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Collective olfactory search in a turbulent environment
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Finding the source of an odor dispersed by a turbulent flow is a vital task for many organisms. When many
individuals concurrently perform the same olfactory search task, sharing information about other members’
decisions can potentially boost the performance. But how much of this information is actually exploitable for
the collective task? Here we show, in a model of a swarm of agents inspired by moth behavior, that there is an
optimal way to blend the private information about odor and wind detections with the public information about
other agents’ heading direction. Our results suggest an efficient multiagent olfactory search algorithm that could
prove useful in robotics, e.g., in the identification of sources of harmful volatile compounds.
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I. INTRODUCTION

Animals are often on the move to search for something:
a food source, a potential mate, or a nesting site. In many
instances their navigation is informed by airborne chemical
cues. One of the best known, and most impressive, olfactory
search behavior is displayed by male moths [1–4]. Males
are attracted by pheromones emitted in minute amounts by
females that might be hundreds of meters away. Air turbulence
breaks the odor plume into small, sparse patches interspersed
by clean air or other odors making conventional search strate-
gies like gradient climbing highly ineffective [5,6]. Experi-
mental studies have in fact shown that male moths display a
different search strategy. They alternate between two phases,
depending on whether a pheromone signal has been detected
or not: surging, i.e., sustained upwind flight, and casting,
i.e., extended alternating crosswind motion. This strategy and
others have inspired the design of robotic systems for locating
sources of harmful volatile compounds [7–11]. Albeit the
effectiveness of individual search is already remarkable in
itself, the performance can be further boosted by cooperation
among individuals, even in the absence of a centralized con-
trol [12–18].

In this paper we tackle the problem of collective olfactory
search in turbulent environments. When the search takes place
in a group, two classes of informative cues are available to
the agents. First, there is private information: the detection of
external signals—odor, wind velocity, etc.—by an individual.
This perception takes place at short distances and is not shared
with group members. Second, there is public information
(social cues) in the form of the decisions made by other
individuals, accessible to (a subset of) other peers, usually by
visual cues, and therefore with a longer transmission range.
Since the action taken by another individual may be also in-
formed by its own private perception of external inputs, public

cues indirectly convey information about odor distribution
and wind direction at a distance. However, the spatial and
temporal filtering induced by the sharing of public cues may
in principle destroy the relevant, hidden information about the
external guiding signals.

These considerations naturally lead to the question of
whether the public information is exploitable at all for the
collective search process. And if it is, how should the agents
combine private and public information to improve the search
performances ? Below, we will address these questions by
exploiting a combination of models for individual olfactory
search and flocking behavior in a turbulent flow with a con-
stant mean wind.

The article is organized as follows. In Sec. II we de-
scribe the model for the collective search in a flow. In Secs.
III and IV we present the results of the multiagent search
in a stochastic flow and in a more realistic one obtained
by direct numerical simulations of the Navier-Stokes equa-
tions. Section V is devoted to conclusions and discussion.
Appendix A details the algorithmic implementation of the
single-agent search strategy. Appendix B describes the flow
characteristics. Details on the parameters of the search algo-
rithm and of the flows are presented in Appendix C. Finally,
a systematic study of the robustness of the results upon
changing some of the main parameters of the model and of
the flow is presented in Appendix D.

II. A MODEL FOR COLLECTIVE OLFACTORY SEARCH

The model setup is illustrated in Fig. 1(a). Initially, N
agents are randomly placed within a circle of radius Rb at a
distance Lx from an odor source S, which emits J odor par-
ticles per unit time. The odor particles, representing patches
of odor with a concentration above the detection threshold,
are transported in the surrounding environment by a turbulent
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FIG. 1. Collective olfactory search. (a) Odor particles (blue dots)
are emitted by the source S and dispersed by the turbulent flow.
Agents (red) are initially placed far from S in a packed configuration.
(b) Perception of an agent (red). Detected odor particles by the agent
are shown as darker blue dots and agent’s neighbors in green. Arrows
indicate the instantaneous moving direction of agents. We set Lx =
250Rd , Rb = 25Rd , Ra = 5Rd , Rd = 0.2, b = 2.5. (c) Trajectory of
an isolated agent performing the cast-and-surge program (see text).
Blue crosses mark the detection of odor particles.

flow u with mean wind U (detailed below). The entire system
is placed inside a larger square box of size bLx with reflecting
boundary conditions for the agents. A list of parameters with
their numerical values is given in Appendix C.

