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Abstract
The high incidence of rectal cancer in both sexes makes it one of the most common 
tumors, with significant morbidity and mortality rates. To define the best 
treatment option and optimize patient outcome, several rectal cancer biological 
variables must be evaluated. Currently, medical imaging plays a crucial role in the 
characterization of this disease, and it often requires a multimodal approach. 
Magnetic resonance imaging is the first-choice imaging modality for local staging 
and restaging and can be used to detect high-risk prognostic factors. Computed 
tomography is widely adopted for the detection of distant metastases. However, 
conventional imaging has recognized limitations, and many rectal cancer charac-
teristics remain assessable only after surgery and histopathology evaluation. 
There is a growing interest in artificial intelligence applications in medicine, and 
imaging is by no means an exception. The introduction of radiomics, which allows 
the extraction of quantitative features that reflect tumor heterogeneity, allows the 
mining of data in medical images and paved the way for the identification of 
potential new imaging biomarkers. To manage such a huge amount of data, the 
use of machine learning algorithms has been proposed. Indeed, without prior 
explicit programming, they can be employed to build prediction models to 
support clinical decision making. In this review, current applications and future 
perspectives of artificial intelligence in medical imaging of rectal cancer are 
presented, with an imaging modality-based approach and a keen eye on unsolved 
issues. The results are promising, but the road ahead for translation in clinical 
practice is rather long.
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Core Tip: Rectal cancer is a common malignancy requiring a multidisciplinary 
approach to ensure the best clinical management. Diagnostic imaging has contributed 
to increased survival rates and provided crucial information on the course of rectal 
cancer patients. Artificial intelligence, and in particular radiomics and machine 
learning, are promising techniques that could further enhance the value of medical 
imaging, allowing the building of decision support tools based on quantitative data. We 
herein present and discuss the potential role of artificial intelligence in rectal cancer 
applied to different medical imaging modalities.
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INTRODUCTION
In 2020, more than 40,000 cases of rectal cancer (RC) were expected in the United States 
alone, with a higher incidence in men than in women and a median age at diagnosis of 
63 years[1]. However, over the past years there has been an improvement in RC 
management associated with a reduction of mortality and higher survival rates, 
mainly related to earlier diagnosis and more effective treatment[2]. While endoscopy 
represents the gold standard for RC diagnosis, there are several factors to be 
considered that influence prognosis and therapeutic strategy, including local tumor 
extent (T), lymph nodes status (N) and presence of distant metastases (M)[3]. Indeed, 
radical surgery with curative intent (i.e. total mesorectal excision, TME) is 
recommended as a first-line strategy in patients with locally confined disease after 
neoadjuvant chemoradiotherapy (nCRT) for locally advanced RC (LARC). Metastatic 
patients, on the other hand, usually undergo systemic therapies such as chemotherapy, 
targeted therapy, or immunotherapy[4,5]. Diagnostic imaging plays a crucial role for 
pretreatment disease staging, with a multimodal approach commonly being necessary
[6]. Magnetic resonance imaging (MRI) is regarded as the most valuable imaging 
modality for primary loco-regional staging of RC and restaging after nCRT[7,8]. 
Computed tomography (CT) scans are routinely performed to detect distant 
metastases, with the most common metastatic sites being the liver and lungs[2]. 
Currently, hybrid imaging by positron emission tomography/CT (PET/CT) could 
provide useful prognostic data for RC, even if its role still remains to be defined[6,9]. 
Likewise, the potential of simultaneously acquired PET and MRI still has to be 
explored[10]. However, conventional image assessment has recognized limitations 
that are driving the research towards the identification and validation of novel 
strategies to further increase the value of diagnostic imaging[11-13]. In this setting, a 
post processing quantitative technique known as radiomics appears particularly 
promising, with encouraging evidence collected in recent years[14,15]. Radiomics has 
been frequently and successfully coupled with artificial intelligence (AI), and in 
particular machine learning (ML) approaches in the field of oncologic imaging[16-19]. 
This review aims to introduce readers to the concepts of radiomics and ML and to 
present the state-of-the-art of RC radiomics-ML applications, with an imaging 
modality-based approach, highlighting their strengths and drawbacks.

