrument. This initial non-selective oxidation subsides rapidly within the first 5 min of
the reaction at both investigated temperatures, replaced by a selective syngas formation.

Methane profile demonstrates an evident minimum, roughly at the same time when
H2 and CO profiles display a maximum peak height, indicating the non-constant rate of
the reaction during the PO step, with the conversion declining with the oxygen availability
of the OC, as partial methane oxidation and methane thermolysis compete. The conversion
of methane is thus never complete at the investigated temperatures.

The formation of solid carbon can be confirmed by two factors: (1) the presence of
CO and CO2 peaks during carrier regeneration and (2) the differences in the profiles of the
total hydrogen produced and the profile of hydrogen resulting from partial oxidation only
(Figure 4a,b; Equation (7)).
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In Figure 4a, the cumulative yields of the partial oxidation step are plotted over time,
while in Figure 4b, the observed rates of production for CO, CO2, and H2 are plotted
against the carrier conversion. It can be observed that production rate of CO rapidly
drops to zero at 950 ◦C once 80% of carrier conversion is reached, indicating that oxygen
release from cerium dioxide has ceased, leaving H2, produced by the cracking reaction
(R4), as the only product. Therefore, it is not convenient to utilize such a high degree of the
carrier conversion.
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As expected, carbon deposition is indeed particularly evident at higher temperatures.
Interestingly, methane decomposition becomes relevant only once cerium dioxide con-
version reaches ∼40% at both temperatures. Past this point, the methane cracking rate
becomes much faster than partial oxidation (0.172 mmol/gCeO2 /min of carbon deposition
vs. CO production of 0.097 mmol/gCeO2 /min at 40% CeO2 conversion at 950 ◦C).

Compared to the carbon monoxide yield, carbon dioxide production is very limited,
both at 900 and 950 ◦C, and it always remains below 0.1 mmol/gCeO2 . A higher temperature
favorably affects syngas yield, with CO yield increased by 10%, while that of H2 increased
by a factor of 50%, due to the contribution of methane cracking at higher temperatures.

The completion of the PO reaction is reached within 40 min at 900 ◦C and within
30 min at 950 ◦C, as indicated by the CO andHPO

2 plateau (Figure 4a); therefore, it is not
interesting to conduct the oxidation beyond this time, and much of the carbon produced
can be avoided even at higher temperatures by selecting a shorter partial oxidation time
without significantly affecting the yield of the reaction.

The trends depicted in Figure 4 indicate that the optimal time for reforming stage lies
between 20 and 30 min under the conditions of the present experiment. Indeed, in that time
interval, the larger productivities at 950 ◦C are recorded, with low carbon contributions and
a syngas ratio in the range 2.2–2.4, which is particularly suitable for the Fischer–Tropsch
synthesis. Rates of partial oxidation rapidly decay after 20 min of reaction at 950 ◦C, with
carbon deposition becoming increasingly relevant. While the maximum yield of carbon
monoxide is reached only after 30 min of reaction, the prevalence of carbon deposition
past 40% of carrier conversion suggests the adoption of a shorter partial oxidation step
of 20 min as the better choice to minimize carbon deposition while still maintaining high
syngas yields. It should be noted that at 20 min of reaction time, the yields at 950 ◦C
reach the maximum level that can be obtained with a process time of 30–40 min at 900 ◦C,
thus halving the time needed to reach the same level of cerium dioxide conversion. In the
first 20 min of the reaction, the process performance indicators, such as yields, kinetics,
and carbon deposition, were better at a higher temperature, confirming the observations
obtained from TGA cycles and the previous literature. Indeed, Farooqui et al. also observed
the sharp increase in reaction rates between 900 and 1100 ◦C, observing slow reaction rates
at 900 ◦C while severe carbon deposition occurred at temperatures beyond 1050 ◦C [55];
these results were also confirmed by Haeussler et al. [75].
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Carrier regeneration was also investigated to determine the optimal regeneration
time for the looping cycle, specifically looking at the feasibility to obtain the full replen-
ishment of the original oxygen content of the carrier and carbon removal at such high
temperatures, which is unsuitable for reactions of an exothermic nature. Indeed, isothermal
operation is easier to achieve in industrial application as it avoids heat losses connected
to cooling and heating steps between cycles and reduces thermal stresses for fixed bed
applications [50], making the selection of the same operation temperature for both stages a
desirable operation condition.