We remark that in our numerical simulations we always
placed the initial cloud of agents downwind of the source
and centered along the mean-wind axis, as shown in Fig. 1.
If the initial location is displaced away from the mean-wind
axis, the search time dramatically increases as a consequence
of the reduction of odor encounters (see, e.g., [19] about
the case of a single agent in a diffusive environment). Since
here we are focusing on assessing the role of public cues
in the search strategy, we did not systematically study the
performance at varying the initial crosswind location of the
group of agents. Such an investigation, quite demanding from
the computational viewpoint, could be the subject of further
research.

In the next two sections, Secs. II A and II B, we separately
describe the search strategies based either only on private cues
or only on public cues. In the following section, Sec. II C, we
then proceed to show how these schemes can be combined
into a single algorithm blending both types of information.

A. Response to private cues

The behavior elicited by private cues such as odor and wind
speed is inspired by the cast-and-surge strategy observed in
moths. We adopted a modified version of the “active search
model” [19] that works as follows. We assume that the agents
have access to an estimate of the mean velocity of the wind, as
moths actually do via a mechanism named optomotor anemo-
taxis [20]. In the model this estimate û(t ) is an exponentially
discounted, running average of the flow velocity u perceived
by the agent along its trajectory:

û(t ) = λ

∫ t

0
u(s) exp[−λ(t − s)]ds. (1)

The parameter λ is the inverse of the memory time: for λ → 0
the estimate converges to the mean wind, while for λ → ∞
it reduces to the instantaneous wind velocity at the agent
current location. In the following we set λ = 1, which is of
the same order of magnitude of the inverse correlation time of
the flow. Notice that the estimated wind provides contextual
information only about the location of the source. Indeed, in
our model the agents are not carried away by the flow, an
assumption that is compatible with the fact that the typical
airspeed of moths and birds largely exceeds the wind velocity.
At each time interval �t , the agent checks if there are odor
particles within its olfactory range Rd [see Fig. 1(b)]. If this
is the case, then it moves against the direction of the current
estimated mean wind at a prescribed speed v0. When the
agent loses contact with the odor cue, it starts the “casting”
behavioral program: it moves in a zigzag fashion, always
transversally to the current estimated mean wind, with turning
times that increase linearly with the time from the last odor de-
tection (see Fig. 1(c) for a sample trajectory and Appendix A
for details about the implementation). We denote by v

priv
i (t )

the instantaneous velocity of agent i prescribed by this cast-
and-surge program. This is uniquely based on private cues,
and it would be the actual velocity adopted by the agent when
acting in isolation.

B. Response to public cues

To describe the interactions among agents, we have drawn
inspiration from flocking and adopted the Vicsek model to
describe the tendency of agents to align with their neighbors
(see Refs. [21,22], and references therein). We assume that an
individual can perceive its peers within a visual range Ra [see
Fig. 1(b)] and measure their mean velocity. Within this model,
the behavioral response elicited in agent i by its neighbors is

v
pub
i (t ) = v0

∑
j∈Di

v j (t )

∣∣∣∣
∣∣∣∣
∑
j∈Di

v j (t )

∣∣∣∣
∣∣∣∣, (2)

Di being the disk of radius Ra centered around the position
of the ith individual. As customary, to model imperfection in
neighbors’ velocity sensing, we added a rotation by a random
angle v

pub
i (t ) ← R(θ )vpub

i (t ), where θ is independently sam-
pled for each agent and at each decision time from a uniform
distribution in [−ηπ, ηπ ]. The noise strength η ranges from 0
(no noise) to 1 (only noise): in the following we set η = 0.1.
In the absence of external cues and for small enough noise, a
group of agents described by this dynamics displays collective
flocking and moves coherently in a given direction—unrelated
to the source location, however.

C. Combining private and public information

To study the collective olfactory search we merged the two
models above, taking the velocity of the ith agent as a linear
combination of the two prescriptions arising from private and
public cues. The resulting update rule is

vi(t ) = (1 − β )vpriv
i (t ) + βv

pub
i (t ),

ri(t + �t ) = ri(t ) + v0�t vi(t )/||vi(t )||. (3)
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The parameter β, which we have dubbed “trust,” measures
the balance between private and public information. For β =
0 the agents have no confidence in their peers and behave
independently by acting on the basis of the cast-and-surge pro-
gram only. For β = 1, agents entirely follow the public cues,
discarding any private information, that is, odor detections are
completely disregarded.

While it is reasonable to expect that for β =1 the
unchecked trust in public cues leads to poor olfactory search
performances, the nontrivial question here is rather if there is
any value at all in public information, i.e., if the optimal β is
not equal to zero.

