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Abstract
The question of whether it is possible to set relevant, robust and reliable benchmarks for viscous

free-surface flows with complex free-surface dynamics is investigated in this work. The proposed
method for finding an answer to this question consists of selecting three conditions leading to
increasing flow complexity and to simulate them using three well established solvers based on
diverse numerical techniques. In the three conditions, a submerged horizontal cylinder in an
uniform current perpendicular to its axis is considered, the Reynolds number is fixed to 180, and
the analysis is limited to a 2D framework. While the unbounded solution for such flow is well
established, adding a free surface and setting the submergence ratio and the Froude number in
certain ranges, challenging free-surface dynamics takes place. In the specific conditions selected,
phenomena of increasing complexity are identified and studied with: (i) δ+-SPH, an enhanced
version of the Smoothed Particle Hydrodynamic method, (ii) a single-phase Finite Volume scheme
with a Level Set function for tracking the free-surface (LS-FVM), (iii) a two-phase Finite Volume
with a Volume-of-Fluid algorithm to treat the gas/liquid interface (VOF-FVM). It is shown that
the test-cases, even being geometrically simple, present intricate complexities, such as alternate
metastable states in the wake, linked to the strong non-linearities induced by the interactions
between the wake’s vorticity and the free surface. It is also shown that the solvers considered are
able to depict a consistent representation of these complex flows, useful as benchmarks for other
solvers and methods. An additional research question, investigating whether the improvements of
the δ+ variant of the SPH method are necessary for simulating specific aspects of the flows treated
in the paper, is also posed and discussed.
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1. Introduction

Open channel flow problems are of a great relevance in hydraulic engineering.
The main difficulties arising in the numerical simulation of such kind of flows
lay on the non trivial aspect of the presence of a free surface, which must be
correctly modelled, whereas further issues are related to a suitable choice of
inlet and outlet boundary conditions. In order to achieve satisfying solutions
in terms time and space accuracy, numerous approaches have been developed
in the recent years spanning from mesh-based Finite Volume Methods (FVM),
to Smooth Particle Hydrodynamics (SPH) and Diffused Vortex Hydrodynamics
(DVH) meshless approaches.

As an example, a weakly-compressible SPH model was used for studying
different hydraulic jump conditions in Federico et al. (2012). Conversely, in
(Marrone et al., 2013) the unbounded viscous flow around a circular cylinder
at low Reynolds number (10-1000) was studied in order to validate the δ-SPH
scheme, and the methodology chosen to enforce the no-slip boundary conditions.
Indeed, the flow past blunt bodies is one of the most used benchmarks for
validating Navier-Stokes solvers.

In those works, a weakly-compressible flow model was used, and the
inflow/outflow conditions were implemented in a way that prevented permanent
reflections of acoustic signals inside the fluid domain. From (Marrone et al.,
2013), it is possible also to see that there is a non-negligible scattering between
different results available in literature for the unbounded viscous flow around a
cylinder at the referred Reynolds numbers. This is mainly due to the wide span in
time of the articles where the different reference solutions can be found.

To overcome this issue, in this work, a convergent solution obtained with the
DVH vortex method, for which an in-house solver is available, is considered.
The DVH technique has been extensively validated, providing reference solutions
for 2D-flows past bodies of different shapes (see e.g. (Rossi et al., 2015, 2016;
Durante et al., 2017)).

Benchmark test-cases for viscous flows in the presence of a free surface are
rare in the literature. An straightforward way to get these can be by adding a free
surface to the unbounded flow past a circular cylinder. The landscape of flows that
turns up is extremely rich, the reason being that to the already complex cylinder
wake instabilities, a non-linear unsteady free-surface flow is added.

A referential work for this problem is the one carried out by Reichl et al. (2005)
using a commercial code (ANSYS Fluent) based on a Finite Volume Method
combined with a Volume-of-Fluid algorithm to resolve the air-water interface
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(in the following the acronym VOF-FVM will be used for this solver). They
investigated the 2D flow around a cylinder close to a free-surface, fixing the
Reynolds number to 180. The latter is defined as Re = Ud/ν = 180, where U
is the free-stream velocity, d the cylinder diameter and ν the kinematic viscosity.

Indeed, for unbounded flow past a cylinder it is possible to get practically bi-
dimensional conditions in such low Reynolds number regime, something that is
generally not true when a free-surface is present. It is relevant to mention that
even though this is the case, Reichl et al. (2005) were able to reproduce the main
flow features analyzed through the experimental study of Sheridan et al. (1997),
for which the Reynolds number was approximately 9000, suggesting that for
viscous flows around a cylinder in the presence of a free-surface, actually Froude
number (Fr = U/

√
(gd), g is the gravity) and submergence ratio (h/d, h is the

cylinder depth) are as important as the Reynolds number in order to characterize
the dynamics.

However, from the numerical point of view, low Reynolds number regimes
have the advantage of allowing performing simulations without the use of sub-grid
models, which would complicate the already complex flow. Moreover, the sub-
grid models are known to present limitations when turbulence is injected through
breaking wave phenomena, this being still nowadays an open-problem.

Summarizing, in this work the choices made by Reichl et al. (2005) of low-
Reynolds regime and a bidimensional framework are also adopted, as, even
with such simplified hypothesis, the problem remains extremely complicated to
be numerically solved, raising open questions relative to spectra of forces time
histories, breaking patterns, etc.