During regeneration, cerium dioxide OC and deposited coke compete for the oxygen
available in the feed (Figure 3; regeneration step profiles): carbon is initially preferentially
oxidized to CO, while upon completion, oxygen availability increases and carbon re-
oxidation switches toward complete combustion. The presence of carbon deposited during
partial oxidation step did not appear to inhibit carrier regeneration. Figure 5 shows in more
detail the results obtained in terms of coke removal and the O2 consumption for the carrier
regeneration step conducted under different conditions. The concentration of oxygen and
the total flowrate also do not appear to significantly affect the regeneration rate in the tested
conditions. As can be seen in Figure 5a, it is evident that in all cases, coke removal is a fairly
fast reaction, with the first phase of production of carbon monoxide followed by complete
oxidation in the final minutes. Figure 5b displays the trends of the overall O2 consumption
as nreg

O2,tot
and the amount that reacted with the carrier as nreg

O2,g
with the difference between

the two quantities corresponding to the oxygen needed for carbon removal; as one can see,
the two processes take place simultaneously, proving that the presence of carbon does not
significantly inhibit carrier regeneration.

As observed in TGA experiments, the operative temperature does not significantly
affect carrier regeneration, and the complete regeneration of the carrier (χox = 100%)
was observed for all cases within 10 min for all flowrates and oxygen concentrations
investigated. The breakthrough of the oxygen profile during the regeneration step therefore
appears to coincide both with the complete oxygen restoration of the carrier and complete
carbon removal.
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To confirm the goodness of partial oxidation and regeneration conditions, consecutive
cycles were carried out at 950 ◦C for the entire looping cycle. Cyclic tests evaluated process
performance by exploring the most promising process times for partial oxidation (20 and
30 min), with the regeneration step length being set at the point of oxidant breakthrough.
For the regeneration stream in these tests, a diluted stream of 3% v/v O2 in N2 at 5 Nl/min
was selected for safety reasons to contain the temperature increase during the carrier
regeneration step. Even under these conditions, carrier regeneration could be completed
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within 5 min (Figure 5b). The average syngas yields, selectivity, and methane conversion
for the different conditions tested are reported in Table 3.

Table 3. Average yields, selectivity, and methane conversions during oxygen or carbon dioxide
regeneration.

Sample Gas tPO
(min) ηCO2 ηCO ηC CO Yield

(mmol/gcarrier)
H2 Yield

(mmol/gcarrier)
χCH4

[%]

CeO2 O2 30 0.05 ± 0.01 0.68 ± 0.04 0.26 ± 0.04 1.80 ± 0.07 5.01 ± 0.11 30.4 ± 0.9
CeO2 O2 20 0.08 ± 0.02 0.82 ± 0.05 0.10 ± 0.04 1.24 ± 0.25 2.88 ± 0.50 25.4 ± 4.1
CeO2 CO2 20 0.08 ± 0.01 0.76 ± 0.03 0.16 ± 0.03 1.52 ± 0.01 3.61 ± 0.11 34.5 ± 1.2

CeO2-Al2O3 O2 20 0.27 ± 0.02 0.63 ± 0.01 0.10 ± 0.01 1.38 ± 0.17 2.71 ± 0.35 38.4 ± 3.8
CeO2-Al2O3 CO2 20 0.18 ± 0.02 0.75 ± 0.01 0.07 ± 0.02 1.33 ± 0.05 2.76 ± 0.12 31.3 ± 1.0

The results of cycles at 30 min of partial oxidation are reported in more detail in Fig-
ure 6, as an average of two test runs conducted under the same conditions. The remarkable
stability of carrier performance can be observed across the repeated reaction cycles, with av-
eraged yields of CO, CO2, HPO

2 , and total hydrogen equal to 1.8 ± 0.1, 0.14 ± 0.01, 3.6 ± 0.2,
and 5.0 ± 0.1 mmol/gCeO2, respectively. CeO2 demonstrates high selectivity towards PO
and syngas production (∼70% CO vs. ∼5% of CO2); however, the obtained syngas H2/CO
ratio, at an average of 2.8 ± 0.1, is consistently higher than 2, evidencing that methane
decomposition is noticeable at this reaction time, with a selectivity for carbon deposition
as high as 26% and an average of 0.26 ± 0.08 mmol C

gCeO2
being accumulated for each cycle

due to incomplete regeneration. The presence of carbon deposited in the previous cycles
may have hindered the kinetics of partial oxidation by covering the active sites of CeO2,
consequently favoring further carbon deposition. The post-reaction inspection of samples
indeed confirmed the presence of black coke particles in the CeO2 pellets. Despite carbon
removal not being complete during regeneration, cerium dioxide conversion, methane con-
version, and reduction extent remained stable across cycles, at average values of 82 ± 2%,