D. Modeling the turbulent environment

To complete the description of our model, we have to
specify the flow environment and the ensuing transport of odor
particles. In our simulations, the flow environment is given by
a time-dependent, incompressible, two-dimensional velocity
field, u(x, t ) = U + v(x, t ), with a constant mean wind U
and superimposed statistically stationary, homogeneous, and
isotropic fluctuations v(x, t ). Odor particles represent patches
of odor with concentration above the detection threshold of
the agents. The trajectories of odor particles are considered to
be tracers and thus follow the dynamics ẋ = u(x, t ). As for
the velocity fluctuations we consider two models: a stochastic
flow and a more realistic flow obtained solving the Navier-
Stokes equations. Details on the flow, their implementation,
and parameters can be found in Appendix B.

III. RESULTS FOR THE STOCHASTIC FLOW

This model flow, characterized by a single length and
timescale, is obtained by superimposing a few Fourier modes
whose Gaussian amplitudes evolve according to an Ornstein-
Uhlenbeck process with specified correlation time. The result-
ing flow is spatially smooth, exponentially correlated in time,
and approximately isotropic (see Appendix B 1 for details).

We studied the performance of collective search as a
function of the trust parameter β while keeping the other
parameters fixed as detailed in Tables I and II of Appendix C.
Initially the agents are waiting in place without any prescribed
heading direction until one of the agents detects an odor
particle carried by the flow. After this event, agents follow the
dynamics (3). Since the search task is a stochastic process, we
run many episodes for each value of β to compute the average
values of several observables of interest. A given episode is
terminated when at least one of the agents is within a distance
Ra from the source.

In Fig. 2(a) we show the average time T for the search com-
pletion in units of the shortest path time Ts = Lx/v0, which
corresponds to a straight trajectory joining the target with the
center of mass of the flock at the initial time. There exists
an optimal value of the trust parameter β ≈ 0.85 for which
agents find the odor source in the quickest way. Remarkably,
for this value we obtain T � 1.03 Ts: this means that the
agent which arrives first is actually behaving almost as if it
had perfect information about the location of the source and
were able to move along the shortest path (see Supplemental
Material, movie Beta=0.85.mp4 [23]). This result has to be

(a) (b)

(c) (d)

FIG. 2. Collective olfactory search in a stochastic flow. (a) Aver-
age search time T for the first agent that reaches the target normalized
to the straight-path time, Ts = Lx/v0. The inset enlarges the region
close to the minimum. (b) Fraction of agents within a region of size
Rb around the source at the first agent arrival time. (c, d) Average
order parameter for mutual ψ and wind alignment M. Error bars
denote the upper and lower standard deviation with respect to the
mean. Statistics is over 103 episodes. The parameters are λ=1,
N =100, J =1, η=0.1, v0 =0.5, �t =1, Lx =50.

contrasted with the singular case of independent agents who
act only on the basis of private cues (β = 0) which display
a significantly worse performance (the time to complete the
task is more than threefold longer) and move in a zigzagging
fashion (see Supplemental Material, movie Beta=0.00.mp4
[23]). It is also important to remark that the average time
grows very rapidly as β increases above the optimum. As β

approaches unity, agents are dominated by the interactions
with their neighbors and pay little attention to odor and wind
cues. As a result, they form a flock which moves coherently in
an essentially random direction. If, by chance, this direction
is aligned against the wind, the task will be completed in a
short time. However, in most instances the flock will miss the
target and either turn because of the noise η or bounce off the
boundaries until, again by sheer chance, some agent will hit
the target (see Supplemental Material, movie Beta=0.95.mp4
[23]). This behavior results in a very long average time
accompanied by very large fluctuations.

Since we focused on the time of arrival for the first agent
reaching the source, it is natural to ask what has happened to
the other agents. In Fig. 2(b) we show the average fraction of
agents within a distance Rb (the initial size of the group) when
the search task is completed, a proxy for the group coherence
at arrival. This fraction has a maximum value ≈0.3 at about
the same value of β ≈ 0.85 that gives the best search time
performance. This means that on average about 30% of the
group has been moving coherently along the straight path that
connects the initial center of mass of the flock to the target.

To quantify the consensus among agents about which
direction they have to take, as customary, we introduce the
order parameter, ψ (t ) = ||∑N

i=1vi(t )||/(Nv0), with ψ = 1 if all
the agents move in the same direction and ψ ∼ N−1/2 	 1
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FIG. 3. Collective olfactory search in a turbulent flow. (a) Search time T for the first agent reaching the target normalized by the shortest-
path time Ts. (b) Zoom of panel (a) in the region close to the minimum. (c, d) Average order parameter for mutual ψ and wind alignment M.
Right panels: four different times t of the search process with the optimal trust parameter β = 0.8, velocity field (gray arrows), agents (red
arrows), odor particles (blue dots), and the source (large blue circle).

if they are randomly oriented. Figure 2(c) shows ψ averaged
over all agents and all times. Again we observe a maximum
around the values of β where performance is optimal. Another
parameter of interest is the upwind alignment of the agents,
M(t ) = 1 − ∑N

i=1||Û + v̂i(t )||/N , where M = 1 (−1) means
that all the agents are moving upwind (downwind). As shown
in Fig. 2(d), the average M has a maximum at around β =
0.85, which again confirms that a large fraction of the group
is heading against the mean wind even if it has access only to
a local running time average (the memory time is λ−1 = 1 	
Ts = 100).

