
R E S C I E N C E C
Replication / Physics

[Rp] Reproduction of Step width enhancement in a
pulse-driven Josephson junction

Sabino Maggi1, ID
1National Research Council, Institute of Atmospheric Pollution Research, CNR-IIA, Bari, Italy

Edited by
Nicolas P. Rougier ID

Reviewed by
Pierre de Buyl ID

Received
01 March 2020

Published
29 June 2020

DOI
10.5281/zenodo.3922195

1 Introduction

A Josephson junction is a quantum mechanical device composed of two superconduct‐
ing electrodes separated by a weak link [1]. For currents lower than a critical value IC ,
coupled electrons (Cooper pairs) can cross the weak link without a potential difference
(dc Josephson effect). When the current is increased above IC , single electrons origi‐
nated by the breakup of Cooper pairs begin to traverse the weak link. The potential dif‐
ference V between the two superconducting films becomes ̸= 0 and a state is reached
where the junction behaves as a resistance.
In modern Josephson junctions the weak link is usually a thin insulating tunnel barrier
(SIS junction) [2], a normal metal film (SNS junction) [3] or a physical nanoconstriction
(ScS junction) [4, 5]. Josephson junctions have found wide usage in several research
fields, for example as buildingblocks forRSFQdigital electronics or quantumcomputers
[6], or as radiation detectors and very sensitive magnetometers (SQUIDs) [7, 8, 9]. But
the most successful application of Josephson junctions is surely in voltage metrology. A
microwave radiation of frequency f can phase lock the junction oscillations, producing
the so‐called Shapiro‐steps, i.e., current steps at the quantized voltages Vn,

Vn = n
h

2e
f, n = 1, 2, ... (1)

whereh and e are the Plank constant and electron charge, respectively. The ac Josephson
effect is at the basis of the current quantum voltage standard.
Besides its practical applications, the Josephson junction is important from a physical
point of view because it has been the first device showing a quantummechanical effect
on a macroscopic scale.
An important research topic at the beginning of the ’90s was related to finding ways
to increase the amplitude of the current steps induced by the microwave radiation (rf‐
induced steps). In fact, the stability of the lock between the phase of the junction and
the applied microwave radiation – and therefore its insensitivity to noise events which
might switch the junction from one quantized voltage to another, a crucial problem for
voltage standard applications – is strongly dependent on the amplitude of the steps [10].
To increase the amplitude of the current steps, a non‐sinusoidal microwave radiation
may be used. In 1990 Monaco showed that, in the limit of a voltage‐biased Josephson

Copyright © 2020 S. Maggi, released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Sabino Maggi (sabino.maggi@cnr.it)
The authors have declared that no competing interests exist.
Code is available at https://github.com/sabinomaggi/ten-years-challenge-pulsed-drive.
– SWH swh:1:dir:bc7700a81a8fd426d06d89c15c9655998d12c523.
Open peer review is available at https://github.com/ReScience/submissions/issues/23.

ReScience C 6.1 (#10) – Maggi 2020 1

https://orcid.org/0000-0002-1523-6484
https://orcid.org/0000-0002-6972-589X
https://orcid.org/0000-0002-6640-6463
mailto:sabino.maggi@cnr.it
https://github.com/sabinomaggi/ten-years-challenge-pulsed-drive
https://archive.softwareheritage.org/swh:1:dir:bc7700a81a8fd426d06d89c15c9655998d12c523/
https://github.com/ReScience/submissions/issues/23
https://rescience.github.io/

[Rp] Reproduction of Step width enhancement in a pulse-driven Josephson junction

junction, adding together two phased microwaves of frequency f and 2f produces rf‐
induced current steps whose amplitudes are larger than those observed with a sinu‐
soidal radiation [11].
Experiments on the so‐called “biharmonic drive” readily confirmed these conclusions,
albeit with some limitations due to the fact that the junctions could not realistically be
considered as voltage biased [12, 13].
Extending further the idea, Monaco showed that, still in the limit of voltage bias, if the
microwave radiation is composed of a train of delta functions, the rf‐induced current
steps could become as large as the critical current IC .
However, a voltage bias configuration does not properly model a real Josephson junc‐
tion, which should usually be considered as current biased. Also, a pulse train com‐
posed of delta functions is only a theoretical approximation and cannot be reproduced
in actual experiments. This led to the idea to investigate what happened to a current‐
biased Josephson junction irradiated by a more realistic pulsed microwave signal [14,
15]. The reproduction of this investigation is the object of the present work.

2 Computational context

A first attempt to solve this problem was made using an electronic analog simulator of
a Josephson junction [16], that could compute the relation between the applied current
and the voltage (I − V characteristic) of a current‐biased junction, in the framework of
the Stewart‐McCumber RSJ junction model [17, 18]. The analog simulator was fast and
simple to use, and could produce in just a fewminutes on a Hewlett Packard 7475A2 pen
plotter beautiful plots of the I − V characteristics of the junction as a function of the
simulated microwave signal. 1

However, even if the electronic simulation was extremely fast, the analysis of the results
required to measure by hand the amplitude of the rf‐induced current steps visible on
each I − V characteristic, a tedious and error‐prone task.
I then decided to develop a Fortran program to solve numerically the nonlinear second‐
order differential equation that models the Josephson junction [17, 18]. The idea was
to calculate the I − V characteristics of the junction as a function of the amplitude
of the microwave signal, αrf, for a given set of parameters characterizing the junction
and the microwave, considering the three different cases of standard sinusoidal drive,
biharmonic drive and pulsed drive.
To ease comparison of the results, normalized units were used throughout the calcu‐
lations. The normalized junction voltage was η and the normalized current αdc. The
main parameters of the simulation were: hysteresis parameter β, microwave frequency
Ω, amplitude of the microwave signal αrf, pulse width ρ, integration time τ . For a given
set of junction parameters, usually 100 different I − V characteristics for increasing or
decreasing values of αrf were calculated.
The first versions of the Fortran program were compiled under DOS 6.22 with Microsoft
Fortran 5.1 and run on what was then a state‐of‐the‐art PC, probably a Compaq Deskpro
486 with a math coprocessor, shared among several users of the lab.
The limitations of a PC for such a task soon become evident. A new simulation started
automatically each evening and took the entire night to complete. People still using the
PC late in the evening often inadvertently stopped the background process or simply
shut the machine down without checking if there was another job running. At the end,
I could run a full simulation only every two or three days.
After a fewweeks of thesemostly unsuccessful attempts, a colleague of another research
group proposed me to use four DEC workstations running ULTRIX for my own simula‐

1Unfortunately, after 25 years and two relocations, I could notmanage to find photographs of the simulator
nor the original HP 7475A plots.

ReScience C 6.1 (#10) – Maggi 2020 2

http://www.hpmuseum.net/display_item.php?hw=74
https://winworldpc.com/product/microsoft-fortran/5x
https://winworldpc.com/product/microsoft-fortran/5x
https://rescience.github.io/

[Rp] Reproduction of Step width enhancement in a pulse-driven Josephson junction

tions.2 The machines were heavily used by his group during working hours, but sat
mostly idle overnight. If I could manage to finish my runs before the start of the new
work day, I was allowed to use this idle time for my own simulations. The colleague
gave me a quick crash course on Unix and I was ready to go.
Porting my Fortran program from Microsoft Fortran 5.1 to ULTRIX was a breeze, and I
quickly learnt how to use FTP to transfer the input configuration files and the output
data files containing the results of the simulations back and forth from the DEC work‐
stations to my Compaq 386 notebook, that was also my desktop computer.
Now each day I had four different sets of data files coming from the DEC workstations.
Three of them were obtained by irradiating the junction with a pulsed drive with de‐
creasing values of ρ, while keeping constant β and Ω. The fourth simulation was made
by irradiating the junction with a sinusoidal drive, while keeping everything else equal.
This last simulation was used as a reference, to compare the results obtained with a
standard sinusoidal radiation with those obtained with progressively shorter pulses.
Each night I changed the values of β or Ω, to study the effect of these parameters on the
behavior of the junction.
Again, the real problem was how to analyze all this data. A manual analysis like that
needed with the electronic simulator was out of consideration. I decided to try the re‐
cently released Microsoft Visual Basic 1.0 for Windows, writing another program that
calculated the size of the rf‐induced current steps visible on the I −V characteristics of
the nightly simulations, as a function of αrf.
The results of months of calculations were summarized in a paper published in the Jour‐
nal of Applied Physics [14].