RADIOMICS AND ML: WHAT, WHY, AND HOW
Trying to quantify what is visually assessed in medical imaging is a rather difficult 
task, and radiologists have traditionally provided qualitative information and semi-
quantitative data in their reports[20]. However, this leads to a large amount of unused 
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data remaining hidden in medical images[21]. Furthermore, semantic descriptors of 
cancer imaging phenotype (e.g., “central necrosis”, “irregular margin”, and “diffusely 
heterogeneous”) are prone to poor intra- and interobserver reliability, experience 
dependent, and might not significantly reflect actual tumor biology[22]. Indeed, 
tumors are not considered to be homogeneous entities but instead composed of 
various cell clones with biologically relevant differences[23]. Radiomics allows the 
conversion of images into mineable data with the high-throughput extraction of 
quantitative parameters (i.e. radiomics features) that capture the heterogeneities and 
provide important information on cancer phenotype[24]. Radiomics is a multistep 
process beginning with image acquisition and followed by image segmentation, which 
is the two- or three-dimensional delineation of the region of interest (ROI), usually 
represented by the primary tumor. Image segmentation can be manual, performed by 
a human operator; semiautomatic, performed by AI and manually adjusted; or 
automatic, exclusively performed by AI[25] . Subsequently, hundreds of radiomics 
features can be extracted from the ROI using specifically designed formulae conveying 
different information, including shape, first-order (based on the distribution of pixel 
intensities), second and higher-order features (accounting for pixel intensities spatial 
distribution)[26]. Correlating radiomics features to the outcomes of interest is the 
endpoint of radiomics, and many believe it could open the gateway to precision 
medicine[27,28]. However, such a huge amount of data can be more easily handled by 
AI rather than traditional statistical methods[21]. Indeed, ML is a branch of AI focused 
on algorithms that can be trained for a task they were not specifically programmed to 
perform[29]. The algorithms are essentially used for classification problems, with the 
main oncologic imaging application being decision support in various settings that 
include detection, characterization, and monitoring[30-32]. To properly train an ML 
algorithm, “the curse of dimensionality,” which is a set of issues arising when working 
with a number of features much higher than the patient population must be avoided. 
Feature reduction can be achieved in several ways that may also be combined to 
achieve better results[33,34]. Indeed, an excessive number of features increases the 
chances of finding nongeneralizable correlations (i.e. overfitting). On the other hand, 
complex relationships might need more features to build a proper prediction model
[35]. Finally, trained ML classifiers need to be tested to verify generalizability on 
external data not used in the training process and possibly provided by different 
institutions[36]. A kind of ML algorithm called deep learning (DL), based on neural 
networks (NN), does not necessarily require image segmentation and learns 
autonomously the best features for performing data classification[37]. A brief 
description of the most commonly applied ML algorithms in RC radiomics can be 
found in Table 1.

RADIOMICS AND ML APPLICATIONS IN RC: MRI
Thanks to its superb contrast resolution, MRI plays a pivotal role in the diagnostic 
pathway of RC patients, particularly for primary local staging and restaging after 
treatment[38]. Indeed, in addition to T and N staging, MRI provides valuable 
information such as the circumferential resection margin, defined as the minimum 
distance between the tumor and the mesorectal fascia, as well as extramural venous 
invasion (EMVI), an independent negative prognostic factor for RC[39,40]. In the 
following paragraphs, radiomics and ML approaches proposed to further increase the 
value of MRI in the assessment of RC are described.

Staging
Currently, MRI represents the first-choice imaging modality for determining RC local 
extent. However, the assessment of T stage is a challenging task, and staging failures 
often occur in the differentiation between T2 in which the tumor involves the 
muscularis propria and T3, in which the tumor involves perirectal tissue beyond the 
muscularis propria[41]. Decision support tools based on MRI radiomics and ML might 
be able to aid radiologists in this endeavor[42-44]. Using multilayer perceptron, a DL 
model powered by T2-weighted (T2w) radiomics features from pretreatment MRI, Ma 
et al[42] were able to discriminate between patients with T1 or T2 and those with T3 or 
T4 RC with 76% sensitivity and 74% specificity. Similar results were found using 
diffusion-weighted imaging (DWI) to extract radiomics features in a recent invest-
igation on 115 patients. A logistic regression (LR) algorithm reached a sensitivity of 
79% and a specificity of 74% for the same classification problem[43]. Finally, an LR 
model built with T2w images, both with and without fa-suppression, radiomics 
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Table 1 Overview of the most widely adopted machine learning algorithms in rectal cancer imaging

Algorithm name Description

Random forest An ensemble method that combines multiple decision trees (a class of predictive learning models used in supervised ML) to 
obtain more accurate results for classification and regression tasks

Support vector machine A linear approach used mainly for classification problems with the aim to find the best hyper plane which most accurately 
separate input data into two classes