In summary, we found that there is a relatively narrow
range of the trust parameter β (≈0.85) for which collective
olfactory search is nearly optimal, i.e., the time to reach the
target is close to the shortest possible one and takes place with
a remarkable group coherence.

Robustness

In order to test the robustness of the above results against
variations of the parameters, we have systematically changed
(i) the odor particle emission rate J; (ii) the number of
agents N ; (iii) the range of agent-agent interaction Ra; (iv)
agents’ speed v0; and (v) the intensity of flow fluctuations
urms. In order to reduce clutter in the main text, we present
the results of this systematic study in a dedicated Appendix,
Appendix D, see Figs. 6–10. In summary, we found that
the numerical value of the optimal trust parameter is
quite robust under a significant variation of parameters
[Figs. 6–10 panels (a)]. We also observed an expected
loss of coherence for smaller numbers of initial agents
or shorter interaction range [Figs. 6–10, panels (b)–(d)].
Interestingly, when the emission rate decreases we ob-
serve a deterioration of the performance for agents rely-
ing only on private information (β → 0), whereas those
using public information do not suffer much from the
ensuing reduction in the frequency of odor detections.
The parameter that has the largest impact on performance
is the relative intensity of velocity fluctuations with respect

to the mean flow urms/U [Fig. 10(b)]. When fluctuations
increase, the performance significantly degrades, pointing to
the key role played by the flow environment in the collective
search process.

IV. RESULTS FOR A TURBULENT FLOW

Finally, we considered a more realistic environment
where wind fluctuations have a multiscale structure. The
flow was obtained by solving the two-dimensional Navier-
Stokes equations in the inverse cascade regime [24–26] (see
Appendix B 2 for details). As shown in Figs. 3(a)–3(d), the
features of multiagent search in a turbulent flow are quite
similar to those for the stochastic flow. The average search
time [Figs. 3(a) and 3(b)] displays a minimum close to the
shortest-path time Ts = Lx/v0 at values of the trust parameter
β ≈ 0.8. The right panels of Fig. 3 show four snapshots of
the agents at different times during the search process close to
optimality. The flock appears to be moving coherently in the
upwind direction, and the task is completed in a time 1.04 Ts,
just a few percent in excess of the nominal minimal time. We
remark that the similarity between the results obtained for the
stochastic and the turbulent flow (Figs. 2 and 3) is likely due
to the specific choice of the sensory input, namely, the agents’
decisions are essentially based on single-point and single-time
measurements which are not very sensitive to the fine structure
of the flow. We predict that agents which can decide on the
basis of time-structured inputs (e.g., history of detections) or
space-structured (e.g., stereosensing) will show different and
distinctive behaviors in single-scale and multiscale flows.

V. CONCLUSIONS AND DISCUSSION

We have shown that there is an optimal way of blending
private and public information to obtain nearly perfect per-
formances in the olfactory search task. The first agent that
reaches the target completes the task by essentially moving in
a straight line to the target. This behavior is striking, since in
isolation agents move in a zigzagging fashion [see Fig. 1(c)].
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Our results suggest how to build efficient algorithms for
distributed search in strongly fluctuating environments.

We remark that the existence of an optimal blending be-
tween private and public cues seems to be a feature common
to a variety of complex navigational problems. For instance,
in the case of pedestrians escaping a smoke-filled room, it has
been found that a purely individualistic and purely herding
strategies are suboptimal with respect to a mixture of the two
[27]. Also, an evolutionary model for migratory populations
shows that public information leads to the best migratory
routes and the emergence of specialization with the emergence
of leaders and followers [28].

The degree of optimal blending between private and public
may depend on the specific problem though. Interestingly, in
our case, while private information about odor and wind is
essential to find the source, its weight in the decision mak-
ing is numerically rather small, about 15%–20%. This may
reflect, at least for the problem of olfactory search, a principle
of a “temperate wisdom of the crowds” by which public
information must be exploited—but only to a point. We can
summarize this as a simple behavioral rule: follow the advice
of your neighbors, but once every five to seven times ignore
them and act based on your own sensations. It would be in-
teresting in the future to explore the search algorithm that we
devised here also in different settings to understand, perhaps
even analytically, how the optimal trust parameter depends on
the model parameters and the environmental flow properties.