30.4 ± 0.9%, and 0.41 ± 0.01 mmol/
mmolO2

mmolCeO2
, respectively, with the given reduction extent

corresponding to a weight loss of 3.81% compared to the theoretical maximum of 4.65%. It
should be noted that for all cycles, the complete regeneration of the carrier was indeed ob-
tained (χox) together with stable oxygen conversion (average 58 ± 3%). When considering
the contribution of the regeneration step to CO production through the oxidation of carbon
during the oxidation stage, the overall average H2/CO ratio of the complete cycle amounts
to 2.4 ± 0.1. This can be attributed both to the permanence of non-reacted coke even after
regeneration and to the fact that carbon was mainly converted to carbon dioxide during
the regeneration step in oxygen.

Observed yields, the conversion of methane, and carrier reduction extent are com-
parable to those of the experiment by Chuayboon et al. at 1000 ◦C [49]; although it has
to be noted that their observed carrier reduction extent (δ) was lower than that seen in
Figure 6, as it averaged 0.34 across six cycles for a ceria foam sintered at 1000 ◦C. The
higher operation temperature in their tests led to a higher methane conversion of 44.6%
and a lower selectivity for partial oxidation, with the reduction extent also affected by the
lower concentration of methane utilized (molar concentration of maximum 8%). This can
also be observed when comparing their final cerium dioxide conversion, 64.9–68.6%, to
the 79.5–81.6% conversion obtained in the present tests. Their observed average syngas
ratio for the partial oxidation step across the six cycles was ∼2.6, also demonstrating the
presence of carbon deposition. Limiting cerium dioxide reduction extent can help to avoid
carbon deposition; Fosheim et al. [76], for example, obtained repeatable performances
across ten cycles of operations with a much higher methane concentration of 75%. They
operated very short cycles of 240 s for partial oxidation and 120 s for carrier regeneration,
greatly limiting the maximum reduction extent reached by the cerium dioxide (0.09 at
1228 K and 0.10 at 1274 K) and therefore also limiting carbon deposition and obtaining
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a syngas with an H2 to CO ratio close to 2. Such low reaction times and high methane
concentrations, however, lead to low methane conversions (25% CH4 conversion at 1228 K
and 36% at 1274 K) despite operating at higher temperatures compared to those in Figure 6.
Nevertheless, the high temperatures favored a high syngas selectivity of 0.76 at 1228 K
for both CO and H2, which increased at 0.90 for H2 and 0.82 for CO at higher tempera-
tures. Tests presented in Figure 6 overall display lower selectivity than what is reported
by Fosheim et al., with carbon deposition being the cause of a loss of selectivity. However,
Fosheim et al. utilized a much higher mass of cerium dioxide (336 g) and a higher methane
concentration (75%), thus obtaining the low reduction extent of the carrier, which implies a
very poor utilization of the total oxygen exchange capacity available and sacrificing most
of the theoretical yield of the reaction. Such a short reaction time is also challenging to
achieve in industrial-scale applications. It is therefore suggested that a longer reaction time
may in fact be preferable, even at the cost of allowing the occurrence of limited carbon
deposition. While achieving complete reduction in cerium dioxide would lead to relevant
and undesired carbon deposition, as in tests reported in Figure 6, the optimization of
reaction step duration based on observed reaction rates could provide a better compromise
between carrier utilization, the maximization of yield, and carbon deposition.
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For conditions investigated in this work, the production rate of carbon monoxide
is observed to reach a peak at around 40% carrier conversion (Figure 4). In particular,
kinetics for PO reaction at 950 ◦C were observed to sharply decrease after 20 min of the
reaction; at this point, 76% of the maximum syngas yield had been achieved, while carbon
deposition was reduced to 50% of the amount observed at 30 min, which is to say, once the
PO reaction maximum yield had been reached. The produced syngas after a 20 min PO
step thus displays a good H2 to CO ratio of 2.2 (Figure 4a). If the excess deposited carbon
can be completely oxidized, thus avoiding its accumulation, operation at 20 min of partial
oxidation appears to be the optimal choice of reaction time. This would guarantee a good
compromise between the utilization of the total carrier oxygen exchange capacity (∼40%),
high syngas yields, and carbon deposition.