3 Digging into code

I like organisation, and I try keep all my past projects on my main workstation. Thus,
finding the original source and data files of this project was only a question of locating
thedirectorywhere the projectwas stored. Problems started to arisewhen I looked at the
different files. The whole project was scattered into several directories, each containing
many files with widely different names and dates. At first, trying to find an order in that
chaos seemed impossible.
Normally I would have found all information needed inmany notebooks full of detailed
handwritten notes. Unfortunately, a couple of years ago most of my work notebooks
were damaged by a water leak in the basement, and could not be recovered. The only
option left was to check the files one by one.
After a thorough inspection of thewhole project I recalled that: (1)myfirst attemptswith
the numerical simulations tried to use the more accurate McDonald‐Johnson junction
model [19], I later switched to the simplified Stewart‐McCumber RSJ model because it
wasmuch faster and efficient in calculating the junction behavior [17, 18]; (2) file names
attempted to reflect what the programs actually did, at least within the limits of DOS 8+3
naming scheme: in the same directory I could have a file ending with a “” that provided
a textual output and another file ending with a “g” that gave a graphical output, and they
differed only for a couple of DEFINESs that controlled the conditional compilation of
the proper sections of the source code.
This multiplication of files might seem senseless today, when comfortable graphical in‐
terfaces, ultra‐fast text editors with support of regular expressions and version control
tools allow to change a large set of files in just a few seconds, but at that time it was prob‐
ably the fastest, albeit very inefficient, way of working with source code; (3) the header
of all source files contained detailed notes about the type of program, the compiler, the
type of output and the dates of first and last revision of the source file, considerably

2The now defunct Digital Equipment Corporation (DEC) was one of the leading computer companies of
the time and ULTRIX is the name of its Unix operating system.

ReScience C 6.1 (#10) – Maggi 2020 3

https://en.wikipedia.org/wiki/Digital_Equipment_Corporation
https://rescience.github.io/

[Rp] Reproduction of Step width enhancement in a pulse-driven Josephson junction

Figure 1. Header of one of the Fortran source files. The left sidebar shows the directory structure
of the project.

easing the analysis of the different versions of the Fortran programs (Fig. 1); (4) the ini‐
tial versions of the Fortran programs weremonolithic, a single source file contained the
whole code, that consisted in about 1.000 lines of Fortran. Only at a later time, better
computing practices taught me to divide the monolithic code into multiple source files,
compiled and linked together with a Makefile.
Another invaluable tool to analyze the different versions of the source files wasMeld, an
open source application available for allmajor operating systems that canperforma two‐
and even a three‐way comparison of files and directories. Using Meld I quickly realized
that the twomost interesting sourcefilesweremcphase.for andmcp-work.for, both
located in the mccumber/ directory (Fig. S1).
The first program, mcphase.for, simulated the behavior of the junction for a single
value of αrf read from the input configuration file mc-iv.dat, and saved the I − V
characteristic of the junction and its phase portrait (i.e., the relation between the phase
and its time derivative, the latter being proportional to the junction voltage V) in the
output file mc-iv.out.
Multiple calculations with several different value of αrf were performed by using a DOS
batch file that basically choose one by one the configuration files containing the desired
values of αrf, renamed them to iv.dat, run the compiled executable mcphase.exe
and at the end renamed the file containing the results, mc-iv.out, using a consistent
naming scheme. I don’t recall why I choose this approach, but it was clearly very ineffi‐
cient, as it required to prepare each day a long series of configuration files that differed
only by the value of αrf, and to update accordingly the DOS batch file that controlled the
night calculations (Fig. S2).
The second program, mcp-work.for was an improved version that could cycle across
a set of several values of αrf, producing a different output file for each value of αrf. To
simplify the later automatic analysis, it left out the phase portrait.
Clearly this was the program ported to the DECworkstations. Unfortunately, I could not
find the actual source file used on these machines, perhaps because I worked directly
on the workstations and never thought to copy back these files to my PCs. But Fortran
is a very stable language and making mcp-work.for work on a modern machine was
very easy.

ReScience C 6.1 (#10) – Maggi 2020 4

http://meldmerge.org/
https://rescience.github.io/

[Rp] Reproduction of Step width enhancement in a pulse-driven Josephson junction

As for the Microsoft Visual Basic 1.0 code, I found only two versions of the programs
and the differences between them were minimal. Since both programs gave exactly the
same results, I decided to stick with the version that had a still working precompiled
binary file.

4 Porting Microsoft Fortran to modern Unix

Portingmcp-work.for to the XXI century so that it could be compiledwith themodern
open source and multiplatform gfortran Fortran compiler was very easy, thanks to
the stability of the language across different versions and platforms. Only a few minor
tweaks to the source code were needed.
All work has been done onmacOS, which is essentially BSD Unix with a more appealing
graphical interface, but it can be easily repeated on any modern Unix‐like operating
system such as Linux, and probably even on Windows, with the support of either the
Windows Subsystem for Linux (forWindows 10) or of Cygwin (for earlier versions of the
operating system).

4.1 Preprocessor directives
For reasons that go beyondmyunderstandingMicrosoft Fortran 5.1 did not use standard
preprocessor directives, such as those supported by cpp or fpp, [20] but used a a slightly
different proprietary syntax (Fig. S3). To support cpp, all was needed was to comment
out all the $DEFINE directives in the header section of mcp-work.for and to replace
the Microsoft Fortran 5.1 DEFINE blocks with standard cpp blocks throughout the code
(Fig. S3).
The right directives are chosen now at compile‐time. For example, the following com‐
mand 3

$ gfortran -cpp -Dtextout -Dsingle -o mcp-work mcp-work.for

runs the cpp preprocessor before the gfortran compiler, selecting only the sections of
code that produce a textual output (-Dtextout) and simulate the junction behavior
with the sinusoidal drive (-Dsingle).

4.2 Filenames
Compilers based on Fortran 77, such as Microsoft Fortran 5.1, did not support dynamic
memory allocation at runtime and required programmers to use fixed‐length arrays and
strings. Strings were used rather sparingly in Fortran code, so that was not a big deal.
With an exception. My code defined the basename of all files as the 50‐byte long charac‐
ter variable filename, attaching a proper extension to the input configuration file that
contained the simulation parameters and to the output data files with the results of the
calculations.
Under DOS that was not a problem, as DOS truncates file names to only 8 characters
plus 3 characters for the extension, and excess characters were simply ignored. But
under Unix file names have no practical limitations,4 and having all these 50 character‐
long filenames, mostly composed by blank characters, was ugly and complicated file
management, in particular when using the command line interface. The solution was
simple, as Fortran now has the TRIM function, that removes all trailing blanks from a
string. Whenever a file is opened for reading or for writing, TRIM() is applied on‐the‐fly
to the filename variable,

3The $ symbol prepended to this and to all following terminal commands represents the prompt of the
command interpreter and is not part of the command.

4Unix allows 255 characters for the filename and 4096 characters for the path.

ReScience C 6.1 (#10) – Maggi 2020 5

https://docs.microsoft.com/en-us/windows/wsl/
http://www.cygwin.org/
https://rescience.github.io/

[Rp] Reproduction of Step width enhancement in a pulse-driven Josephson junction

OPEN (UNIT = 10, FILE = TRIM(filename)//’.dat’, STATUS = ’OLD’)

thus removing all extra blanks from the name of the file.