Logistic regression A classifier used to obtain the best fitting model for the relationship between multiple predictor variables and a dichotomous 
outcome

LASSO A regularized regression method that performs both variable selection and regularization in order to optimally fit the resulting 
generalized statistical model

Naive Bayes A classifier relying on the Bayes Theorem to model the probability of an outcome based on the strong (naive) independence 
assumptions between the features data

Quadratic discriminant 
analysis

A subtype of Dimensionality Reduction Algorithms that turn high-dimensional data into to low-dimensional data retaining the 
most significant features of original data for the prediction of the class label

ANN A subgroup of ML composed of neuronal-like multi-layered networks allowing to automatically extract features without prior 
labelling and perform complex operations

CNN As subset of ANN containing multiple computational hidden layers that filter and compute high-dimensional data to enhance 
the learning of high-level tasks (deep learning)

ANN: Artificial neural network; CNN: Convolutional neural network; LASSO: Least absolute shrinkage and selection operator; ML: Machine learning.

features achieved a sensitivity of 88% and specificity of 61% for classifying T1-2 vs T3-4 
in a group of 174 patients[44].

MRI is also considered the imaging gold standard for the assessment of lymph node 
involvement in RC, but it suffers from a relatively low specificity, with potential 
negative implications on patient outcome[45]. Indeed, the management of patients 
with different nodal status is a highly debated and complex topic[46]. Radiomics has 
been proposed as a feasible solution to enhance the accuracy of MRI for N staging in 
RC patients[47]. In a recent retrospective single-center study in 152 patients, T2w 
radiomics were coupled to a random forest (RF) algorithm to create an ML classifier 
that was able to discriminate N0 from N1-2 patients with a sensitivity of 79% and a 
specificity of 72%[42]. Once again, similar results (81% sensitivity and 68% specificity) 
were found with LR and a different ML model derived from DWI radiomics features
[43]. In both studies, pretreatment MRI scans were used, and the primary tumor was 
segmented. With a different approach, Zhu et al[48] extracted collective radiomics 
features from all noticeable lymph nodes on T2w images acquired before and after 
nCRT in patients with LARC; the LR model was trained to predict pathological node 
status after nCRT with a group of 143 patients, and had a sensitivity of 95% and a 
specificity of 60% in the validation cohort of 72 patients. The sensitivity was slightly 
lower and the specificity slightly higher than those reached by radiologist in the same 
patient cohorts (100% and 43%). Notwithstanding the specificity insufficient for 
clinical needs, such models might be useful tools for radiologists in the assessment of 
N stage in RC.

Finally, the identification of distant metastases in RC patients usually relies on 
imaging modalities other than MRI. Nevertheless, it should be mentioned that 
radiomics of the primary tumor was able to provide valuable information for the 
prediction of synchronous (already present at the time of diagnosis) or metachronous 
(developed after treatment) liver metastases[49-51] as well as synchronous metastases 
to other sites[52]. With specific regard to metachronous liver metastases, radiomics of 
T2w and post-contrast T1-weighted dynamic contrast enhanced (DCE) images were 
combined to build two ML predictive models, a support vector machine (SVM) and 
LR, with cross-validation in 108 patients[50]. The LR algorithm had the best 
performance, but not significantly better than SVM, with 83% sensitivity and 76% 
specificity, confirming the potential of radiomics and ML for the identification of RC 
patients who will develop liver metastases after treatment.

Predicting response to nCRT in patients with LARC
While TME should follow nCRT in patients with LARC, the role of surgery in patients 
with a complete response to nCRT is currently debated, and a “watch and wait” 
strategy has been proposed[53]. Indeed, patients who achieve a pathological complete 
response (pCR) after nCRT have better long-term outcomes compared with non-pCR 
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patients, and could therefore be managed differently[54]. Unfortunately, pCR cannot 
be accurately predicted before surgery by conventional evaluation of MR images[55]. 
Recently, several radiomics features extracted from T2w, DWI, and DCE sequences 
have been investigated as possible imaging biomarkers for pCR prediction, with 
promising results[56-58]. The main studies that aimed to build classification models 
using ML algorithms for preoperative prediction of pCR after nCRT are shown in 
Table 2. Overall, the performance of the different models is encouraging. While a trend 
can be observed, with lower values found in those studies that validated the model in 
an external dataset and thus with the better chances of high generalizability, it is 
difficult to draw a final conclusion from the available evidence[59,60]. Most studies 
focused on MRI scans acquired before nCRT had started, extracting radiomics features 
from highly available sequences (i.e. T2w). The ideal approach exploits an advantage 
of radiomics that allows developing predictive models using medical images as they 
are acquired in the clinical routine[61]. On the other hand, each of the retrospective 
studies presented its own model, with a certain degree of heterogeneity that does not 
facilitate translation into clinical practice. An overview of the main studies proposing 
MRI radiomics and ML algorithms for the prediction of nCRT outcomes other than 
pCR is reported in Table 3. In those studies, the ML models were generally designed to 
classify patients into two groups (i.e. good and poor responders to nCRT), with one 
study prospectively designed but lacking external validation[62].