It is important to point out that our algorithm is inherently
heuristic. The model heavily draws inspiration from animal
behavior, combining features of individual olfactory search
in moths and collective navigation in bird flocks. A more
principled way of attacking the problem would be to cast it
in the framework of multiagent reinforcement learning [29]
and seek for approximate optimal strategies under the same
set of constraints on the accessible set of actions and on
the available private and public information. It would then
be very interesting to see if the strategy discovered by the
learning algorithms actually resembles the one proposed here,
or to other known behaviors displayed by animal groups, or
perhaps unveils some yet unknown way of optimizing the
integration of public and private cues for collective search.
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APPENDIX A: DETAILS ON THE ALGORITHMIC
IMPLEMENTATION OF THE CAST-AND-SURGE

SEARCH STRATEGY

The cast-and-surge strategy describes the motion of a
single agent elicited by private information in the form of odor
encounters and wind estimation. In the following we describe

its algorithmic implementation. As discussed in Sec. II, the
strategy consists of two components: the estimate of the mean
wind velocity û(t ) and a behavioral response to the presence
or absence of an odor within its olfactory range (circle with
radius Rd ) at a given time. In particular, we assume that
the agent can measure the instantaneous local wind at every
discrete time δt , which is the integration step used to advance
the odor particles. Using such measurements, the agent can
construct the estimate of the mean wind velocity û(t ) by
taking an exponentially discounted running average of the
perceived flow velocity u, i.e., Eq. (1).

Without loss of generality, for the purpose of describing
the algorithm we take a simple case where the agent perfectly
estimates the mean wind direction at all times (i.e. û(t ) = U ).
With reference to Eq. (1), this corresponds to the choice
λ = 0 in the memory kernel. Further, we assume that the
agent moves every discrete time t separated by the interval
�t 
 δt , here dubbed the decision time. During the time �t ,
apart from estimating the mean wind direction every δt , the
agent can detect the odor particles within its olfactory range.
From a practical perspective, �t corresponds to the time taken
by the agent to make the decision to move by processing
the acquired information about the mean wind and the odor
detection. Following an extension to continuous space of the
cast-and-surge, on-lattice algorithm described by Balkovsky
and Shraiman [19], we define the behavioral response of the
agent as follows [see Fig. 4(a)]:

Step I: If the agent has detected at least one odor particle in
the time interval �t , it moves upwind by v0�t units, v0 being
the speed of the agent. This phase is called “surging.” The
agent remains in the surging phase as long as it detects odor
particles within every �t time and after taking every step in
the surging phase the agent sets t ′ = 0, a number that the agent
keeps track of.

Step II: In absence of any odors, the agent moves by v0�t
units in a direction that forms an angle of +45◦ with respect
to the locally estimated upwind direction.

Step III: The agent updates t ′ as t ′ ← t ′ + 2�t and
then moves in the crosswind direction for time period t ′ with
speed v0.

Step IV: The agent moves by v0�t units in the direction
that forms an angle of −45◦ with respect to the locally
estimated upwind direction.

Step V: The agent updates t ′ as t ′ ← t ′ + 2�t and then
moves with speed v0 in the crosswind direction (opposite to
the one taken in step III) for time period t ′ and resumes further
from step II.

Steps II–V describe the “casting” phase, which is termi-
nated as soon as the agent detects an odor particle. Then the
agent sets t ′ = 0 and starts the surging phase (step I) from the
next decision time.

In Fig. 4(b) we plot a complete sample trajectory of the
agent following the cast-and-surge algorithm described above.
The ensuing trajectory displays the characteristic zigzag pat-
tern. Two observations are in order. First, the crosswind excur-
sions increase linearly with time. Second, the length traveled
in the upwind direction decreases as the inverse square root
of time since the last detection. This reflects the fact that the
upwind progression is discouraged in the absence of any cues.
In the case presented in the main text (for which λ = 1) the
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(a) (b)

FIG. 4. (a) A short trajectory of an agent navigating according to the cast-and-surge algorithm with λ → 0. (b) A complete sample
trajectory. The black circle is the location of the source (S), while the blue ×’s correspond to the points where it detected an odor particle
within its olfactory range.

estimate of the mean wind direction û(t ) computed by the
agent changes with time, as λ > 0. Thus, in the turbulent
environment where the local wind direction fluctuates, the
trajectory of the agent deviates from that depicted in Fig. 4(b)
as can be see in Fig. 1(c).