4.3 Edit descriptors
Microsoft Fortran 5.1 used the backslash (\) edit descriptor to prevent the addition of
a line break at the end of a WRITE instruction. Modern Fortran compilers do not sup‐
port this non‐standard edit descriptor and return an error. This problem is avoided by
removing the backslash from all WRITE instructions that include it.

4.4 Date and time
Microsoft Fortran 5.1 had two separate intrinsic subroutines to return the current date
and time. In particular, CALL GETDAT(iyr, imon, iday), saved the date in the
two‐byte integer variables iyr, imon and iday, while CALL GETTIM(ihr, imin,
imin, i100th) did the same for the current time, saving the return values in the in‐
teger variables ihr, imin, imin and i100th. The meaning of each returned variable
should be self‐explanatory.
Modern Fortran supports the single subroutineCALL DATE_AND_TIME(DATE, TIME,
ZONE, VALUES), where all arguments are optional and canbe specifiedby their dummy
names (i.e., how Fortran calls the keyword arguments of a function call). In particular,
DATE, TIME and ZONE are character variables, while VALUES is a one‐dimensional ar‐
ray of 8 integers, where VALUES(1:3) corresponds to the year, month and day of the
month, VALUES(4) is the time difference (in minutes) with UTC, and VALUES(5:8)
are the hour, minute, second and milliseconds, respectively.
To minimize changes to the original source code, the calls to the GETDAT and GETTIM
subroutines, were translated to a single call to DATE_AND_TIME, assigning the elements
of the returned array of VALUES to integer variables named as in the original code
(Fig. S4).

4.5 Compilation with gfortran
As noted above, mcp-work.for calculates the I − V characteristics of the simulated
junction for several different values ofαrf, producing one output file for each I−V curve.
The section of the code that defined the names of the output files was quite convoluted,

il=0
DO alpha_rf=0.0, 50.0, 0.5
...

c ------ define output file name(s)
il=il+1
il2=INT(il/100)
il1=INT(il/10)-il2*10
il0=il-il1*10-il2*100
filewrite=’PU’//CHAR(il2+47)//CHAR(il1+47)//CHAR(il0+47)

...
END DO ! repeat alpha_rf DO cycle

and used the integer variableil to count the cycle number, while the three integersil2,
il1 andil0 contained thehundreds, tens andunits digits of il, respectively. TheCHAR
function converts these integers to the corresponding ASCII characters, where ASCII
code 48 corresponds to the 0 symbol and ASCII code 57 corresponds to 9. The name of
the output file defined in the variable filewrite was built by concatenating a trailing
constant string (’PU’ in the example above) to the three ASCII characters, using the
double forward slash (//) operator.

ReScience C 6.1 (#10) – Maggi 2020 6

https://rescience.github.io/

[Rp] Reproduction of Step width enhancement in a pulse-driven Josephson junction

I have no idea why I decided to build the name the output files in such a complex way,
while it would have been much simpler to use the value of αrf. In any case, it did not
work under gfortran and prevented proper compilation of the code.
After some inspection it was apparent that the number 47 added to integer variables in
the three CHAR function calls was the source of the error, and that it should be replaced
by 48. The line defining the filewrite variable thus becomes,

...
DO alpha_rf=0.0, 50.0, 0.5
...

c ------ define output file name(s)
...
filewrite=’PU’//CHAR(il2+48)//CHAR(il1+48)//CHAR(il0+48)

...
END DO ! repeat alpha_rf DO cycle

With this change mcp-work.for could compile flawlessly under gfortran. What is still
puzzling is how the original line could work in Microsoft Fortran 5.1.

5 Visual Basic code

No attempt was made to try to run the original Visual Basic 1.0 program on a modern
computer. Visual Basic is a dead language and long since has been replaced by Visual
Basic .NET, which shares only the name with its forefather.
From the beginning, the only viable option to run a Visual Basic 1.0 application today
was to rebuild the original development environment based on DOS 6.22 and Windows
3.11 in an emulator. The other possible alternative, try to setup an ancient PC still capa‐
ble to run DOS and Windows 3.11, albeit in principle interesting to ensure a replication
of the original paper at the hardware level, would have posed more problems than it
solved, adding little to the accuracy of the reproduction itself.
I preferred to use the Parallels Desktop emulator for macOS, but popular alternatives
such as VMwareWorkstation forWindows or the VirtualBox open sourcemulti‐platform
emulator should work equally well.
I created a new empty virtual machine with minimal hardware requirements and in‐
stalled in sequence DOS 6.22, Windows 3.11 and Visual Basic 1.0 (Fig. 2). While I was
at it, and although I had already reproduced the Fortran part of the project, I also de‐
cided to install Microsoft Fortran 5.1 for DOS, to try to recreate as much as possible the
original work environment.
All software packages were downloaded from the WinWorld web site, an invaluable re‐
source for recovering old software packages. Even after somany years, the legitimacy of
installing proprietary software in an emulator, might be questionable. But at the time
I had regular licenses for all the above mentioned software and I guess to be at least
morally authorized to continue to use those packages. Unfortunately, this also means
that it is not possible to share the image of the virtual machine used to run the Visual
Basic program on the paper’s GitHub repository, since it contains proprietary software.
Thepackageswere originally distributed on several floppydisks, whichhad to be swapped
whenever the installer required a new disk. The installation of these software packages
in an emulator is close to how it was done back then. The only difference is that to‐
day the floppy disks are replaced by virtual file images and swapping disks is not done
mechanically but requires to select a menu option in the emulator.
At the end of the installation process, the Windows 3.11 appeared as in Fig. 2. The de‐
fault 640× 480 pixel screen resolution of Windows 3.11 was woefully meager by today’s
standards but, as I used the virtual environment almost exclusively to run the Visual
Basic program, I didn’t bother to install the video drivers that could increase the screen
resolution to a more comfortable 800× 600 or 1024× 768 pixel resolution.

ReScience C 6.1 (#10) – Maggi 2020 7

https://www.parallels.com/
https://www.vmware.com/products/workstation-player.html
https://www.virtualbox.org/
https://winworldpc.com
https://github.com/sabinomaggi/ten-years-challenge-pulsed-drive
https://rescience.github.io/

[Rp] Reproduction of Step width enhancement in a pulse-driven Josephson junction

Figure 2. TheWindows 3.11 desktop as shown in the Parallels emulator. The File Manager window
shows the files generated by the Fortranmcp-work program, before being processed by theVisual
Basic program.

Using the emulator required to transfer the source and binary Visual Basic files to the
emulated DOS/Windows system. It is surely possible to make the emulated Windows
3.11 communicate with the host operating system through the network. But I found
much easier to use again a virtual floppy disk to transfer all needed files frommacOS to
Windows 3.11 (and viceversa).
A new empty virtual floppy disk data.img can be easily createdwith the command‐line
utility dd available on macOS or Linux
dd if=/dev/zero of=data.img bs=1440k count=1

After creation, the virtual floppy disk must be mounted in the emulator and formatted
under DOS or Windows 3.11 in the original MS‐DOS FAT file system.
This step completed the preparation of the development environment, now it was time
to test how all this behaved.

6 Running the programs

As already noted, mcp-work.for calculates the I − V characteristics for a range of
values of αrf, saving each curve in a separate output file. The lower and upper limits and
the step size of αrf are hardcoded in the Fortran source code ad every change requires a
recompilation of mcp-work.for (aminor hassle, as the compilation takes just a couple
of seconds on a modern machine).
Also thenames of the output datafiles arehard‐coded inmcp-work.for in thefilewrite
variable and are conventionally composed by a two‐letter prefix (“SI” for the single drive,
“BI” for the biharmonic drive and “PU” for the pulsed drive) followed by a three‐digit in‐
teger that represents the cycle number (Section 4.5).
To avoid cluttering the mccumber/ directory that contains the Fortran source files with
the output data files produced by the simulations, I created a new directory in the main
project folder, 2020runs/, where I copied the mc-iv.dat configuration file needed to
start the simulation (Fig. 1).