Additionally, recent studies explored the feasibility of radiomics nomograms, based 
on the combination of a radiomics signature and either a pretreatment MRI T stage[63] 
or a post treatment tumor length[64], to predict pCR to nCRT. In particular, Liu et al
[64] built and validated a radiomics signature in LARC patients using T2w in 152 and 
DWI images in 70 the T2w and DWI images were acquired both before and after 
nCRT. An SVM ML algorithm incorporating signatures and post treatment tumor 
length in a nomogram was able to reach a final diagnostic accuracy of 94% in the 
prediction of pCR. Finally, Wang et al[65] developed a radiomics signature to classify 
good responders and poor responders to nCRT with an LR ML algorithm and 
radiomics features from T2w, DWI, and DCE sequences. When combined in a 
nomogram with MRI T stage and circumferential resection margin as well as apparent 
diffusion coefficient values, they were able to predict a good response with a 
sensitivity of 71% and a specificity of 88%.

Genotyping
Radiogenomics aims to correlate imaging features of a disease with its genotypic 
characteristics and represents the next step in a radiology-pathology correlation[66]. 
Radiomics and radiogenomics are not equivalent, and both qualitative and 
quantitative imaging features can be used for radiogenomic analysis, with quantitative 
data having promising associations with genetic mutations in RC[67]. Among the 
negative genetic prognostic factors in RC, KRAS mutations are associated with poor 
response to epidermal growth factor receptor-targeted antibodies[68] and an increased 
risk of developing distant metastases[69]. In a recent multicenter study by Cui et al
[70], three classifiers (decision tree, SVM and LR) powered by T2w-based radiomics 
features were trained to predict KRAS mutations in data from 213 patients and 
validated in both an internal cohort of 91 patients and external cohort of 86. The SVM 
obtained the greatest area under the receiver operating characteristic curve (AUC) in 
the training dataset (0.72), which was substantially confirmed in the internal (AUC = 
0.68) as well as external (AUC = 0.71) validation cohorts. The finding supports the 
potential generalizability of such models. Interestingly, in the same study, no associ-
ations were found between KRAS status and baseline clinical and histopathological 
data. More optimistic results were recently published using a decision tree classifier 
(AUC = 0.88) by a different study group[71], but the sample size was substantially 
smaller (60 patients) and the model was not externally validated. Finally, T2w-based 
radiomics have been also paired with DL, with an artificial NN discriminating 
between patients with or without KRAS mutations and a classification error of 13%
[72].

Assessing high-risk histopathological variables
Several histopathological characteristics, EMVI, differentiation degree, and perineural 
invasion (PNI) for example, are associated with poor clinical outcome and need to be 
considered in the risk stratification of patients with RC. It is fair to assume that a 
reliable pretreatment evaluation of these high-risk variables would ease the transition 
toward precision medicine[5]. ML classifiers applied to MRI radiomics features have 
been recently explored in this setting[73-75]. As previously highlighted, MRI can be 
used to identify EMVI; however, its sensitivity is not as high as desirable[76]. To 
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Table 2 Key characteristics of the main studies using radiomics and machine learning algorithms on magnetic resonance images to 
predict pathologic complete response after neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer

Ref.
Study 
design (n of 
sites)

Number 
of 
patients

Definition 
of pCR

MRI field 
strength (
n of 
scanners)

MRI 
timing

MRI 
sequence

ML 
algorithm

Data 
powering 
algorithm

Validation Performance 
(AUC)

Antunes et al
[59], 2020

Retrospective 
(3)

104 TRG 0 
according to 
AJCC

1.5 and 3 T 
(> 10)

Pre-
nCRT

T2w RF Radiomics 
features

External 
validation

0.71

Ferrari et al
[106], 2019 

Retrospective 
(1)

55 TRG 4 
according to 
Dowrak-
Rodel

3 T (1) Pre-, 
mid- 
and 
post-
nCRT

T2w RF Radiomics 
features

Internal 
validation 
(train/test 
split)