APPENDIX B: DESCRIPTION OF THE
FLOW ENVIRONMENT

In the following we detail the two models we considered
for the fluctuating component of the velocity field.

1. Stochastic flow

As a first simplified setting, we model velocity fluctuations
by considering a stochastic flow obtained by superimposing a
few Fourier modes, each of them having Gaussian amplitudes,
whose real and imaginary part evolve according to indepen-
dent Ornstein-Uhlenbeck (OU) processes with a specified
correlation time τ f . In this way the resulting flow is spatially
smooth and exponentially correlated in time.

Specifically, we consider a flow characterized by a single
scale L, obtained by superimposing eight Fourier modes:
k = (kx, ky) ∈ K = K1 ∪ K2 = {(ks, 0), (0, ks)} ∪ {(ks,±ks)},
where ks = 2π/L. (Notice that we listed only four modes,
as the other four are obtained from k → −k, i.e., complex
conjugation for maintaining the fields real valued.) The
fluctuating velocity is obtained as v(x, t ) = ∇⊥ψ (x, t ) with
∇⊥ = (−∂y, ∂x ), and the stream function ψ is computed
at each odor particle position by means of the following
formula:

ψ (x, t ) =
∑
k∈K

(A(k, t )eik·x + c.c.), (B1)

where c.c. stands for the complex conjugate. The amplitudes
of the Fourier modes A(k, t ) are Gaussian random complex
variables evolving with the following OU process:

∂t Aγ (k, t ) = − 1

τ f
Aγ (k, t )+

(
2σ 2(k)

τ f

) 1
2

ηγ (k, t ), (B2)

where γ labels the real and imaginary part, and ηγ (k, t )
are zero mean Gaussian variables with correlation
〈ηγ (k, t )ηγ ′k′, t ′)〉 = δγ ,γ ′δk,k′δ(t − t ′) and so that

〈Aγ (k, t )Aγ ′ (k′, t ′)〉 = σ 2(k)δγ ,γ ′δk,k′ exp(−|t − t ′|/τ f ).

The standard deviations σ (k) have been chosen to have an
approximately isotropic velocity field with full control on the
fluctuation intensity urms =〈(v2

x + v2
y )/2〉1/2. In particular, we

take σ (k)=curms/(
√

3ks), with c = 1 for k ∈ K1 and c=1/2
for k ∈ K2 so that 〈v2

x 〉=〈v2
y 〉 = u2

rms.
Similar flows have been used for studying, e.g., the statis-

tical dynamics of inertial particles [30,31]. In our simulations,
the constant mean wind is fixed to U =1 and the fluctuation
intensity to urms =0.42U . As for the fluctuating component,
it has one single characteristic scale set to L=10, and a
correlation time of the amplitudes of the Fourier modes equal
to τ f =5.

Tests about the search conducted by one single agent have
been done considering different values of the flow parameters,
also introducing more than one scale. Such tests have shown
the same qualitative behaviors reported here, provided that
urms remains smaller than U .

2. Turbulent flow

As a more realistic case we consider velocity fluctuations
obtained from a direct numerical simulation (DNS) of the two-
dimensional Navier-Stokes equations (NSEs) in the inverse
cascade regime [24–26]. The NSE written for the vorticity
field, ω = ∇ × u, reads

∂tω + v · ∇ω = ν�ω − αω + f , (B3)

where v = ∇⊥ψ (x, t ), where the stream function ψ is ob-
tained by inverting ω = −�ψ . The DNS of Eq. (B3) was
carried out using a standard 2/3 dealiased pseudospectral
solver over a biperiodic 2π × 2π box with second-order
Runge-Kutta time stepping. Energy and enstrophy are in-
jected at rates ε and ζ , respectively, by the forcing term
f which is a zero mean, Gaussian field with correlation
〈 f (x, t ) f (0, t ′)〉 = δ(t − t ′)F (r/� f ) acting at small scales,
� f 	 2π , with F (x) = F0�

2
f exp(−x2/2). With this forcing,

an inverse energy cascade sets in at scales r 
 � f . In order
to establish a statistically steady state, the Ekman friction
term, −αω, extracts energy at large scales, Lα ≈ ε1/2α−3/2,
while the viscous term removes enstrophy at small scales. As
a result, we have a velocity field which is nonsmooth in the
inertial range of scales, � f 	 r 	 Lα , and smooth below � f .
In Fig. 5 we show the mean energy spectrum E (k) displaying
the Kolmogorov k−5/3 scaling behavior, which means that
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FIG. 5. Energy spectrum obtained by direct numerical simula-
tions of Eq. (B3) with 2562 grid points. Hyperviscous dissipation
of order 8 has been used with viscosity ν8 = 1.3 × 10−29, Ekman
friction coefficient α = 0.02, and time step dt = 10−3. The large
scale of the flow is about half of the simulation box.

in the inertial range velocity differences over a scale r are
approximately Hölder continuous with exponent 1/3.