Motivated by this complexity, the main research question behind this paper is
whether it is possible to set relevant, robust and reliable benchmarks for viscous
free-surface flows with complex free-surface dynamics. Such benchmarks would
then be offered to be used as reference for other solvers when modeling free-
surface geometry, forces, vorticity generation and other relevant aspects of the
flow.

The proposed method for finding the answer to this question consists of
selecting three conditions leading to increasing flow complexity and to simulate
them using three well established solvers based on diverse numerical techniques:

1. an enhanced version of the Smoothed Particle Hydrodynamic model (called
δ+-SPH) (for details see (Sun et al., 2017)).

2. a single-phase Finite Volume with a Level Set function for
capturing/tracking the free-surface (LS-FVM) (for details see (Di Mascio
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et al., 2008)).
3. a two-phase Finite Volume with a Volume-of-Fluid algorithm to treat the

air/water interface (VOF-FVM) (for details see (Versteeg and Malalasekera,
1995; Hirt and Nichols, 1981)).

The SPH simulations have been performed using the code SPH-flow, a
software developed within a collaborative consortium composed of Ecole Centrale
de Nantes, NEXTFLOW Software company and CNR-INSEAN. Conversely, for
the LS-FVM solver the CNR-INSEAN in-house code Xnavis (Di Mascio et al.,
2007) has been used, while for the third one, similarly to (Reichl et al., 2005), the
commercial code ANSYS Fluent has been chosen. While solvers based on other
techniques such as the Particle Finite Element Method (Gimenez and González,
2015; Gimenez et al., 2017) have been able to successfully model complex free-
surface flows, the sample chosen is considered representative enough for the
problem in hand.

It has to be mentioned that one of the cases studied is characterized by
the onset of a particularly challenging dynamics, i.e., the so-called alternate
metastable states in the cylinder wake (Sheridan et al., 1995). The presence
of these alternate states leads reflects on the time histories of the force
coefficients through a low frequency harmonic. Motivated by this paper
aiming to contribute to the Computers & Fluids “Special issue on Theoretical,
numerical and computational advances of the SPH method for solving fluid
problems”, an additional research question is delineated, investigating whether the
improvements of the δ+ variant of the SPH method are necessary for simulating
the onset and dynamics of such metastable states.

The research questions and method chosen lead to the paper contents being
organized as follows:

• In section 2, the description of the physical problem, with its various
parameters involved, is first described. In particular, it is discussed how
the relevant dimensionless numbers have different effects depending on the
solver adopted.

• Three test-cases of increasing complexities have been identified with a
careful choice of the parameters. In section 3 the description of these
different flows is given.

• Section 4 contains the overview of the computational models considered.
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• The FVM and δ+-SPH solvers are used for solving the unbounded case, in
order to check the quality of the results in this simplified condition. Section
5 is dedicated to this preliminary test-case.

• In section 6 the results of the three solvers on the benchmark test-cases
introduced in 2 section are compared.

• Finally, in section 7, it is justified that the shifting particle technique,
embedded in the δ+-SPH, is crucial for solving the third benchmark. Indeed,
it shown that with δ-SPH it is not possible to accurately simulate this case.

• Conclusions are summarized to close the paper.

2. Description of the physical problem

A sketch of this problem is given in Figure 1. It consists of an open-channel
flow with a circular cylinder inside the fluid domain, Ω, confined by:

1) a solid bottom ∂ΩB,

2) a free surface ∂ΩF

3) the cylinder surface ∂ΩC,

4) an inflow boundary ∂ΩI on the left lateral side,

5) an outflow boundary ∂ΩO on the right lateral side.

Since the vortex dynamics shed by the cylinder is the only one investigated in this
work, on the cylinder surface ∂ΩC a no-slip condition is considered while a simple
free-slip condition is enforced on the bottom surface ∂ΩB.

In the initial time instant, the fluid is considered at rest, and ∂ΩF is flat. In such
a condition, the initial total water height of the channel is Ĥ. The top part of the
cylinder is at a distance H from the bottom, while h is the cylinder depth, defined
as the gap distance between the cylinder top and the undisturbed free surface (i.e.
Ĥ = H + h).

The x−coordinates of ∂ΩI and ∂ΩO are respectively x1 and x2. In the inflow
boundary, ∂ΩI , a vertical uniform velocity U and a hydrostatic pressure profile
are imposed, and the water height is fixed to Ĥ. In the outflow boundary,
∂ΩO, a zero-gradient boundary condition for the velocity field and a hydrostatic
pressure profile are imposed. The water height is free to change following the
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Figure 1: Case setup notation (borrowed from Reichl et al. (2005)) and system of
reference.

flow dynamics, implying that the hydrostatic pressure profile imposed on ∂ΩO

depends on the water height on this boundary. In section 5, it is justified that the
outflow conditions on ∂ΩO must be enriched to prevent wave reflections from the
downstream boundary.

The four main dimensionless numbers governing the problem are:

i) The Reynolds number Re = Ud/ν,

ii) The Froude number Fr = U/
√

gd,

iii) The cylinder submergence ratio h/d,

iv) The Bond number Bo = ρgd2/σ

where σ is the surface tension, and the other variables have been already
introduced.