0.86

Horvat et al
[107], 2018

Retrospective 
(11)

114 ypT0N0 1,5 and 3 T 
(4)

Post-
nCRT

T2w RF Radiomics 
features

Internal 
validation 
(cross-
validation)

0.93

Nie et al
[108], 2016

Retrospective 
(1)

48 ypT0N0 3 T (1) Pre-
nCRT

T2w, DWI, 
pre and 
post-
contrast 
T1w

ANN Radiomics 
features

Internal 
validation 
(cross-
validation)

0.84

Petkovska et 
al[109], 2020 

Retrospective 
(11)

1022 ypT0N0 1,5 and 3 T 
(4)

Pre-
nCRT

T2w SVM Radiomics 
and 
semantic 
features

Internal 
validation 
(train/test 
split)

0.75

Shaish et al
[110], 2020 

Retrospective 
(2)

132 ypT0N0 1,5 and 3 T 
(multiple3)

Pre-
nCRT

T2w LR Radiomics 
features

Internal 
validation 
(train/test 
split)

0.80

Shi et al
[111], 2019 

Retrospective 
(1)

51 TRG 0 
according to 
Ryan

3 T (1) Pre- 
and 
mid-
Ncrt4

T2w, DWI, 
pre- and 
post-
contrast 
T1w

CNN Radiomics 
features

Internal 
validation 
(cross-
validation)

0.83

van 
Griethuysen 
et al[60], 2019

Retrospective 
(2)

133 ypT0/TRG1 
according to 
Mandard

1,5 T (3) Pre-
nCRT

T2w and 
DWI

LR Radiomics 
features

External 
validation

0.77

Yi et al[112], 
2019

Retrospective 
(1)

134 ypT0N0 1,5 and 3 T 
(2)

Pre-
nCRT

T2w SVM Radiomics, 
clinical and 
semantic 
features

Internal 
validation 
(train/test 
split)

0.88

1< 10% of scans from other institutions.
2All previously included in Horvat et al[107], 2018.
3Inclusion of patients with MRI performed elsewhere but treated at study sites.
4Both MRI scans were not available for all patients. In all studies, three-dimensional manual segmentation of the primary tumor was performed to extract 
radiomic features, except for Shaish et al[110], mesorectal compartment) and van Griethuysen et al[60] (semiautomatic segmentation). ANN: Artificial 
neural network; CNN: Convolutional neural network; AUC: Area under the receiver operating characteristic curve; DWI: Diffusion-weighted imaging; LR: 
Logistic regression; ML: Machine learning; MRI: Magnetic resonance imaging; nCRT: Neoadjuvant chemoradiotherapy; RF: Random forest; SVM: Support 
vector machine; T1w: T1-weighted; T2w: T2-weighted; TRG: Tumor regression grade.

overcome current MRI limitations, Yu et al[73] built a nomogram based on both a DCE 
MRI radiomics signature and clinical data, finding that it outperformed conventional 
quantitative perfusion parameters such as Ktrans in the prediction of EMVI, with a 
sensitivity of 88.9% and a specificity of 78.3% in the validation cohort.

Well-differentiated tumors are associated with better outcomes of RC patients[77]. 
In a large cohort of 345 patients retrospectively enrolled at a single institution, Meng et 
al[74] explored the performance of three ML classifiers, RF, SVM, and least absolute 
shrinkage, and selection operator (LASSO) to identify well-differentiated RC. 
Radiomics features were extracted from multiple MRI sequences, including T2w, DWI, 
and DCE. The LASSO algorithm had the best performance, with an AUC of 0.72 in the 
validation dataset. Finally, PNI, the tumor spreading along the nerve sheath, is a 
histopathological factor known to be associated with poor prognosis[78]. Using T2w 
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Table 3 Key characteristics of the main studies using radiomics and machine learning algorithms on magnetic resonance images to 
predict outcome other than pathologic complete response after neoadjuvant chemoradiotherapy in patients with locally advanced 
rectal cancer

Ref.
Study 
design (n of 
sites)

Number 
of 
patients

Prediction 
task

CT phase (n 
of CT 
scanner)

Segmentation 
method

ML 
algorithm

Data 
powering 
algorithm

Validation Performance 

Bibault et 
al[85], 
2018

Retrospective 
(3)

99 pCR after 
nCRT

Unenhanced 
(3)

Manual – 3D DNN Radiomics 
and clinical 
features

Internal 
validation (cross-
validation)