ReScience C 6.1 (#10) – Maggi 2020 8

https://rescience.github.io/

[Rp] Reproduction of Step width enhancement in a pulse-driven Josephson junction

Figure 3. I − V characteristics of a junction with βc = 0.01, driven by a sinusoidal microwave
signal of frequency Ω = 0.45 and (a) αrf = 0.0, (b) αrf = 1.0 and (c) αrf = 2.0. The rf‐induced
current steps are clearly visible when αrf > 0. Here eta and alpha are the normalized voltage η
and normalized current α, respectively.

Runningmcp-work.for requires three steps: compilemcp-work.forwith the proper
directives, switch to the 2020runs/ directory and run the mcp-work executable from
there. The whole process is summarized below for the sinusoidal drive
$ gfortran -cpp -Dtextout -Dsingle -o mcp-work mcp-work.for
$ cd ../2020runs/
$../mccumber/mcp-work

Theonlymodificationneeded to performcalculationsusing thepulseddrive is to change
the -Dsingle directive to -Dpulsed
$ gfortran -cpp -Dtextout -Dpulsed -o mcp-work mcp-work.for
$ cd ../2020runs/
$../mccumber/mcp-work

On a recent (but not state‐of‐the art) machine the whole simulation with 100 αrf steps
takes around 5minutes for the single drive and 7minutes for the pulsed drive, andmost
of the time is spent printing on the terminal the calculated I−V characteristics for each
value of αrf. Such feedback was useful at the time of the original calculation, as every
new calculated point of the I − V characteristics appeared on the screen after several
tens of seconds, now the results scroll on the screen at a speed that makes them almost
illegible. However, to keep as faithful as possible to the original project, I decided to
continue to print the data points on the computer screen.
The I−V characteristics calculated with the sinusoidal drive are shown in Fig. 3 for dif‐
ferent values of αrf. Withoutmicrowave radiation (αrf = 0), the simulation produces the
well‐known I − V characteristic of an overdamped Josephson junction (Fig. 3a), while
for non‐zero values of αrf the staircase‐like structure of the rf‐induced current steps ap‐
pears on the I − V curves (Fig. 3b and Fig. 3c).
For a pulsed drive, the I − V characteristic without microwave radiation is identical to
that calculated with the sinusoidal signal (Fig. 4a), while for αrf > 0.0 the current steps
induced by the pulsed drive are fewer than with the sinusoidal drive and can be nearly
as wide as the critical current (compare Figs. 4a and 4c).
At the end of each run, the output files should be transferred to theWindows 3.11 virtual
machine to be processed by stepampl, the Visual Basic application described in Sec‐
tion 5. However Windows 3.11 does not understand Unix line terminators and cannot
read the output files without a preliminary conversion. The conversion can be easily
done in the macOS Terminal by issuing the following command,
$ for f in $(ls *.out); do sed -i .bak s/$/$’\r’/ $f ; done

that changes the line terminators of the .out output files from the Unix format contain‐
ing only a line‐feed (LF) to the carriage return followed by a line‐feed (CR‐LF) format

ReScience C 6.1 (#10) – Maggi 2020 9

https://rescience.github.io/

[Rp] Reproduction of Step width enhancement in a pulse-driven Josephson junction

Figure 4. I−V characteristics of a junction with βc = 0.01, driven by a pulsedmicrowave signal of
frequency Ω = 0.45 for: (a) αrf = 0.0, (b) αrf = 5.0 and (c) αrf = 10.0. For αrf > 0 the rf‐induced
current steps are much larger than with the standard sinusoidal drive. Here eta and alpha are
the normalized voltage η and normalized current α, respectively.

used by all versions of Microsoft Windows.5. The -i switch allows in‐place conversion
of each file. The original files are kept adding a .bak extension.
The output files in the proper Windows compatible format can now be transferred onto
the virtual floppy disk image. When the transfer is done, the floppy disk image is un‐
mounted from the host operating system and mounted in the virtual machine, making
it visible to Windows 3.11. The output files are copied to an empty directory of Win‐
dows 3.11 and the Visual Basic application is started, either by running the precompiled
stepampl.exe executable or by opening the Visual Basic project and running the pro‐
gram from there (Fig. S5), saving the results in another text file with extension .STP (for
steps) that could be transferred back to the host operating system via the virtual floppy
disk image.
I also briefly tried to run the original Fortran code using the Microsoft Fortran 5.1 in‐
stalled in the emulator. Compilation was fine but the resulting DOS program was ex‐
tremely slow, taking about 30 − 35 seconds for each αrf cycle and about 60 minutes in
total for the sinusoidal drive, more than a tenfold increase with respect to the native
macOS version compiled with gfortran. Even considering the overhead of the emula‐
tor, the difference is too large not to be attributed to the low quality of the binary code
generated by the Microsoft Fortran 5.1 compiler.

7 Results

At the time of writing the original paper the whole process had to be repeated each
night for a different set of input parameters and for a different kind of microwave signal
(single, biharmonic or pulsed).
Each night I used three of the available DEC workstations to simulate the junction be‐
havior with the pulsed drive, using three different values of the (normalized) width of
the pulse signal, ρ, while keeping constant all the other parameters, such β and Ω. The
only other difference in these simulation was the range of variation of αrf, which de‐
pended on the value of ρ (shorter pulses require a much larger intensity of the rf‐signal
to have the same effect on the junction). The fourth workstation simulated the junc‐
tion behavior with the standard sinusoidal drive, using exactly the same set of junction
parameters.
The original paper contained all the information needed to reproduce the results shown
in the figures, without having to repeat thewhole analysis from scratch. The parameters
used in all runs were: hysteresis parameter β = 0.01, frequency of the sinusoidal or

5Slightly different versions of the command can be found on the internet; the format used above is POSIX‐
compliant and should run on any Unix flavour

ReScience C 6.1 (#10) – Maggi 2020 10

https://rescience.github.io/

[Rp] Reproduction of Step width enhancement in a pulse-driven Josephson junction

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●●●●●●● ●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
● ●●●●●●●●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●
●●

●●
●●

●●
●●

●●
●●

●●●
●●

●●
●●

●●●
●●●

●●
●●●

●●
●●

●●
●●●
●●

●●
●●●●

●●
●●●●●●

●●
●●●●●

●●
●● ●●

●●
● ●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

● ●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

● ●●
● ●●●●●

●●●●
●●●

●●
●●

●●
●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●● ●●●
●●

●●
●●
●●●

●●
●●

●●
●●●

●●
●●

●●
●●●

●●
●●●

●●
●●

●●
●●●
●●●

●●
●●●

●●
●●

●●
●●
●●

●●
●●

●●
●●●●●●●

●●● ●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●● ●●

● ●●●●●
●●●

●●●
●●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●
●●

●●
●●

●●
●●

●●
●●

●●● ●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●
●●

●●
●●●

●●
●●

●●
●●
●●

●●●●●
●●

●●●●
●●

● ●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

● ●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

● ●●
●●●●●●

●●●●
●●●

●●●
●●

●●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●● ●●
●●

●●
●●
●●

●●
●●

●●
●●
●●

●●
●●

●●
●●

●●
●●

●●
●●
●●

●●
●●

●●
●●

●●
●●

●●
●●●

●●
●●

●●
●●

●●
●●●

●●●●●●●
●●● ●●

●● ●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●● ●●

● ●●●●●
●●●

●●●
●●●

●●
●●●

●●
●●

●●
●●
●●

●●
●●

●●
●●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●
●●

●●
●●

●●
●●

●●
●●

●●● ●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●
●●

●●
●●

●●
●●●

●●
●●
●●

●●●●●
●●

●●●●●
● ● ●●

●●
●●
●●
●●
●●
●●
●●
●●
● ● ●●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