It is also worth noting that a characteristic reactor time can be computed based on the
PO rate observed by the TGA data (Table 1):

τreact = 1/(PO rate yCH4 ) = 17.24 min

Thus, tref = 20 min represents a value very close to τreact, also considering that the
latter was estimated at maximum reaction rate, i.e., yCH4

= yCH4,inlet
. The dimensionless

reforming time can be expressed as:

tref* = tref/τreact = 1.16
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providing a more general approach for reaction time optimization.
As can be observed in Table 3, when a shorter 20 min partial oxidation step was imple-

mented while not varying regeneration step length, carbon deposition could successfully
be reduced: in this case, a much lower average selectivity of 10% towards cracking reaction
and a much higher selectivity towards CO formation (82%) can be observed. Average yields
of CO, CO2, and total H2 were found to be 1.2 ± 0.3, 0.11 ± 0.01, and 2.9 ± 0.5 mmol/gCeO2 ,
respectively. An average cerium dioxide conversion of 55 ± 8% was reached, and was, as
expected, lower than the 82% conversion obtained for the longer tests, while the obtained
partial oxidation total yield (H2 + CO) was, on average, around 61% of the yield obtained
for the 30 min PO step, which was lower than the expected 76% predicted from single cycle
tests (Figure 4a). It should be noted that these shorter partial oxidation cycles displayed
greater instability in the cyclic performance of the material compared to longer cycles. This
is likely due to increased thermal instability in the operation of the cycles when switching
from the shorter partial oxidation cycles to the regeneration step, which leads to a more
unstable operation temperature. The longer cycles allow the temperature of the reactor to
equilibrate at 950 ◦C after each step, but this is not achieved in these shorter tests. Despite
this increased instability, carbon deposition is significantly inferior for cycles with a shorter
partial oxidation time, and selectivity to partial oxidation is consistently increased. More-
over, despite the thermal instability, the rate of partial oxidation, indicated by CO formation,
remains close to the one observed for the longer cycles (average of 0.014 ± 0.04 mmol

gCeO2∗s for

20 min PO compared to 0.017 ± 0.002 mmol
gCeO2∗s for 30 min PO).

The produced syngas H2/CO ratio is on average 2.3 ± 0.1, suitable both for the Fischer–
Tropsch synthesis and methanol production. The significantly lower carbon deposition is
also better compensated by coke oxidation during carrier oxidation: on average, carbon
accumulation across cycles amounts to 0.02 ± 0.01 mmol

gCeO2
, compared to the 0.26 mmol C

gCeO2
obtained for the 30 min oxidation step. Part of this residual carbon deposition can be
presumably attributed at least partially to temperature changes during the reaction.

The temperature instability of the cycle can be mainly attributed to the highly exother-
mic regeneration step with oxygen, and it represents a severe issue in maintaining process
optimal performance, particularly for the reactor with dimensions on the lab-scale. One
option to mitigate this problem is the utilization of less strong oxidants for the carrier
regeneration step, such as water and CO2.

Carrier regeneration with CO2 is particularly interesting, as it is considered a good
alternative for CO2 utilization with a valuable further production of CO which can be
utilized on its own or added to the produced syngas. Therefore, the chemical looping
experiments at 20 min for the partial oxidation step were replicated in the same conditions
but utilizing 15% CO2 in N2 (representative of flue gas) for carrier regeneration in place
of oxygen stream. Indeed, the regeneration of carriers with CO2 is much less exothermic
compared to regeneration in oxygen, allowing for milder temperature peaks during carrier
regeneration. While energetically less favorable compared to the exothermic oxidation
with O2, the utilization of carbon dioxide avoids the high temperature peaks that may
negatively affect the use of oxygen for carrier regeneration while providing a pathway
for the utilization of carbon dioxide in chemical synthesis, especially if the necessary
heat of reaction can be provided through renewable energy sources. Cyclic looping tests
performed with the CO2 regeneration of the carrier prove its effectiveness for cerium
dioxide regeneration at 950 ◦C (Table 3), with stable average yields of the partial oxidation
step close to the ones obtained when regenerating with O2. However, oxidation kinetics for
carbon dioxide are significantly slower if compared to those achieved employing O2 in N2,
requiring an increase in regeneration time to 15 min in order to reach CO2 breakthrough and
ensure the complete oxygen replenishment of the carrier and maximum carbon removal.