Surface tension can play a relevant role if a breaking wave is formed behind
the cylinder (see e.g. (Landrini et al., 2012)). However, for the sake of simplicity,
similarly to (Reichl et al., 2005), in this work the Bo number is assumed
sufficiently high to neglect surface tension effects on the studied flows.

The Froude number governs the free-surface dynamics while the cylinder
submergence governs the interaction between the body wake and the free-surface
dynamics. Reichl et al. (2005) set the Reynolds number Re to 180, the Froude
number ranges, 0.15−0.60, and the cylinder submergence ratio, h/d, to vary from
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0.1 up to 2.5. The range of analyzed configurations for Re = 180, regarding Fr
and h/d, was extended by Bouscasse et al. (2017) using the δ−SPH model.

In spite of the geometrical simplicity of the problem considered, some
complexities need to be carefully treated:

1) the effect of the bottom ∂ΩB on the flow,

2) the use of numerical damping zones in the proximity of in/out-flow
boundaries,

3) the use of a time-ramp for the flow rate in the initial part of the simulation,

4) the necessity of a suitable spatial resolution on the far far-field region,

5) difficulties in obtaining numerical solutions totally independent by the spatial
resolution,

6) two-phase versus single-phase model,

7) the lack of experimental data for validation

In the following subsections, these aspects are documented, discussing the
strategies adopted by the selected computational models to deal with them.

2.1. The effect of the bottom on the flow
The radiation conditions can be easily enforced when using mesh-based

models. Indeed, using a stretching of the mesh, the fluid domain boundaries ∂ΩB,
∂ΩI , ∂ΩO can be set far enough in order not to influence the near-field of the body.

This is not the case when using particle methods like SPH, for which
techniques to modify the particle size, such as the variable smoothing length (see
e.g. (Hernquist and Katz, 1989; Bonet and Rodriguez-Paz, 2005)), are not trivial
to be extended to the context of open-channel flows (to the authors knowledge,
there are no works in the literature about this topic). Even the use of variable
resolution techniques such as the one presented by Vacondio et al. (2013) or the
more recent one published by Chiron et al. (2018b) (and used in (Sun et al., 2018))
cannot be easily adapted in the present work. Indeed, to our experience, the errors
linked to the interaction of particle of different sizes or the ones related to the
interpolation of the fields in the different sub-domains can alter the equilibrium
of the channel flow, leading to a non-physical drift of the long-time solution (see
(Colagrossi et al., 2017b)). For the above reasons, in the present work uniform
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particle distribution is adopted, as further commented in section 3, leaving the
topic of the SPH multi-resolution approach for open-channel flow simulations to
future studies.

Because of the SPH difficulties in handling large fluid domains, in our problem
∂ΩB can affect not only the near-field of the body but also the far field, as the free-
surface motion can be indeed influenced by the treatment of the bottom boundary.

Another challenge for the SPH model related to the bottom is linked to the
weakly compressibility assumption of the fluid model. Indeed, in order to remain
in this condition, the artificial speed of sound, c0 needs to be set large enough so
that the hydrostatic pressure on the bottom cannot induce density variations larger
than 1%. Following Antuono et al. (2011), this above constraint implies:

c0 = 10
√

gĤ. (1)

Therefore, large Ĥ leads not only to a large number of particles but also to small
time steps, considerably increasing the CPU costs.

Following the recommendations in (Bouscasse et al., 2017), for the three cases

studied Ĥ/d is fixed to 16. Evaluating the Froude number FrĤ = U/
√

gĤ, it
results that for all the cases studied in this work, FrĤ is always below 0.25. This
threshold guarantees a limited effect of ∂ΩB on the solutions.

If bottom effects are to be completely avoided, the problem we are presenting
can be more efficiently solved by the coupling of SPH with a mesh-based solver,
as demonstrated by Chiron et al. (2018a). However, in the present work, for the
sake of a better understanding of the influence of the matters involved, the problem
is studied with a monolithic SPH solver.

2.2. Use of numerical damping zones in the proximity of inflow/outflow
boundaries

In the open-channel flow problem studied here, gravity waves can be generated
by the flow around the cylinder and they can travel in both upstream and
downstream directions. When these waves reach the inflow/outflow boundaries,
they can introduce undesirable changes in the properties of the flow, if not
properly transported outside of the domain. In addition to the gravity waves, the
“equilibrium” of the flow is also influenced when the wake of the body reaches the
outflow; for example, when a big vortex structure crosses the outflow, the water
height changes and a gravity wave can be generated and propagated upstream.
Hence, the choice of the inflow, x1, and outflow, x2, coordinates can affect the
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solution, especially the long-time evolution when waves or vortices may reach
those boundaries. Regardless of how large the fluid domain is, there always exists
a time when the simulation will be affected by the above conditions.

Again, for the FVM solvers, the mesh stretching in the horizontal directions
can help in dissipating both the gravity waves and the wake. Usually, the mesh
stretching is not sufficient to avoid spurious waves reflections, and a numerical
sponge (damping) region in the proximity of ∂ΩI and ∂ΩO must be implemented
for stabilizing the flow. In the present work, this damping effect is achieved
with a linear increase of the viscosity , starting from a given distance, 8d, from
inflow/outflow boundaries. The viscosity is increased by a factor of 10 when
reaching ∂ΩI and ∂ΩO. Moreover, also a damping term of the same intensity on
the vertical flow acceleration has been added, following the technique by Molteni
et al. (2013).