● ●●
●●●●●●

●●●●
●●●

●●●
●●

●●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●● ●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●
●●

●●
●●

●●
●●

●●
●●

●●
●●●

●●
●●●

●●●
●●

●●●
●●●●●●●

●●● ●●
●● ●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●● ●●

● ●●●●●
●●●

●●●
●●●

●●
●●●

●●
●●

●●
●●
●●

●●
●●

●●
●●

●●
●●

●●
●●●

00 55 99 14 18 23

27

−4

−3

−2

−1

0

1

2

3

4

0 4 8 12 16 20 24

eta / omega

al
ph

a

Figure 5. I − V characteristics of a junction with β = 0.01 for several values of αrf. The junction
is irradiated by a train of pulses of repetition frequency Ω = 0.45 and width ρ = 0.05. Each
curve is offset horizontally by 4Ω and is labelled after the value of αrf. The vertical dotted lines
mark the position of the zero‐voltage axis (i.e., the critical current IC) for the I −V curve located
immediately to the right.

pulsed rf signal Ω = 0.45, current bias between αdc = −5.0 and αdc = 5.0, integration
time τ = 500, time step∆τ = 0.01.
The simulation with the sinusoidal drive was performed by varying the amplitude of the
microwave signalαrf between 0.0 and 5.0, with a step∆αrf = 0.05. The three simulations
with the pulsed drive were done using: (1) pulse width ρ = 0.250, αrf = 0.0 − 10.0,
∆αrf = 0.1; (2) pulse width ρ = 0.125, αrf = 0.0 − 20.0, ∆αrf = 0.2; (3) pulse width
ρ = 0.050, αrf = 0.0− 50.0,∆αrf = 0.5.
The resulting output and summaryfileswere saved in separate folders in the2020runs/
directory, named SINGLE/, PULS0250/, PULS125/, PULS0050/ after their DOS coun‐
terparts.
To reproduce the first and second figure of Ref. [14] Imade the only concession tomoder‐
nity. Instead of trying to recreate them with the plotting program used originally, prob‐
ably Origin 2.0, I decided to write a couple of small R scripts that could automate the
task. The results are shown in Fig. 5 and Fig. 6 and, as expected, are identical to those
reported in the first two figures of Ref. [14]. The large vertical steps on the rightmost
curves of Fig. 5 era the first rf‐induced current steps, that can be nearly as large as the
critical current IC without rf bias visible in the first I − V characteristic on the left.
Figure 3 of the original paper could also be easily reproduced by plotting the maxima of
the curves of Fig. 6, i.e.,∆in vs. αrf, for the four different cases considered here.
Similar considerations canbemade for the reproduction of Figure 4 of the original paper,
which considers a slightly hysteretic junctionwith β = 1.0. For simplicity, I have chosen
to show instead the ∆in vs. αrf curves for the two most significant cases of microwave
signal, i.e., the sinusoidal drive and the pulsed drive with ρ = 0.050 (Fig. 7), from which
the plots of Figure 4 could be easily replicated.

8 Code availability

All code used for this replication is available in the project’s GitHub repository. However,
the term ”all” should be taken with a grain of salt. While the Fortran is truly available to
everyone and can be used as‐is by compiling it with gfortran or with any other compati‐
ble modern Fortran compiler, the Visual Basic 1.0 code poses a completely different set

ReScience C 6.1 (#10) – Maggi 2020 11

https://www.originlab.com
https://github.com/sabinomaggi/ten-years-challenge-pulsed-drive
https://rescience.github.io/

[Rp] Reproduction of Step width enhancement in a pulse-driven Josephson junction

●

● ● ● ●

● ●

● ●

●

● ●

●

● ●

●

● ●

●

●

● ●

●

●

● ●

●

●

● ●

●

● ● ●

●

●

● ●

●

● ●

● ● ● ● ●

● ●

● ●

● ●

● ●

●

● ● ● ●

●

● ●

● ●

● ● ●

● ● ● ● ●

● ● ●

● ●

● ●

● ●

● ● ● ●

● ● ●

● ●

● ● ●

● ● ● ● ● ● ●

● ●
●

●
● ●

● ●

●
●

●
●

● ●
●

● ● ●
● ●

●
●

● ● ● ●
● ● ● ● ● ● ●

● ●

● ●

●

●
●

●
●

● ● ●

●
●

●
●

● ●

● ●
● ● ● ● ● ●

●
●

●
● ●

● ●

● ●

● ● ●

● ●
●

●
●

●
●

● ● ● ● ● ● ● ● ●
●

● ●

● ●
●

●
●

● ● ● ●

●

● ● ● ● ● ●
● ●

●
● ● ●

●
● ●

● ●
● ● ●

● ●
● ● ● ●

● ● ● ●
● ● ● ● ● ●

●
●

●
●

● ●
● ●

●
●

●
●

●
●

●
●

●
● ● ●

●
●

●
●

●
● ●

● ● ●
● ● ●

● ●
●

● ●
●

●
●

●
●

●
● ● ●

●
●

●
●

● ●
●

● ●
● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ●
● ● ●

● ● ● ●
● ●

● ● ●
● ●

● ●
● ●

●
● ●

● ● ●
●

●
● ● ● ● ●

●
●

● ●
●

● ●
●

● ●
●

●
● ●

●
●

●

● ●
●

● ● ●
●

●
● ●

●
●

● ●
●

● ● ● ● ● ● ●
●

● ●
●

● ●

● ●
●

● ● ● ●
●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ●
● ● ● ● ●

● ● ● ● ●
● ●

● ●
● ●

● ●
● ● ●

● ● ● ● ● ●
● ● ● ● ●

●
● ●

●
● ● ●

● ● ●
● ●

● ●
●

●
●

●
●

● ● ●
●

● ●
●

●
●

● ● ●

● ● ●
● ● ● ●

● ● ●
●

● ●

●

n =
 0

n =
 1

n =
 2

n =
 3

n =
 4

0 1 2 3 4 5

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

alpha_rf

st
ep

 s
iz

e

(a)
●

●
● ●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●
● ●

● ●
●

● ●
●

● ●
● ● ●

●
●

●
● ●

●
● ● ● ● ●

●
● ● ●

● ● ● ● ● ● ●
●

●
●

●
●

●
● ● ● ● ●

●
●

●
● ● ● ● ● ●

●
● ● ● ●

● ● ●
● ● ● ● ●

● ●
●

●
●

●
●

●
●

●
● ●

● ●

●
● ●

● ●
● ●

●
●

● ●
●

●
● ● ●

● ●

● ●
●

● ●
●

●
●

●

●
●

●
●

●
●

●
● ● ●

● ●
● ●

● ● ● ● ●
●

● ● ● ● ●
●

●
●

●
● ● ●

● ● ●
● ●

●
●

● ●
●

●
● ● ● ●

● ● ●
● ● ● ● ●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
● ●

●
●

●

● ●
●

● ●
●

● ●
●

● ● ●
● ● ●

● ●
● ●

● ●
● ●

●
●

● ●

●
● ●

●

●
●

●

●
●

●
● ●

●
●

●
● ● ●

● ●
● ●

●
●

● ● ●
●

● ●
●

●
● ●

●
● ● ● ● ●

● ● ●
● ●

●
●

● ●

● ● ● ● ● ● ● ● ● ● ●
● ● ● ●

●
●

● ●
● ●

●
●

● ● ● ● ●
● ● ●

●
●

●
●

●
●

● ●
●

●
●

● ●
● ●

● ●
●

● ● ● ●
● ● ●

● ● ●
● ● ● ●

● ● ●
●

●
●

●

● ●
●

●

●
●

●
●

●

● ●
●

●
● ● ● ●

● ●
●

● ●
●

● ● ●
●

● ●
●

● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ●
● ● ●

● ● ● ● ● ● ● ●
● ● ● ●

● ● ● ● ●
● ●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
● ●

●
●

● ●
● ● ● ●

● ● ●
● ●

● ●
● ●

● ●
●

● ●

●
●

● ●

●
●

●
●

●

●
●

● ●
●

n =
 0

n =
 1

n =
 2

n =
 3

n =
 4

0 2 4 6 8 10

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

alpha_rf

st
ep

 s
iz

e

(b)