AUC: 0.72

Hamerla 
et al[86], 
2019

Retrospective 
(1)

169 pCR after 
nCRT

Unenhanced 
(1)

Manual – 3D RF Radiomics 
features

Internal 
validation (cross-
validation)

Accuracy: 0.87

Yuan et al
[87], 2020

Retrospective 
(1)

91 pCR after 
nCRT

Unenhanced 
(1)

Manual – 3D RF Radiomics 
features

Internal 
validation 
(train/validation 
split)

Accuracy: 0.84

Wu et al
[90], 2019 

Retrospective 
(1)

102 MSI status Venous phase 
- DECT (2)

Manual - 3 2D 
ROIs for lesion

LR Radiomics 
features

Internal 
validation 
(train/validation 
/test split)

AUC: 0.87

Fan et al
[91], 2019

Retrospective 
(1)

100 MSI status Portal venous 
phase (2) 

Semiautomatic – 
3D

NB Radiomics 
features

Internal 
validation (cross-
validation)

AUC: 0.75

Wu et al
[92], 2020

Retrospective 
(1)

173 KRAS 
mutation

Portal venous 
phase (3)

Manual + DL – 
single 2D ROI

LR Radiomics 
features

Internal 
validation 
(train/test split)

C-index: 0.83

Wang et 
al[94], 
2019

Retrospective 
(1)

411 Prediction 
of survival

Unenhanced 
(1)

Manual – 3D 10-F CV Radiomics 
and clinical 
features

Internal 
validation (cross-
validation)

C-index: 0.73

In all studies, three-dimensional manual segmentation of the primary tumor was performed to extract radiomic features, with the exceptions of Alvarez-
Jimenez et al[113] (rectal wall), van Griethuysen et al[60] (semiautomatic segmentation) and Yang et al[115] (two-dimensional manual segmentation). ANN: 
Artificial neural network; AUC: Area under the receiver operating characteristic curve; CNN: Convolutional neural network; DWI: Diffusion-weighted 
imaging; EMLM: Ensemble machine learning model; GR: Good responders; LASSO: Least absolute shrinkage and selection operator; RF: Random forest; 
LR: Logistic regression; ML: Machine learning; MRI: Magnetic resonance imaging; QDA: Quadratic discriminant analysis; SVM: Support vector machine; 
T1w: T1-weighted; T2w: T2-weighted; TRG: Tumor regression grade.
10F-CV: 10-fold cross-validation; CT: Computed tomography; DECT: Dual-energy computed tomography; DNN: Deep neural network; LR: Logistic 
regression; ML: Machine learning; MSI: Microsatellite instability; NB: Naive Bayes; nCRT: Neoadjuvant chemoradiotherapy; pCR: Pathologic complete 
response; RF: Random forest.

radiomics and AI, Chen et al[79] developed a nomogram to predict the presence of PNI 
in RC patients (AUC = 0.85). A decision curve analysis confirmed the clinical utility of 
their nomogram, but the sample size of only seven PNI-positive patients in the test 
dataset requires validation of this preliminary findings in larger datasets.

RADIOMICS AND ML APPLICATIONS IN RC: CT
In the management of RC, CT is commonly used as the initial staging modality, 
allowing accurate nodal and metastases staging and target volume delineation before 
radiation therapy in patients with LARC[6]. Conversely, the role of CT in RC 
pretreatment local staging as well as restaging after nCRT is limited because of its 
intrinsically lower contrast resolution compared with MRI[80,81]. Nevertheless, much 
effort has been directed toward the use of CT data beyond clinical indications, with the 
aim of developing CT-based radiomics signatures reflecting tumor heterogeneity[82]. 
CT images contain robust volumetric data that are highly reproducible across patients 
and are an ideal source of data to feed AI systems[83,84]. In that perspective, ML 
models that can find correlations of RC CT radiomics features that can be used to 
predict outcomes such as complete response to nCRT in LARC patients, genetic 
profiles, overall survival, and segmentation (Table 4).
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Table 4 Key characteristics of the main studies using radiomics and machine learning algorithms on computed tomography for v 
prediction tasks

Ref.
Study 
design (n of 
sites)

Number 
of 
patients

Prediction 
task

CT phase (n 
of CT 
scanner)

Segmentation 
method

ML 
algorithm

Data 
powering 
algorithm

Validation Performance

Bibault et 
al[85], 
2018

Retrospective 
(3)

99 pCR after 
nCRT

Unenhanced 
(3)