The implementation of these sponge regions has been tested on the three
solvers imposing a sinusoidal vertical motion on the cylinder and checking that
the radiated waves were dissipated without generating any wave reflections. For
these tests, the free-stream current has been switched off.

The positions of ∂ΩI and ∂ΩO have been set equal to x1/d = −15, and
x2/d = 30, for all the simulations .

2.3. Use of a time-ramp for the flow rate in the initial part of the simulation
For all the simulations, the following time-law is used for the free-stream

speed:

U(t) = U


3 (

t
t0

)2

− 2
(

t
t0

)3 , t < t0;

1, t ≥ t0,

(2)

with t0 U/d = 5, d/U being the residence time, used to make time non-
dimensional in what follows.

For consistency, an acceleration dU/dt has to be added in the momentum
equation in order to accelerate all the fluid in Ω until the inflow steady condition
is reached.

The use of the time-ramp for the flow rate has a double advantage: from the
numerical point of view, it avoids a sudden start and subsequent generation of a
pressure shock wave when using a weakly compressible SPH model. Also, its
corresponding reflections on ∂Ω are prevented. The second advantage is that we
can compare the solution of the three solvers also on the transient stage, and not
only if steady state or periodic regimes are established.
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2.4. Necessity of a suitable spatial resolution in the far far-field region
As shown in (Bouscasse et al., 2017), for a high enough Froude number, the

von Kármán shedding mechanism is inhibited by the formation of a jet-flow over
the cylinder, which induces long recirculation zones behind it. The recirculation
areas need to be accurately resolved, thus limiting the possibility to reduce much
the spatial resolution in the far field. Therefore, also for the LS-FVM and VOF-
FVM solver, the mesh has to be designed in a suitable way in order to avoid
unphysical drift of the solution (see section 4). This matter is paid however no
attention by Reichl et al. (2005).

2.5. Difficulties in obtaining numerical solutions totally independent of the
spatial resolution

The generation of gravity waves and the presence of the cylinder wake
generally imply a strong unsteadiness of the flow in the initial transient stage. It is
shown in this work that, in order to reach stable and regular flow evolutions, rather
long time intervals for the simulations are needed. From the above considerations
regarding the effects of the boundaries ∂ΩB, ∂ΩI and ∂ΩO, we have already
pointed out that also a rather large domain Ω is required. As a consequence of the
large space-time domains and of a suitable spatial resolution up to the far far-field
region, it results that even in a 2D framework, the CPU costs can be demanding.

The main consequence of this, added, on one side, to the highly non-linear
interactions between the vortex wake and the free surface, and, on the other side,
to the non-existence of a minimum theoretical length scale in interfacial flows,
is the difficulty in getting solutions totally independent of the spatial resolution.
As remarked in section 5, this is possible for the unbounded problem (removing
∂ΩS ). Therefore, we preliminary tested the solvers on this problem, ensuring that
the codes are able to give solutions close enough to a convergent one, obtained
through a Particle Vortex Method (errors less than 4% on the forces, see section 5).
Once this objective is achieved, the viscous free-surface benchmarks are tackled
(see section 6).

2.6. Two-phase versus single-phase model
When breaking events occur, entrapment of air bubbles can take place and

resulting buoyancy effects alter the near wake flow. In order to investigate such
effect, the two FVM solvers have different models. The LS-FVM is based on a
single-phase approach, as it is the δ+-SPH. Conversely, the VOF-FVM adopts a
two-phase model. It is shown in this paper that for the three test cases selected,
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the effects of the air entrainment imply negligible effects on the flow dynamics
and on the global loads acting on the cylinder (see section 6).

2.7. Lack of experimental data for validation
As explained, a 2D framework is used and the Reynolds number is set to a low

value (180), in order to limit the computational needs and the local complexity
of the flow. At the same time, in order to generate large deformations of the free
surface, the Froude number ranges between 0.3 and 1.0. Combining these two
dimensionless numbers and considering as a liquid the water, it results that the
diameter of the cylinder d is of the order of a few millimeters. As a consequence,
the Bond number is very low, of order 0.1, and the surface tension would dominate
the free-surface dynamics. Besides, the small cylinder dimension would imply a
lot of complexities from a point of view of the experimental facility. Working
with an oil, a cylinder of few centimetres could be used. However, the use of an
oil instead of simple water would lead again to complex issues in the experimental
setup. For these reasons, it is not possible to find experimental data available for
the benchmark test-cases proposed in this work.

However, since the Froude number is the one that dominates the flow, it is
possible to see that the flow features observed in present research are in fair
agreement with the experimental observations of Sheridan et al. (1997), where
the Reynolds number is about 9000, while the highest Froude number is 0.72.
Bond number is actually of order 10 in those experiments, implying that the
surface tension may still play a role, and its effects not completely negligible.
Moreover, neither Sheridan et al. (1995) nor Sheridan et al. (1997) present time
histories of the forces, which could at least allow to try and set a time reference
to establish corresponding times in the experiments and simulations. They only
mentioned that the Strouhal number of the main shedding is of the order of 0.1 and
the subharmonic’s 0.001 in their experiments, leaving the matter open to further
investigation. We hope our detailed description in the present paper can contribute
to such aim.

3. Description of the proposed benchmark test-cases

A description of the proposed benchmarks of the flow past a submerged
cylinder close to the free surface is provided in this section.