●
●

●
● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

● ●
● ●

● ●
● ●

● ●
● ● ●

● ●
●

●
●

● ● ● ● ●
● ●

●
●

● ●
● ●

●
●

● ●
● ● ●

● ● ● ● ●
●

●
●

● ● ● ● ● ● ●
●

●
●

●
●

● ● ● ● ●
● ● ● ● ● ●

●
●

●
● ● ● ●

● ●
●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

● ● ●
● ●

● ●
● ●

● ●
● ● ●

● ● ● ●
●

● ● ● ● ●
● ●

● ● ● ●
● ●

●
●

● ●
● ● ●

● ● ● ● ●
● ● ●

● ● ● ● ● ● ●
●

●
●

●
●

● ● ●
● ● ● ● ● ● ● ●

● ● ● ●
●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●

●
●

●
●

● ● ● ●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
● ● ●

● ●
● ●

●
● ● ●

● ● ●
● ● ● ●

●
● ● ●

●
●

● ●
● ● ● ●

●
● ●

●
● ●

● ● ●
● ●

● ● ● ● ●
●

●
●

● ● ● ● ● ●
●

●
● ●

● ● ● ● ● ●
●

● ●
● ●

● ● ● ●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●

●
●

●
●

● ● ●
●

●
●

●
●

●
●

●

●
●

●

●

●

●
●

●

●
●

●
●

●
● ● ●

● ●
● ●

●
● ● ●

● ● ●
● ● ● ●

●
● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ●

●
● ●

●
● ● ● ●

● ● ● ● ● ●
●

●
●

● ● ● ● ● ● ●
●

● ●
● ●

● ● ● ●
●

●
●

●
●

● ●

●

●
●

●

●

●

●
●

●

●
●

●
● ●

● ● ● ●
●

● ●

●
●

●

●

●

●
●

●
●

●
●

●

●
●

●
●

● ● ●
● ●

n =
 0

n =
 1

n =
 2

n =
 3

n =
 4

0 4 8 12 16 20

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

alpha_rf

st
ep

 s
iz

e

(c)
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ● ●

● ●
● ● ● ●

● ● ●
● ● ● ●

● ●
● ● ●

● ● ● ●
● ●

●
● ●

●
● ●

● ● ●
● ● ● ● ●

● ●
●

●
● ● ● ●

●
●

● ●
●

●
● ● ● ● ●

●
●

● ● ● ●
●

●
●

● ● ●
● ● ● ● ● ● ● ●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ● ●
● ● ●

● ● ●
● ●

● ● ● ● ●
● ●

● ● ●
● ● ● ●

● ●
●

● ●
●

● ●
●

●
●

● ● ● ● ●
● ●

●
●

● ● ● ●
●

●
● ●

●
●

● ● ● ● ●
●

●

● ● ●
●

● ● ● ● ● ● ●
● ●

● ● ● ● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ● ●
● ● ●

● ● ●
● ●

● ● ● ● ●
● ●

● ● ●
● ● ● ●

● ●
●

● ●
●

● ●
● ● ●

● ● ● ● ●
● ●

●

● ● ● ●
● ●

●
● ●

●
● ●

●
●

● ● ● ●
●

●
●

● ● ● ● ● ● ● ●
● ● ●

● ● ● ●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ● ● ●
● ●

● ● ●
● ●

● ● ● ● ●
● ●

● ● ●
● ● ● ●

●

● ● ● ●
● ● ●

●
● ● ● ●

● ● ● ● ● ●
● ● ●

●
●

● ● ● ● ●
● ●

●
●

● ● ● ●
●

●
●

● ● ● ●
●

● ● ●
● ● ●

● ● ● ●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ● ● ●
● ●

● ●

n =
 0

n =
 1

n =
 2

n =
 3

n =
 4

0 10 20 30 40 50

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

alpha_rf

st
ep

 s
iz

e

(d)

Figure 6. Dependence of the step size ∆in on the amplitude of αrf, for n = 0...4. The n = 0 step
is the normalized total critical current∆i0 of the junction. The junction parameters are β = 0.01
andΩ = 0.45; (a) sinusoidal drive, (b) pulsed drive with ρ = 0.250, (c) pulsed drive with ρ = 0.125,
(d) pulsed drive with ρ = 0.050.