As reported in Table 3, the average yields of CO, CO2, and total H2 were found to
be equal to 1.52 ± 0.01, 0.16 ± 0.01, and 3.61 ± 0.11 mmol/gCeO2 , respectively, which is
higher than those obtained for regeneration in oxygen. The increased yield is probably due
to the higher thermal stability of the reaction cycles, which avoids temperature excursion



Energies 2024, 17, 1544 16 of 22

outside the optimal range of the temperature for PO selectivity. The achieved syngas yield
corresponds to 76% of the maximum yield of the tests shown in Figure 4a, with a stable
reactant conversion of 34.5 ± 1.2% for methane and of 76.8 ± 1.3% for cerium dioxide,
which is also comparable to the conversion achieved at 1000 ◦C by Chuayboon et al. [49],
while selectivity to partial oxidation remains high at an average value for CO formation of
0.76 ± 0.03. Cerium dioxide reduction extent (δ) reached an average of 0.38 ± 0.01, again
higher than the one reached by Chuayboon et al. and higher than the average 0.28 observed
for tests at 20 min with regeneration in oxygen. Carbon accumulation across cycles is
average of 0.33 ± 0.07 mmol

gCeO2
, noticeably higher compared to the 0.02 mmol

gCeO2
observed for

O2. CO2 can completely regenerate the carrier but displays more difficult carbon removal
capabilities when compared to oxygen. Table 4 displays the different carbon deposition
between cycles with regeneration in O2 and CO2. It is immediately evident that carbon
dioxide regeneration does not permit the complete oxidization of carbon formed during
the partial oxidation step, even for a longer oxidation time. Coke accumulation is generally
undesirable, as over time it could lead to a loss in methane conversion, selectivity, and
syngas yield by the obstructing sites of oxygen exchange in the carrier as well as by clogging
the reactor column. Nonetheless, it is observed that despite the overall higher carbon
accumulation, the conversion of methane, syngas yields, and selectivity are remarkably
stable for cycles with carbon dioxide in the tested conditions. Thus, cerium dioxide proved
again to be highly resistant to carbon formation.

Table 4. Specific amount of accumulated carbon during consecutive looping cycles for regeneration
in O2 and CO2.

Cycle
Accumulated C (mmol/gCeO2 )

O2 Regen CO2 Regen

1 0 0.275
2 0.020 0.241
3 0 0.252
4 0.025 0.278
5 0.030 0.312
6 0.026 0.340
7 0.030 0.373
8 (-) 0.405
9 (-) 0.440

Mixed ceria–alumina oxides displayed similar behavior compared to the pure ceria
carrier with an average conversion of methane of 38.4 ± 3.8% for samples regenerated in
an O2 atmosphere and 31.3 ± 1.0% for regeneration in CO2.

It should be noted that for cycles regenerating the sample in a carbon dioxide stream,
the resulting selectivity for carbon monoxide production increased in the following partial
oxidation step as compared to regeneration in oxygen. It is likely that carbon dioxide,
being a milder oxidant compared to oxygen, does not completely restore the superficial
oxygen atoms of lattice that are responsible for the formation of carbon dioxide during the
partial oxidation, as was indeed previously observed in the literature [64,77]. Interestingly,
syngas yields per mass of carrier were comparable between pure cerium dioxide and ceria–
alumina samples, suggesting that despite the lower cerium dioxide load, the CeO2-Al2O3
sample did not noticeably lose oxygen exchange capacity. This can likely be attributed
to the synergistic effect previously observed for interaction between alumina and cerium
dioxide [47]. Ceria–alumina samples overall displayed much lower carbon deposition,
suggesting that the presence of alumina may in fact inhibit the formation of carbon.

SEM analyses were performed on samples of cerium dioxide both before and after
reaction cycles at partial oxidation for 20 min under either oxygen or CO2 regeneration
conditions to inspect structural integrity after reaction cycles (Figure 7).
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Figure 7a,b show the structure of the material after calcination. Particles appear to
form tightly aggregated grains with small porosities. After cycles with oxygen regeneration
(Figure 7c,d) and carbon dioxide regeneration (Figure 7e,f), the material shows an evident
grain growth, especially in case of using O2 for the regeneration step (Figure 7d). The
microstructure of the sample regenerated with CO2 appears less affected by sintering and
the reduction in the degree of voids is more limited (Figure 7f). This is in accordance with
the performance observed in chemical looping cycles being more stable after regeneration
in carbon dioxide rather than in oxygen, probably due to fewer marked temperature peaks
during operation in carbon dioxide. It is unlikely that coke formation plays a significant
role in aggregation, as the sample regenerated in CO2 is less aggregated than the sample
regenerated in oxygen despite the higher carbon deposition observed in the former. Thus,
temperature can be assumed to be the main cause of aggregation. The ceria–alumina carrier
before testing (Figure 7g,h) displayed different morphology, with smaller grain sizes and
more uniform surfaces compared to the pure ceria samples. After reaction cycles in both O2
and CO2, the structure appears not to have been significantly altered, with no superficial
aggregates formed and the much more limited accretion of grains compared to pure cerium
dioxide (Figure 7i,j). The interconnected microporous network shown by the composite
oxide may contribute to explaining its good yields and selectivity, as while the cerium load
is lower compared to pure ceria, the higher surface area improves oxygen availability and
the mass transfer of gaseous reactants.