The distance between the cylinder and the free surface is set equal to h/d = 0.4
in order to get strong enough interaction between the cylinder wake and the free
surface. The Reynolds number, as stressed above, is set equal to 180. Three
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different Froude numbers, 0.3, 0.55 and 1.00, are chosen in order for different
flow regimes, corresponding to an increasing level of interaction, to occur.

Lyapunov exponent fields are shown in Figures 2-4 to highlight the coherent
structures for the three conditions chosen (the interested reader is referred to work
by Sun et al. (2016)). The δ+-SPH numerical scheme is used for this purpose,
considering its Lagrangian nature being suitable to directly monitor the time
evolution of this quantity.

Benchmark I (Fr=0.3, h/d=0.4, Re=180): Von Kármán street below a free surface..
The regime Fr = 0.30 is sketched in Figure 2 and shows a weak interaction with
the free surface, which remains rather flat downstream of the body.

Figure 2: Case Fr = 0.3. The Lyapunov exponent is shown in order to highlight the
vortical structures in the flow field. See supplementary material movie N.1a at

http://canal.etsin.upm.es/papers/colagrossietalcaf2018/

The unbounded case periodic vortex shedding mechanism is still preserved,
even though the presence of the free surface confines and deforms the shed dipoles
similarly to a flat free-slip boundary. The little depression of the free surface,
visible immediately after the cylinder, is due to the expected reduction of the
pressure past the body. This case may be considered as the easiest to reproduce,
the weak interaction making it very similar to an unbounded flow. The final
time for the simulation has been set equal to tendU/d = 300 in order to have
enough oscillation periods in the periodic regime to properly define the mean
value, amplitude and Strouhal number of the force coefficients.

Benchmark II (Fr=1.0, h/d=0.4, Re=180): spilling-jet flow regime.. Increasing
the Froude number to Fr = 1.0, the flow is characterized by an intense spilling-jet
flow over the cylinder, which inhibits the shedding mechanism, and creates a big
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recirculation area, clearly visible in Figure 3. The free surface is characterized by
a spilling breaking regime which leads to a stable flow condition. This is not the
case during the initial transient regime where plunging breaking waves develop,
causing a strong interaction with the cylinder wake. When the transient condition
extinguishes, the recirculation region downstream of the cylinder and underneath
the free surface extends to about 18d, and needs to be accurately resolved in order
to be correctly captured. The free surface ahead the cylinder shows an evident
hump which affects the lift force value, whereas a fair characterization of the
recirculation area allows a correct evaluation of the drag force. The final time of
the previous test case is used tendU/d = 300, long enough to achieve quasi steady
state.

Figure 3: Case Fr = 1.0. The Lyapunov exponent is shown in order to highlight the
vortical structures in the flow field. See supplementary material movie N.2a

Benchmark III (Fr=0.55, h/d=0.4, Re=180): the metastable flow condition..
Finally, the most complex case is the one corresponding Fr = 0.55, for which
the flow changes with a continuous alternation between the two behaviors of the
previous test-cases. Indeed, the spilling jet is still present but is weaker and in
unstable equilibrium with the vortex shedding. The resulting flow is characterized
by a low frequency switch between an intense vortex shedding (shown in the top
plot of Figure 4) with an important free-surface deformation and a weak spilling
jet (shown in the bottom plot of Figure 4), where the shedding mechanism is
almost inhibited. The metastable flow induces a low frequency harmonic on the
global loads. In order to capture enough periods of these low-frequency modes,
the final time for the simulations has been set equal to tendU/d = 600.

This peculiar phenomenon was described experimentally by Sheridan et al.
(1995) (even though at different Reynolds numbers) and called “metastable”
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Figure 4: Case Fr = 0.55. Metastable regime: periodic vortex shedding (top), spilling jet
flow (bottom). The Lyapunov exponent is shown in order to highlight the vortical

structures in the flow field. See supplementary material movie N.3a

regime. In (Reichl et al., 2003), a metastable condition was found in numerical
simulations with Re = 180 using a VOF-FVM solver. For the accurate
reproduction of this test-case, a fine grid resolution in space and in time is
required. In section 6, it will be shown that the metastable regime can also be
captured by the LS-FVM and by the δ+-SPH models. Conversely, the widely used
δ-SPH model (Antuono et al., 2012) is not able to resolve this flow condition, and
at Fr = 0.55 the numerical solution comes back to a pure spilling-jet flow, as will
be discussed in section 7.

4. Summary of computational models adopted

4.1. SPH-flow code: single-phase δ+-SPH model
The δ+-SPH scheme, introduced by Sun et al. (2017), has been selected as the

meshfree solver to deal with the benchmark proposed section 3. δ+-SPH is an
enhanced version of the weakly–compressible Smoothed Particle Hydrodynamic
model for the solution of the Navier-Stokes equations. It is based on the δ-SPH
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model (Antuono et al., 2012), where a diffusive term is added in the continuity
equation to regularize the pressure/density field. In δ+-SPH, a particle shifting
technique is used to improve the regularity of the particle space distribution.
In particular, the shifting technique proposed by Lind et al. (2012) is recast
for the weakly-compressible formulations. Thanks to the small time steps, the
magnitude of the particle shifting remains relatively small (in comparison with
the incompressible SPH) resulting in quasi-lagrangian scheme (see also Oger et al.
(2016); Khayyer et al. (2017). An algorithm for particle shifting at the free surface
is also used, which however does not alter the actual free surface position (more
details can be found in Sun et al. (2017)). Sun et al. (2017) demonstrated that
with this SPH model it is possible to accurately solve the viscous flow past bodies
of various shapes. It is therefore an appropriate candidate for the three proposed
benchmarks of this work.