ReScience C 6.1 (#10) – Maggi 2020 12

https://rescience.github.io/

[Rp] Reproduction of Step width enhancement in a pulse-driven Josephson junction

●

● ● ● ●

● ●

● ●

●

● ●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

● ●

● ● ● ● ● ● ●

●

● ●

● ●

● ● ● ●

●
● ●

●

● ●

● ●

● ● ●

●
● ●

●
● ● ●

●

● ● ●

● ● ● ● ● ● ● ● ● ●

●
●

● ● ● ●

● ●
●

●
●

● ●
●

● ●

● ● ●

● ● ● ●

● ● ●
● ● ●

●

● ●
●

● ●
● ● ●

●
●

●
●

● ●
●

●
● ●

● ●
● ● ● ●

●
●

●
●

●
●

●
●

●
● ●

● ● ● ●
● ●

●

●
●

●
●

● ● ● ● ●
● ● ● ●

●
●

●

●
●

●
● ●

● ●
● ● ●

●

●
● ●

●
● ●

●
● ● ● ● ● ● ●

●
●

● ●
●

● ●
● ● ●

● ● ● ●
● ● ●

● ●
●

●
●

● ● ●

● ● ●
● ● ●

● ●
● ●

●
●

● ●
●

●
●

●
●

● ● ●
●

● ● ● ●
● ● ●

●

●

●
● ●

●
●

● ●
● ●

● ● ●

●
● ●

●
●

● ● ●
● ● ● ● ●

● ●
●

●
●

●
● ● ● ●

●
● ● ● ● ●

●
● ●

●
●

●
● ● ● ●

●
●

● ● ● ● ● ● ● ● ● ● ●
● ● ●

● ● ●

● ●
●

●
● ●

●
●

●
●

●

● ●
● ● ●

● ● ● ● ●
● ●

● ● ● ● ●
● ●

●
● ●

● ●
●

● ●
●

● ●

●

●
● ●

● ●
● ●

●

●

●

●

●
●

●

● ●

● ● ●
● ● ● ● ● ●

● ● ●
● ●

●
● ● ●

●
●

● ● ●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ●

● ● ● ●

● ●
●

● ● ●

● ● ● ● ●
●

● ● ●
● ● ● ● ●

●
●

● ● ●
● ●

●
● ● ● ● ● ● ● ● ●

● ● ●
● ● ●

●

● ●

● ●

● ●
● ●

● ●
● ●

● ● ●

● ● ●

● ● ● ●
● ● ●

● ● ● ●
●

n =
 0

n =
 1

n =
 2

n =
 3

n =
 4

0 1 2 3 4 5

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

alpha_rf

st
ep

 s
iz

e

(a)
●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
● ● ●

● ●
●

● ●
● ● ●

●
● ● ● ●

● ●
●

●
●

●
●

● ●
●

● ●
● ●

● ●
● ● ● ● ● ● ● ● ● ●

● ●
●

● ● ● ●
●

●
●

●
●

●
●

● ● ● ●
●

●
●

● ● ●
● ● ●

●
●

●
● ● ● ●

● ● ●
●

●
●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●
● ●

● ●
●

●
●

●
●

●
●

●

●
●

●

●

●
●

●
●

●
● ●

● ● ● ●
●

● ●
●

●
●

● ● ●
●

● ● ● ● ● ●
●

●
● ● ● ● ● ●

●
●

●
●

● ● ● ● ●
●

● ● ● ●
●

● ●
● ● ● ●

●
● ● ●

● ● ●

● ● ● ●
●

● ● ●
●

● ● ●
● ● ● ●

● ● ●
●

●
●

●
● ●

●
●

●

● ●

●

● ●

●
●

●
●

● ●
●

● ● ● ●
●

● ●

●
●

●

●
●

●
●

●

●

●

●
●

●
●

● ●
● ● ● ●

●
● ●

● ●

● ● ●
● ● ● ●

●
● ●

●
● ● ●

● ● ● ●
●

● ●
● ●

●
●

● ●
●

● ● ● ● ● ● ●
●

●
●

● ●
●

●
● ●

●
● ●

●
● ● ●

● ●
●

● ●
● ●

● ● ● ●
● ●

● ●
●

● ●
●

●
●

● ●
●

● ●

●
●

● ●

●
● ●

● ●
●

● ● ● ●
●

● ●

●
●

●
●

●
●

●
●

●
●

●

● ●
●

● ●
● ● ● ●

●
● ●

● ●

● ●
● ● ● ●

● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

● ●
●

●
●

● ●
●

●
●

● ●
● ● ● ● ●

●
● ●

● ●
●

●
● ● ●

● ●
●

●
● ●

● ●
●

● ●
●

●
●

● ●
●

● ●
●

● ●

● ●
● ●

● ●
● ●

● ●
● ● ● ●

● ●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●

n =
 0

n =
 1

n =
 2

n =
 3

n =
 4

0 10 20 30 40 50

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

alpha_rf
st

ep
 s

iz
e

(b)

Figure 7. Dependence of the step size ∆in on the amplitude of αrf, for n = 0...4. The n = 0 step
is the normalized total critical current ∆i0 of the junction. The junction parameters are β = 1.0
and Ω = 0.45; (a) sinusoidal drive, (b) pulsed drive with ρ = 0.050.

of problems.
First of all, it can be run only by rebuilding an exact replica of the original develop‐
ment environment, as noted in Section 5. A task that without proper documentation
can require a lot of trial‐and error, as the author of the present paper discovered during
the course of this work, when he found that the original code could not be imported in
any later versions of Visual Basic for Windows and even in Visual Basic 1.0 for MS‐DOS,
released by Microsoft in parallel with the initial Windows version.
Second, the source code of a Visual basic program is a mix of Basic source files (having
the usual .bas extension) and of Forms objects that compose the graphical interface
of the program (with extension .frm), stored in some binary format and tied together
in a container, known as a Visual Basic project (extension .mak), as shown in Fig. S6).
Making things worse, a Visual Basic project cannot be exported, the idea of code sharing
or reuse across different applications was almost unknown at the time, at least in the
commercial world.
The obvious consequence is that the reproduction described here would fail to comply,
at least in part, with one of the basic requirements of the Ten Years Challenge, i.e. the
availability of all the source code used for the reproduction.
But even if Visual Basic code seems locked for eternity in its proprietary binary format,
there is a simple, albeit partial, solution to this problem, printing to a file. Printing was
a true necessity back then to inspect or debug code. Computer screens were small and
editors were primitive, the best way to have an overall view of a programduring develop‐
ment was to print it on paper. Visual Basic 1.0 is no exception and can easily print both
the Basic source code and the layout of each form composing the graphical interface.
Once realized that, it is easy to set up a PostScript Printer in Windows 3.11 and to print
the Basic sources and the forms to two separate PostScript files on the Windows 3.11
virtual disk. Transfer of these files to macOS is done again using the virtual floppy disk
image and, once in macOS, it is a questions of seconds to convert the PostScript files to
themore popular PDF format using the Preview application available in every version of

ReScience C 6.1 (#10) – Maggi 2020 13

https://rescience.github.io/

[Rp] Reproduction of Step width enhancement in a pulse-driven Josephson junction

macOS. The finishing touch is to use an R script (already developed for another project)
to extract the text from the PDF file containing the Basic code, saving it to a true text
source file, so that it can be easily inspected by everyone interested in this project.

9 Discussion

The main problem with this reproduction was the accidental loss of all my handwritten
notes about the project, that compelled me to recover all information needed from the
source and data files. Keeping good and updated documentation about any research
project is paramount but equally important is to store all documentation in a safe loca‐
tion, where it can be easily retrieved.
Today most documents are in electronic form, making them even more prone to data
loss whenever a disaster strikes. Implementing a good and reliable backup strategy on
different forms of storage media should be a mandatory requirement of any research
project, and this strategy should always combine local backups with backups on sec‐
ondary storage locations, physically well separated from the original data source.
Starting the project today from scratch I would make very different choices about the
programming languages to use for the simulation and data analysis steps.
Fortran, despite its venerable age, is still an excellent language for scientific program‐
ming, but today I would surely prefer Python, because of its flexibility, ease of use, and
availability of excellent numerical libraries, such as NumPy and SciPy.
The main problem with Python is related to the tumultuous development of the lan‐
guage itself and of the thousands of available modules, which can cause incompatibili‐
ties even with code developed a few years ago. This problem can be, at least temporarily,
be solved by using virtual environments, but a better standardized solution is strongly
needed.
Another problem is related to its nature of interpreted language. However, the presence
of well‐documented Fortran and C bindings, can enhance performance of time‐critical
sections of code.
Starting today I would also avoid using a new language, as was Visual Basic 1.0 at the
time for a scientific project. It is true that in 1993‐94 it would have been very hard to
foresee the rapid demise of Microsoft’s Visual Basic, nevertheless using a programming
language only when its main core is stable, runs on a wide array of operating systems
and is accepted by a wide community of developers is surely a safer bet.
Not every software project can afford to be as stable as TEX, the scientific typesetting sys‐
tem invented by the prominentmathematician and computer scientist Donald E. Knuth,
that has reached a state where “it is unwise tomake further improvements to the system
[..] which should give the same results 100 years from now that they produce today” [21].
But on the other hand, a development environment that changes toomuch and too often
or that is subjected to the whims of a single software company creates more problems
than it solves.

10 Conclusions

Going back to my old paper has been an exceptionally interesting and instructive expe‐
rience and I thank the organizers of this challenge for the opportunity offered.
However this is not only a nostalgic attitude. The reproducibility crisis is a serious issue
today [22], that undermines scientific credibility and impacts the public’s trust in sci‐
ence, paving the way to all sorts of fake and unscientific beliefs. Being able to go back
and reproduce what has been done in the past could ease the retraction of published
papers containing fabricated, falsified, or modified data or results and could contribute
to simplify the identification of future frauds.

ReScience C 6.1 (#10) – Maggi 2020 14

https://rescience.github.io/

[Rp] Reproduction of Step width enhancement in a pulse-driven Josephson junction

This of course requires to share andmake freely available the original data and the tools
used to analyze them. A few years ago this requirement was impossible to fulfill in
practice. The digital world in which we live makes it almost inevitable.

References

1. A. Barone and G. Paternò. Physics and Applications of the Josephson Effect. Wiley, July 1982.
2. M. Gurvitch, M. A. Washington, and H. A. Huggins. “High quality refractory Josephson tunnel junctions utilizing

thin aluminum layers.” In: Applied Physics Letters 42.5 (Mar. 1983), pp. 472–474.
3. S. P. Benz. “Superconductor�normal�superconductor junctions for programmable voltage standards.” In: Ap-

plied Physics Letters 67.18 (Oct. 1995), pp. 2714–2716.
4. S. A. Cybart, E. Y. Cho, T. J. Wong, B. H. Wehlin, M. K. Ma, C. Huynh, and R. C. Dynes. “Nano Josephson super-

conducting tunnel junctions in YBa2Cu3O7–δ directly patterned with a focused helium ion beam.” In: Nature
Nanotechnology 10.7 (July 2015), pp. 598–602.