Manual – 3D DNN Radiomics 
and clinical 
features

Internal validation 
(cross-validation)

AUC: 0.72

Hamerla 
et al[86], 
2019

Retrospective 
(1)

169 pCR after 
nCRT

Unenhanced 
(1)

Manual – 3D RF Radiomics 
features

Internal validation 
(cross-validation)

Accuracy: 0.87

Yuan et al
[87], 2020

Retrospective 
(1)

91 pCR after 
nCRT

Unenhanced 
(1)

Manual – 3D RF Radiomics 
features

Internal validation 
(train/validation 
split)

Accuracy: 0.84

Wu et al
[90], 2019

Retrospective 
(1)

102 MSI status Venous phase 
- DECT (2)

Manual - 3 2D 
ROIs for lesion

LR Radiomics 
features

Internal validation 
(train/validation 
/test split)

AUC: 0.87

Fan et al
[91], 2019

Retrospective 
(1)

100 MSI status Portal venous 
phase (2)

Semiautomatic – 
3D

NB Radiomics 
features

Internal validation 
(cross-validation)

AUC: 0.75

Wu et al
[92], 2020

Retrospective 
(1)

173 KRAS 
mutation

Portal venous 
phase (3)

Manual + DL – 
single 2D ROI

LR Radiomics 
features

Internal validation 
(train/test split)

C-index: 0.83

Wang et 
al[94], 
2019

Retrospective 
(1)

411 Prediction 
of survival

Unenhanced 
(1)

Manual – 3D 10-F CV Radiomics 
and clinical 
features

Internal validation 
(cross-validation)

C-index: 0.73

10F-CV: 10-fold cross-validation; CT: Computed tomography; DECT: Dual-energy computed tomography; DNN: Deep neural network; LR: Logistic 
regression; ML: Machine learning; MSI: Microsatellite instability; NB: Naive Bayes; nCRT: Neoadjuvant chemoradiotherapy; pCR: Pathologic complete 
response; RF: Random forest.

Predicting response to nCRT in patients with LARC
Bibault et al[85] explored the reliability of deep NN (DNN) integrating clinical features 
(T stage) and robust radiomics CT-based features in assessing the pCR to nCRT in a 
multicenter cohort of patients with LARC. The DNN model predicted pCR with an 
accuracy of 80% compared with 69.5% achieved with an LR model using only the 
TNM stage and an SVM model with the same parameters as the DNN that had an 
accuracy of 71.58%. Similarly, Hamerla et al[86] reported an accuracy of 87% for 
prediction of pCR after nCRT using an ML algorithm and CT radiomics data, but they 
noted that the model was not generalizable because of bias introduced by an 
imbalanced distribution of the minority class (pCR: 13% and non-pCR = 87%) in the 
study population. In another study, Yuan et al[87] tested and compared different ML 
algorithms using robust CT-based radiomics features significantly correlated with 
pCR. The best performing model was an RF with an accuracy of 83.9% in the test 
population. Interestingly, these studies used radiomics features extracted from 
unenhanced CT scans used for radiotherapy planning. The process highlights the 
potential value of nonroutine CT data for pretreatment risk stratification.

Genotyping
Recent studies have shown encouraging results with regard to the high predictive 
ability of AI-radiomics CT-based models of the biologic behavior of RC, in terms of 
microsatellite instability (MSI) status and KRAS gene mutations, which are considered 
significant molecular markers of improved prognosis and adjuvant therapy[11,88,89]. 
Wu et al[90] developed a pretreatment predictive model of MSI status in RC using ML 
radiomics features extracted from venous phase images of iodine-based material 
decomposition with dual-energy CT (DECT). Performance of the model was tested on 
images acquired with a different DECT scanner, and achieving a diagnostic accuracy 
of 79%. The result suggests a possible link between iodine DECT images and 
augmented tumor vascularization. In a preliminary retrospective study, Fan et al[91] 
found that an ML model combining clinical and CT radiomics features had a better 
classification performance for MSI status (AUC = 0.75) in stage II RC patients than 
models using only clinical features (AUC = 0.60) or only radiomics features (AUC = 
0.70).
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Another research group[92] investigated the performance of a model that used 
handcrafted radiomics signatures combined with those in a DL algorithm. The 
combined model was able to the discriminate patients with mutant or the wild-type 
KRAS with a sensitivity of 80% and a specificity of 72% in the validation cohort, thus 
showing a good predictive performance.