The fluid domain Ω is assumed to be discretized with N fluid particles which,
for the sake of simplicity, are assumed to approximately have the same size, ∆r,
that represents the mean inter-particle distance. The resolution adopted in this
work is d/∆r = 100. In the next section, it is shown how, through this resolution,
is possible to get a very good agreement with the reference solution provided by
the Diffused Vortex Hydrodynamics (DVH) method (see section 5). As explained
by Sun et al. (2017), the pressure and viscous forces acting on a generic particle
are evaluated by a Wendland C2 kernel through the interaction with its roughly 50
neighbor particles.

Since low Reynolds number flows are addressed in the present work no
turbulence modeling is introduced in the scheme. Viscous stresses are modelled
through the classic formula by Monaghan and Gingold (1983), whose derivation
has been also recently discussed in Colagrossi et al. (2017a).

In order to enforce the boundary conditions on the body surface, a ghost-
fluid technique is used. Various mirroring techniques can be adopted to enforce
the required boundary conditions (i.e. free-slip on the bottom and no-slip on
the cylinder). The details of the mirroring procedures adopted in this work can
be found in (Bouscasse et al., 2013). The implementation of open boundary
conditions is not trivial in SPH because of the Lagrangian nature of the method,
with just few successful references in literature (Khorasanizade and Sousa, 2016;
Federico et al., 2012; Lastiwka et al., 2008). These boundary conditions have been
implemented in the present research using the technique described by Federico
et al. (2012).

The δ+-SPH model is embedded (together with other SPH models) in the
software “SPH-flow”, developed within a French-Italian collaborative consortium
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(composed by Ecole Centrale de Nantes, NEXTFLOW Software company and
CNR-INSEAN). Although this software also allows to use an Adaptive-Particle-
Refinement technique, as explained in section 1, we have preferred to use a
homogeneous particle distribution and leave the use of more complex algorithms
for the future, as they are not sufficiently validated for open channel flows. This
choice implies a large number of particles: the size of the domain Ω is about
45d × 16d which leads N ' 7 millions.

Regarding the time integration, a 4th order Runge-Kutta scheme is adopted
with the time step driven by the artificial speed of sound c0. Following (Sun et al.,
2017), the relation below holds:

∆t = 3
∆r
c0
, ⇒ ∆t

U
d

= 0.3
(
∆r
d

)
FrĤ = 7.5 10−4. (3)

The time iterations are therefore about 800,000 for the longest simulation
(tendU/d = 600).

Thanks to the high scalability of the SPH-flow code, the simulations can be
run on a small cluster in few days (see (Oger et al., 2016)).

Apart from the works already referred (Marrone et al., 2013; Federico et al.,
2012; Bouscasse et al., 2017), SPH has been recently used to compute forces on
cylinders by authors such as Aristodemo et al. (2017), who compared experiments
and SPH results regarding the forces induced on a cylinder by a solitary wave,
finding fair agreement between them.

4.2. Xnavis code: single-phase Finite Volume Method with Level-Set function
(LS-FVM)

The Xnavis code is a general-purpose, second order, finite volume, multi-
block solver, developed at CNR-INSEAN. The computation of the convective
fluxes is achieved by several numerical schemes; for the present work a classical
fourth order centered scheme has been chosen (for more details see Di Mascio
et al. (2009)).

Viscous fluxes are discretized by means of the classical finite volume second
order formulation. The free-surface effects are taken into account through a fully
non-linear level-set single phase approach (Di Mascio et al., 2009; Broglia and
Durante, 2017).

In order to have a fully implicit scheme and to obtain a divergence free velocity
field, a dual (or pseudo) time-derivative is introduced in the discrete system of
equations, and the solution is iterated up to a steady state in the pseudo time.
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Figure 5: Sketch of the mesh used with the LS-FVM solver. The total number of
computational cells is about 187,000. The horizontal line represents the undisturbed free

surface. An enlarge view close to the cylinder surface is reported in the right box.

The full multi-grid approach and the implicit approximate factorization
technique with local time stepping are used to speed up convergence of the internal
iteration. The numerical mesh employed is based on a Chimera grid technique.
In this approach, the overlapping of numerical grids with different topologies is
achieved through a modification of both the boundary conditions and through the
internal point treatment for those zones where overlapping occurs. The dynamic
overlapping grids method allows for an easy and accurate handling of complex
geometries. Chimera technique requires to locate regions among different blocks
from where extracting an approximation of the solution; it requires to find the so-
called donor cells. Once the donor is identified, a convex set of eight donor cell
centers is sought and a tri-linear interpolation is used to transfer the solution to the
block under analysis. If overlapping cells are found, one of them will be marked
as a hole only if the donor cell is smaller. Unlike standard chimera approaches,
the cells marked as holes are not removed from the computation; instead, the
interpolated solution is enforced on the marked cell point by adding a forcing
term to the Navier-Stokes equations, in a body-force fashion (for more details see
(Muscari et al., 2006)), providing good global stability to the whole approach also
when the overlapping cells are very different in skewness and dimensions.