4. Conclusions

A two-step chemical looping process of methane reforming and carrier regeneration
was studied, aiming to identify suitable conditions for syngas production (target H2/CO
ratio 2–2.5), employing commercial cerium oxide as carrier.

Temperature (in the range of 900–1000 ◦C) was found to govern the relative contribu-
tions of partial oxidation and methane cracking. Higher reaction temperatures significantly
increased the maximum carrier conversion achievable and positively affected reaction kinet-
ics but at the cost of increased carbon deposition. Both the TGA and fixed bed reaction test
results highlight 950 ◦C as the optimal reaction temperature for the partial oxidation step of
CH4 by ceria. Below 900 ◦C, process kinetics drop significantly, while temperatures higher
than 1000 ◦C led to limited kinetic improvement (0.58 min−1 at 950 ◦C vs. 0.59 min−1 at
1000 ◦C) at the cost of increased cracking.
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The regeneration of the carrier with oxygen was consistently proven to be fast across
a wide temperature range (400–900 ◦C), with a short oxidation time even at a low O2
concentration (3%). Therefore, this step does not limit the overall looping process at
950 ◦C and isothermal operation is viable. Both stable syngas production and full carrier
regeneration can be achieved, while coke deposition and accumulation can be effectively
limited by the proper regulation of the cycle time.

The adoption of a dimensionless reforming time ratio of 1.16 during the chemical
looping tests, in correlation with the apparent rate of reaction measured by TGA analysis,
appears to provide a good compromise between reaction yields, syngas selectivity, and
carbon deposition for a reactor feed of 10% CH4. The subsequent carrier regeneration step
in oxygen is thus able to completely regenerate the carrier and remove traces of deposited
carbon. Very high temperature peaks during carrier oxidation even in very diluted oxygen
streams lead to the noticeable sintering of the carrier.

The use of carbon dioxide in place of oxygen for the ceria regeneration step, thus
requiring a CL dry reforming process, greatly reduces sintering and demonstrates con-
sistently lower carrier agglomeration. On the other hand, greater difficulty is found in
achieving complete carbon removal. An average residual amount of 0.33 ± 0.07 mmol

gCeO2
of

carbon per cycle was observed to accumulate; however, when conducting the PO step at
the dimensionless time ratio of 1.16, its presence did not appear to negatively affect carrier
performance across repeated cycles in terms of syngas selectivity and yields.

The optimal point to interrupt partial oxidation was thus found at the point of carrier
reduction (δ) of ∼0.28 (χCeO2: 55%) when regenerating with O2, and at ∼0.38 (χCeO2:
76.8%) when regenerating with CO2. Therefore, carbon deposition can be successfully
limited while maintaining a high level of carrier utilization.

Mixed ceria–alumina oxide with a 30% wt. alumina content displayed a performance
comparable to a pure cerium dioxide carrier when tested under the same conditions, despite
the lower cerium load, offering the opportunity to obtain a cheaper oxygen carrier without
sacrificing syngas selectivity and yields. As shown by SEM images, the presence of alumina
helped prevent grain growth and sintering during high operation temperatures and helped
improve the oxygen availability of cerium dioxide. Ceria–alumina therefore appears to be
an effective mixture for oxygen carriers in the chemical looping reforming of methane.
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τreact Characteristic reactor time (min)
Y Molar fraction
Subscript
0 Initial value
Acc Accumulation
C Carbon formed during partial oxidation
F Final
G Generative term
i Species i
in Inlet value
M Mass, g
R Reactant
St Stoichiometric
tot Total
Superscripts
Acc Accumulation
C Cracking contribution
CO2 Regeneration step in CO2
PO Partial oxidation
Reg Regeneration
Tot Total
Greek symbols
δ Bed-average non-stoichiometric coefficient
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