Owing to the necessity of storing the entire history of the
full velocity field (see below for details), we used a relatively
small resolution of 2562 grid points. Thus, to reduce as much
as possible the enstrophy cascade range, we used a hypervis-
cous term of order 8, which removes enstrophy very close
to the injection scale; this is a customary procedure when
interested in simulating the inverse cascade in low-resolution
DNS (see Refs. [24,25]).

In order to evolve the odor particles and perform statistics
over many episodes of the collective search, we stored the
whole evolution of the velocity field for about ten large-scale
timescales, TLα

≈ 5. The velocity field history is then cycled
in time, so the flow is effectively periodic in time with a
period of about 10TLα

. For each episode we place the source
in a different position within the simulation box and define
the mean wind direction to be either along the horizontal or
vertical direction (this is done to average over different flow
regions). We let the source emit the particles at exponentially
distributed times with average τ = 5, which corresponds to
the timescale associated to the forcing scale, and advect them
in the full plane (making use of the spatial periodicity),
with a velocity obtained by interpolating the velocity field
at the particle position and superimposing the mean wind
U . We wait until the statistics of the odor particles becomes
stationary in the region of interest and then let the searching
agents look for the source.

Then the agents are initially placed at distance Lx down-
wind from the source [see Fig. 1(a)] and wait for the first
detection to start the search. The episode ends when one of
the agents reaches the source as described in main text.

APPENDIX C: TABLE OF PARAMETERS

Here we summarize the main parameters defining the cast-
and-surge algorithm (Table I) and the flow (Table II) used

TABLE I. Values of the parameters of the cast-and-surge algo-
rithm. The dimensional quantities are written in terms of the radius
of detection of one agent Rd and its decision time �t , which are
detailed in Table II.

Description Symbol Numerical Value

Initial distance between source Lx 250Rd

and agents’ center of mass
Simulation box size factor b 2.5
Number of agents N 100
Emission rate of odors from the source J 1.0 particle/�t
Initial cluster size of agents Rb 25Rd

Range of agent-agent interaction Ra 5.0Rd

Speed of the agents v0 2.5Rd/�t
Strength of the noise η 0.1
Inverse of the memory time λ 1.0/�t
Mean wind intensity U 1.0

in the main text. It is worth pointing out that the stochastic
and turbulent flow have different characteristic length and
timescales. As a consequence, the decision time and the detec-
tion radius in the two flows are different (see Table II). Thus,
in order to study the olfactory search in comparable regimes,
we rescaled all the other quantities accordingly, maintaining
at the same time identical ratios among them.

APPENDIX D: DEPENDENCE ON VARIOUS PARAMETERS

In the main text we presented results on the multiagent
search with parameters fixed as in Tables I and II. In this
Appendix, we carry out a systematic study at varying the
model parameters, within the stochastic flow environment
detailed in Appendix B 1. We studied the performance of
the multiagent system by varying one parameter at a time,
in particular, we considered variations of the emission rate
of odor J , the number of agents N , range of agent-agent
interaction Ra, speed of the agents v0, and the flow fluctuation
intensity urms. The main findings are summarized in Sec. III,
while the next sections detail the results at changing the above
listed five parameters. In order to make the comparison as
clear as possible, in all subsequent figures data plotted in black
colors refer to the case shown in the main text.

1. Dependence on the emission rate of odor J

We carried out simulations with various emission rates
J , i.e., the rate at which odor particles are released by the

TABLE II. Values of the agent radius of detection Rd and its
decision time �t in each flow configuration and descriptions of the
flow characteristics.

Description Stochastic flow Turbulent flow

Decision time �t 1.0 0.2
Olfactory range of the agent Rd 0.2 0.04
Fluctuation intensity urms 0.42U 0.42U
Characteristic length 10.0 2.0
Characteristic time 5.0 5.0
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(a) (b)

(d)(c)

FIG. 6. Collective olfactory search with various emission rates
J , other parameters as in Tables I and II: (black circles) J = 1, (red
triangles) J = 0.2, (green stars) J = 0.1, (blue crosses symbols) J =
0.05. (a) Average search time T1 normalized to Ts = Lx/v0. The inset
shows the ratio of average time taken by agents with only private
information (T β=0

1 ) to the average time taken by agents with optimal
integration of private and public information (T β=β∗

1 ). (b) Fraction of
agents within a region of size Rb around the source at the arrival time
of the first agent reaching the target. (c) Average alignment against
the mean wind M. (d) Average order parameter ψ . For all data, the
error bars denote the upper and lower standard deviation with respect
to the mean value. Statistics is over 103 episodes.

source. As J is decreased, the odor signal detected by the
agents becomes more intermittent and, consequently, locating
the source more challenging.