High performance computing capabilities are obtained with an efficient shared
and distributed memory parallelization (Broglia et al., 2014).

Figure 5 shows a sketch of the mesh adopted for all the benchmarks: different
blocks are designed, the finest one consisting of a polar mesh around the cylinder.
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In order to correctly capture the velocity derivatives inside the boundary layer,
block N◦1 presents a radial stretching of the numerical cells. The spatial
discretization on the cylinder is d/∆r ' 1260, here ∆r represents the length of the
smallest side of the computational cell. The block N◦2 is an uniform Cartesian
mesh with d/∆r ' 50 designed to correctly capture the cylinder near-wake as
well as the high deformation of the free surface expected within this region. In the
other mesh-blocks, the resolution is degraded in order to save the CPU time costs.
The total number of computational cells is about 187,000.

The time step is set as ∆tU/d = 10−3 in order to follow the rapid movements
of the free surface in the neighborhood of the cylinder. Indeed, the advection CFL
factor (∆t U/∆r) is of order 0.1 in this part of the domain.

4.3. ANSYS Fluent code: two-phase Finite Volume Method with Volume of Fluid
technique (VOF-FVM)

For the third computational model adopted, again the incompressible Navier-
Stokes equations are solved using a Finite Volume Method. However, for this last
solver a two-phase model is adopted. The density ratio between the liquid and
the gaseous phase is equal to 1000 (like the water/air density ratio) with the gas
treated as incompressible.

The code is the widely used commercial software ANSYS Fluent (Ansys,
2013). A Volume-of-Fluid (VOF) technique is used by ANSYS Fluent to
track the air/water interface evolution, and in particular, a Geo-Reconstruct
technique is used to track the free-surface position, rendering a piecewise linear
reconstruction of the interface. For the discretization of time derivatives, an
implicit first order backward differencing scheme is used. Regarding the spatial
discretization, the third order QUICK (Quadratic Upstream Interpolation for
Convective Kinematics) scheme has been selected.

In Figure 6, a sketch of the mesh adopted is depicted. The total number of
computational cells in the liquid and gas domains is 335,000. Many of these
cells are in the gas domain and therefore are hardly useful. Indeed, the mesh
adopted is structured and also this aspect leads to the existence of a substantial
number of cells in regions of the fluid domain where the solution is practically
unperturbed. Conversely, the Xnavis solver mesh is characterized by about one
half of the elements, being the chimera technique able to concentrate the greatest
part of them in the near-field and in the wake regions.

The central part of the mesh is stretched in order to increase the resolution in
the boundary layer regions. Using this simple mesh, the resolution d/∆r passes
from 1200 on the cylinder surface down to 200 when reaching the free surface
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over the cylinder. In the wake region, the resolution degrades to 50 (again ∆r
represents the length of the smallest side of the computational cell). The above
ratios are quite similar to the ones of Xnavis, although for the latter solver, the
mesh is better adapted thanks to the Chimera technique.

The time step adopted is ∆tU/d = 1.25 10−3, leading to advection CFL factors
(∆t U/∆r) of order 1 in the boundary layer region and of order 0.1 in the region
close to the free surface. These numbers are similar to the ones of the LS-FVM
solver.

ANSYS Fluent has been recently used to compute forces on submerged
cylinders combining waves and current, using, as in present work, a two-
dimensional approach (Bai et al., 2017). Bai et al. (2017) compared their
simulations with experiments carried out at Re ≈ 12000, finding fair agreement,
a fact that provides further evidence on the findings of Sheridan et al. (1997)
regarding the prevalent two-dimensionality of the flow, even at those intermediate
Reynolds numbers.

Figure 6: Sketch of the mesh used with the VOF-FVM solver. Each cell on the figure
represents 4x4 computational cells. The total number of computational cells is 335,000.

The horizontal line represents the undisturbed air/water interface.

5. Preliminary test on unbounded condition: comparison among FVM and
δ+-SPH against DVH

In order to test the solvers with the parameters and the time-space
discretizations selected, the unbounded condition is considered first. In this
condition, the Reynolds number (set again to Re = 180) is the only dimensionless
number of the problem .
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For this case, the reference solution is generated through the DVH solver.
With this Particle Vortex Method, it is possible to resolve with great accuracy the
viscous flow past a cylinder, but it is not trivial to include a free-surface boundary,
being this topic still under development. Different DVH simulations have been
performed to reach a convergent solution. For the finest resolution an uncertainty
of 0.5% on the drag and lift peak is obtained. For DVH, the unbounded condition

Figure 7: Flow past a circular cylinder, unbounded condition. Vorticity field at maximum
of the lift force evaluated by the DVH (left), the δ+-SPH (middle) and by the FVM solver

(right). Dimensionless vorticity ωd/U scales from -3 (blue) to 3 (red).

is intrinsically satisfied. This is not the case for SPH. For DVH, the ∂ΩF boundary
is removed and the cylinder is positioned at the center of a closed channel of width
Ĥ/d = 16. The latter has been selected in order to get negligible effects of the
bottom boundary on the global force acting on the cylinder. The outflow velocity
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is now forced to equal the free-stream velocity U, in such a way that the flow-
rate guarantees mass invariance in Ω during the simulation. This is an important
constraint since, in the present SPH model, a weakly-compressible formulation
is assumed. Furthermore, to avoid a finite jump of the particle velocities when
passing through ∂ΩO, a sponge region (where the viscosity is artificially increased)
is also applied in this unbounded test.