5. N. De Leo, M. Fretto, V. Lacquaniti, C. Cassiago, L. D’Ortenzi, L. Boarino, and S. Maggi. “Thickness Modulated
Niobium Nanoconstrictions by Focused Ion Beam and Anodization.” In: IEEE Transactions on Applied Super-
conductivity 26.3 (Apr. 2016), pp. 1–5.

6. K. Likharev and V. Semenov. “RSFQ logic/memory family: a new Josephson-junction technology for sub-
terahertz-clock-frequency digital systems.” In: IEEE Transactions on Appiled Superconductivity 1.1 (Mar.
1991), pp. 3–28.

7. S. Maggi, N. De Leo, V. Lacquaniti, A. Agostino, R. Gonnelli, and P. Verhoeve. “Nb/Al STJ detectors with sub-nA
subgap current.” In: Physica C: Superconductivity and its Applications 435.1-2 (Mar. 2006), pp. 103–106.

8. A. G. P. Troeman, H. Derking, B. Borger, J. Pleikies, D. Veldhuis, and H. Hilgenkamp. “NanoSQUIDs Based on
Niobium Constrictions.” In: Nano Letters 7.7 (2007), pp. 2152–2156.

9. C. Granata, A. Vettoliere, R. Russo, M. Fretto, N. D. Leo, E. Enrico, and V. Lacquaniti. “Ultra High Sensitive Nio-
bium NanoSQUID by Focused Ion Beam Sculpting.” In: Journal of Superconductivity and Novel Magnetism
28.2 (Feb. 2015), pp. 585–589.

10. R. Kautz, C. Hamilton, and F. Lloyd. “Series-array Josephson voltage standards.” In: IEEE Transactions on
Magnetics 23.2 (Mar. 1987), pp. 883–890.

11. R. Monaco. “Enhanced ac Josephson effect.” In: Journal of Applied Physics 68.2 (July 1990), pp. 679–687.
12. D. Andreone, V. Lacquaniti, and S. Maggi. “Experiments on Josephson Junctions Driven by a Bi-Harmonic RF

Source.” In: Nonlinear Superconductive Electronics and Josephson Devices. Boston, MA: Springer US, 1991,
pp. 37–43.

13. D. Andreone, V. Lacquaniti, and S. Maggi. “Numerical and Experimental Results on Josephson Junctions Irra-
diated by a Biharmonic Drive.” In: Superconducting Devices and Their Applications. 1992, pp. 399–402.

14. S. Maggi. “Step width enhancement in a pulse�driven Josephson junction.” In: Journal of Applied Physics
79.10 (May 1996), pp. 7860–7863.

15. S. Maggi. “Enhanced phase locking in a Josephson junction driven by current pulses.” In: Journal of Low
Temperature Physics 106.3-4 (Feb. 1997), pp. 399–404.

16. R. W. Henry and D. E. Prober. “Electronic analogs of double�junction and single�junction SQUIDs.” In: Review
of Scientific Instruments 52.6 (June 1981), pp. 902–914.

17. D. E. McCumber. “Effect of ac Impedance on dc Voltage�Current Characteristics of Superconductor Weak�Link
Junctions.” In: Journal of Applied Physics 39.7 (June 1968), pp. 3113–3118.

18. W. C. Stewart. “Current�voltage characteristics of superconducting tunnel junctions.” In: Journal of Applied
Physics 45.1 (Jan. 1974), pp. 452–456.

19. D. G. McDonald, E. G. Johnson, and R. E. Harris. “Modeling Josephson junctions.” In: Physical Review B 13.3
(Feb. 1976), pp. 1028–1031.

20. A. Boyanski. FPP - A Fortran Preprocessor. Tech. rep. Department of Energy, 1992, pp. 1–7.
21. D. E. Knuth. “The Future of Tex and METAFONT.” In: TUGboat 11.4 (Dec. 1990), p. 489.
22. T. Miyakawa. “No raw data, no science: another possible source of the reproducibility crisis.” In: Molecular

Brain 13.1 (Feb. 2020), pp. 1–6.

ReScience C 6.1 (#10) – Maggi 2020 15

https://rescience.github.io/

[Rp] Reproduction of Step width enhancement in a pulse-driven Josephson junction

S1 Supplementary Material

Figure S1. Comparison with Meld of the main calculation loop of (left) mcphase.for and (right)
mcp-work.for.

ReScience C 6.1 (#10) – Maggi 2020 16

https://rescience.github.io/

[Rp] Reproduction of Step width enhancement in a pulse-driven Josephson junction

Figure S2. DOS batch file used by mcphase.for to run multiple simulations with different values
of the amplitude of the microwave signal αrf.

ReScience C 6.1 (#10) – Maggi 2020 17

https://rescience.github.io/

[Rp] Reproduction of Step width enhancement in a pulse-driven Josephson junction

(a)

$DEFINE textout ! DEFINEd for text output
c $DEFINE graphout ! DEFINEd for graphical output

c $DEFINE single ! DEFINED for single rf drive
c $DEFINE biharmonic ! DEFINED for biharmonic drive
$DEFINE pulsed ! DEFINED for pulsed drive
...
...
$if defined (graphout)

...
$endif
...
...
$if defined (textout)

...
$endif
...
...
$if defined (pulsed)

...
$endif
...

(b)

CC $DEFINE textout ! DEFINEd for text output
c $DEFINE graphout ! DEFINEd for graphical output

c $DEFINE single ! DEFINED for single rf drive
c $DEFINE biharmonic ! DEFINED for biharmonic drive
CC $DEFINE pulsed ! DEFINED for pulsed drive
...
...
#if graphout

...
#endif
...
...
#if textout

...
#endif
...
...
#if pulsed

...
#endif
...

Figure S3. Preprocessor directives in (a) Microsoft Fortran 5.1, (b) modern cpp preprocessor.

ReScience C 6.1 (#10) – Maggi 2020 18

https://rescience.github.io/

[Rp] Reproduction of Step width enhancement in a pulse-driven Josephson junction

(a)

...
INTEGER*2 iyr, imon, iday
INTEGER*2 ihr, imin, isec, dummy
...
...
CALL GETDAT(iyr, imon, iday)
CALL GETTIM(ihr, imin, isec, dummy)
...

(b)

...
character*8 date
character*10 time
character*5 zone
integer values(8)
...
...
call date_and_time(date, time, zone, values)
...
...
iyr = values(1)
imon = values(2)
iday = values(3)
ihr = values(5)
imin = values(6)
isec = values(7)
...

Figure S4. Getting the date and time in (a) Microsoft Fortran 5.1, (b) modern gfortan.

ReScience C 6.1 (#10) – Maggi 2020 19

https://rescience.github.io/

[Rp] Reproduction of Step width enhancement in a pulse-driven Josephson junction

Figure S5. Windows 3.11 desktop with the running Visual Basic program stepampl.

ReScience C 6.1 (#10) – Maggi 2020 20

https://rescience.github.io/

[Rp] Reproduction of Step width enhancement in a pulse-driven Josephson junction

Figure S6. Visual Basic 1.0 development environment. The window in the foregound lists all the
Basic files (with extension .bas) and Forms objects (extension .frm) that compose the Visual
Basic project (extension .mak). An example of Visual Basic code is visible in the window in the
background.

ReScience C 6.1 (#10) – Maggi 2020 21

https://rescience.github.io/

	Introduction
	Computational context
	Digging into code
	Porting Microsoft Fortran to modern Unix
	Preprocessor directives
	Filenames
	Edit descriptors
	Date and time
	Compilation with gfortran

	Visual Basic code
	Running the programs
	Results
	Code availability
	Discussion
	Conclusions
	Supplementary Material