Prognosis
An active field of AI oncology-related research is the discovery of new clinical and 
imaging tumor biomarkers that are correlated with prognosis, with the goal of 
developing accurate predictive models of treatment response based on personalized 
tumor profiles[93]. Wang et al[94] explored the use of CT-based ML models powered 
by clinical and radiomics features to assess the prognostic outcomes of LARC patients 
treated with nCRT. Radiomics features were extracted from nonenhanced CT images 
used for planning the treatment of 411 LARC patients. Images analyzed by 
unsupervised ML did not find a relationship between the clinical and radiomics 
features. A supervised ML model with embedded radiomics and clinical parameters 
had an improved overall survival prediction in the testing set and a c-index of 0.73 
which was significantly better (P = 0.044) than the performance of the model using 
only clinical factors (c-index = 0.67).

RADIOMICS AND ML APPLICATIONS IN RC: MULTIMODAL AND HYBRID 
IMAGING
The advantage of multimodality and hybrid imaging in oncology is mainly related to 
the combined evaluation of anatomical and functional tumor characteristics. 
Radiomics and ML could further increase the potential value of the techniques[95]. 
However, the number of studies evaluating RC is still limited, and the role of 
multimodal radiomics and ML models has mainly been investigated for the prediction 
of response to nCRT in patients with LARC[96,97]. In a single-center study in 169 
patients, Shen et al[96] developed an RF model based on baseline PET/CT images that 
accurately predicted pCR to nCRT in LARC patients, with a sensitivity of 81.8% and a 
specificity of 97.3%. Another study confirmed the feasibility of combining 
pretreatment MRI data from T2w sequences and PET radiomics features to build a 
prediction model able to identify responders or nonresponders. ML algorithms were 
used for semiautomatic segmentation of the primary tumor in both sets of images[97]. 
The final LR model had a sensitivity of 86% and specificity of 83%. Beyond nuclear 
medicine, Li et al[98] described a multimodal radiomics-based nomogram with 
features extracted from baseline MRI and CT images, which better performed better 
than individual imaging techniques in the prediction of response to nCRT. Although 
multimodal radiomics for RC is in its infancy, the encouraging preliminary reports 
support the idea that it could allow an even more comprehensive assessment of tumor 
characteristics compared with individual images.

CURRENT LIMITATIONS AND FUTURE PERSPECTIVES
The available evidence confirms that AI is a feasible tool to broaden the spectrum of 
information that medical imaging can provide for the management of RC patients. 
Nevertheless, there is a risk that negative results are not published because of 
publication bias[99]. Furthermore, what could theoretically be done is not ready for 
clinical practice at present. Indeed, there are many exploratory studies and very few 
confirmatory ones to support the use of one radiomics-ML model over another. A 
possible solution to the problems of verifying generalizability and comparing the 
performance of different models proposed for the same prediction task might be the 
use of open-source data[100]. Indeed, a publicly available large dataset from multiple 
institutions could serve as a common benchmark to verify whether the available 
models can reproduce previous results while we wait for well-designed prospective 
clinical trials that will overcome the limitations of retrospective studies. Currently, 
there is a great interest in public imaging datasets, but their quality might be hetero-
geneous[101]. It should also be considered that significant variations in radiomics and 
ML pipelines make it difficult to compare studies. Adherence to shared guidelines for 
AI study design is this highly advisable[102]. Another issue of concern that could 
prevent widespread adoption of radiomics-ML prediction models is manual 
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segmentation. It is often necessary, but is a time-consuming procedure that requires 
automatization. However, AI could also solve that problem. Recent studies have 
described the use of DL for fully automated segmentation of RC on both CT and MR 
images, with encouraging accuracy and computational time results[103,104]. Several of 
the radiomics-ML models described in this review had promising accuracy, but it 
should be noted that the potential clinical utility of such models depends on multiple 
factors, such as their added value in comparison with current gold standards, the cost-
effectiveness of their implementation, and their actual impact on clinical practice. 
Decision curve analysis might be helpful in the analysis[34]. Finally, a recent study 
found that the overall quality of radiomics studies in oncology is below the desired 
standards, suggesting that most of the problems identified in the field of RC radiomics 
are shared among the studies involving different types of cancer[105].

CONCLUSION
Medical images contain mineable data with great potential. AI appears to be a 
convenient tool to harness their value for RC management. AI in imaging can support 
physicians in the transition toward precision medicine for RC patients, but there is still 
a long road ahead and it is time to start moving to the next step. Robust prospective 
multicenter studies and clinical trials are needed to confirm the clinical implications of 
this new methodology.
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