In Fig. 6 we show the quantities of interest for different
values of J as a function of the trust parameter β. Figure 6(a)
shows that at decreasing J , the time to locate the source

(a)

(c) (d)

(b)

FIG. 7. Collective olfactory search for different values of the
number of agents N , other parameters as in Tables I and II: (red
triangles) N = 50, (black circles) N = 100, (green stars) N = 150,
(blue crosses symbols) N = 200. Panel description as in Fig. 6.

(a) (b)

(d)(c)

FIG. 8. Collective olfactory search for different values of the
agent-agent interaction range, other parameters as in Tables I and
II: (black circles) Ra = 1.0, (green stars) Ra = 0.85, (red triangles)
Ra = 0.70. Panel description as in Fig. 6.

by agents using only private information (β = 0) increases.
However, with optimal combination of public and private
information (i.e., optimal trust parameter β∗ ≈ 0.8−0.85) the
agents could locate the odor source more or less in the same
minimum amount of time for various emission rates J . This
means that agents optimally combining public and private
information can buffer a sparse odor signal better than agents
relying only on private information. The relative performance
characterized as the ratio of average time taken to locate the
source by agents with β = 0 and agents with optimal value of
β = β∗ is shown in the inset of Fig. 6(a). Figure 6(b) shows
that the fraction of agents within the distance Rb from the

(a)

(d)(c)

(b)

FIG. 9. Collective olfactory search with different agents’ speeds,
v0, other parameters as in Tables I and II: (black circles) v0 = 0.50,
(red triangles) v0 = 0.25, (green stars) v0 = 0.125. Panel description
as in Fig. 6.

012402-8



COLLECTIVE OLFACTORY SEARCH IN A TURBULENT … PHYSICAL REVIEW E 102, 012402 (2020)

(a) (b)

(d)(c)

FIG. 10. Collective olfactory search with various intensities of
fluctuations in the model flow, other parameters as in Tables I and
II: (black circles) urms = 0.4242U , (red triangles) urms = 0.6363U ,
(green stars) urms = 0.8484U . Panel description as in Fig. 6.

source at the moment the source is located has a maximum
for β = β∗. Note that the fraction of agents near the source
with the optimal trust parameter β∗ depends strongly on the
emission rate of odor. In Figs. 6(c)–6(d) we show the average
upwind alignment and polar order parameter, defined in the
main text. Both quantities peak for β = β∗, consistently with
the general results presented in the main text: the agents with
optimal value of trust parameter have the highest direction
consensus, and most of the time they move against the mean
wind M.

2. Dependence on the number of agents

We now vary the number of agents while keeping constant
their initial density by changing the initial cluster size Rb of

the agents appropriately. In Fig. 7 we show that results do not
depend in any important way on N except for the obvious
case when we measure the number of agents that are able
to coherently reach the target [Fig. 7(b)], which decreases by
decreasing the total number of agents.

3. Dependence on range of agent-agent interaction

In this section we consider the effect of the variation of
the agent-agent interaction range, Ra. Figure 8 summarizes
the results. Again, we observe that upon varying Ra most
of the results are robust, except for the number of agents
able to reach the target simultaneously, which decreases by
decreasing the interaction range as shown in panel (b).

4. Dependence on the speed of the agents

Here we study the impact of different agent speeds v0 on
performance. As shown in Fig. 9, also in this case we observe
robustness for the optimal trust parameter value, panel (a).
Clearly the absolute time to reach the target for the first agent
increases at decreasing v0 (this cannot be appreciated in panel
a due to normalization with the time taken for a straight path).
However, we observe an increase in the coherence of the
group [Fig. 9(b)] at decreasing the agent speed v0, which is
reasonably explained by the fact that by going slower they
can remain closer to each other. This suggests that if arriving
at the target in a large number more or less at the same time is
important, using slower agents may be a good strategy.

5. Dependence on flow with various intensities of fluctuation

In this last section we describe the dependency on the
most sensitive parameter, which is the intensity of the flow
fluctuations defined in terms of urms/U , where U is the
amplitude of the mean flow. As expected, by increasing the
environment noise everything becomes more complicated; the
number of agents at the target is sensibly smaller [Fig. 10(b)],
as well as the alignment and the order parameter [Figs. 10(c)
and 10(d)]. The value of the optimal trust β∗ is nevertheless
strongly robust, as shown in Fig. 10(a).
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