For the unbounded condition, since the two FVM solvers, Xnavis and ANSYS
Fluent, are based on the same approach, only the ANSYS Fluent solver is used.

Figure 7 depicts the vorticity field corresponding to a maximum of the lift
during the periodic steady state regime, evaluated with DVH, δ+-SPH and FVM.
As can be seen, the near-field during the von Kármán shedding is very similar
for the three solvers. However, in the far-field, the vorticity evaluated by FVM is
affected by an evident numerical diffusion related to the mesh stretching. The
reader is warned about the background colors used for the zero-level of the
vorticity field:

δ+-SPH ⇒ light-red

LS-FVM ⇒ light-blue

VOF-FVM ⇒ light-green

These choices are also used in the next section.

Figure 8: Flow past a circular cylinder, unbounded condition. Drag (left) and Lift (right)
coefficients evaluated with DVH (dashed line), δ+-SPH (solid line), and ANSYS Fluent

(dash-dotted line) solvers. All time history files in the paper are downloadable from
http://canal.etsin.upm.es/papers/colagrossietalcaf2018/
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Figure 8 shows the corresponding time behaviors of the drag and lift
coefficients. For the DVH solver, a sudden start of the current is implemented
in the code. However, since the comparisons focus on the periodic regime,
this different initial condition is not relevant. The inceptions of Von Kármán
vortex shedding do not appear at the same time instant for the three solvers.
The difference is connected with the spontaneous flow symmetry disruption,
numerically triggered in a slightly different way by the three schemes.

When the periodic steady state regime is reached, the comparisons between
the three solvers are in a good agreement. In order to give a measure of such
comparisons, the mean CD, the amplitude of CL and the Strouhal number are
reported in Table 1. Although not clearly visible in the left plot of figure 8, the
time periods of the drag coefficients are in well agreement similarly to the lift
coefficients. The good agreement of the solvers is an indication that the spatial
resolutions adopted are suitable also for the three benchmarks in the open-channel
flow condition.

CD C′L St
DVH 1.28 ±0.04 0.59 0.187
δ+-SPH 1.30 ±0.05 0.59 0.191
FVM 1.29 ±0.03 0.61 0.193

Table 1: Flow past a circular cylinder, unbounded condition. Mean Drag coefficients,
amplitude of the Lift coefficient C′L and Strouhal number evaluated by the DVH, δ+-SPH

and ANSYS Fluent solvers.

6. Comparison of the results of LS-FVM, VOF-FVM and δ+-SPH for the
viscous free-surface benchmarks

6.1. Benchmark I (Fr=0.3,h/d=0.4, Re=180)
The first benchmark is characterized by a small interaction between the

cylinder wake and the free-surface evolution. As in the unbounded case, the flow
quickly tends to a periodic steady state regime, in which the mean lift force is not
zero because the flow velocity between the cylinder and the free surface is larger
than the one below the cylinder. Furthermore, the vertical force Fy has also a
constant buoyancy component B, subtracted when evaluating the lift coefficient:

CL(t) =
Fy(t) − B

1/2 ρU2 d L
, (4)
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where L is used as unitary span-wise dimension.
Figure 9 depicts the vorticity in the near-field obtained with the three solvers.
The plots are evaluated at three time instants, corresponding respectively to

the maximum (top row), the zero (middle row) and the minimum (bottom row)
of the lift force. For this problem, a regular shedding (resembling the classic Von
Kármán street) with large dipoles arrangement of the flow field develops.

The induced motion of the free surface, even though weak, is characterized
by a cyclical formation of spilling wave breaking. The dynamics of the breaking
is driven by the oscillation of the upper (negative vorticity) shear layer, which
induces a steep wave formation and its final breaking.

The global agreement among the solvers is satisfactory even though the
LS-FVM solver seems to produce a stronger interaction with the free surface,

Figure 9: Benchmark I : Contour plot of the vorticity in the near-field computed by
δ+-SPH (left), LS-FVM (middle), VOF-FVM (right). The plots correspond to the
periodic regime: maximum of the lift force (top row), zero lift force (middle row),

minimum of the lift force (bottom row). Dimensionless vorticity ωd/U scales from -5
(blue) to 5 (red).
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detectable on a larger vorticity intensity generated by the spilling breaking (see
the bottom row of Figure 9).

Despite the VOF-FVM simulations are with two-phases, the effect of the air
seems to be totally negligible in this case, with a complete absence of bubble
entrapment, thus justifying the use of one-phase approaches.

Figure 10 shows the time histories of the force coefficients for the initial
transient part, tU/d < 80, of the simulation. During the acceleration stage,
tU/d ' 5, corresponding to the end of time ramp of the current U(t), the forces
evaluated by the different solvers are very close each other. In the subsequent
evolution, a precise match is lost because of the non-linear interaction with the
free surface.

After the transient stage, a periodic steady state regime is attained, and the
forces become basically monochromatic, even if a low frequency modulation on
the drag force is visible, likely connected with the influence of the inflow/outflow
boundaries, as already commented (see section 2). The two FVM solvers remain
more in phase compared to the δ+-SPH.

Figure 10: Case Fr = 0.3: cylinder drag (left) and lift (right) coefficients short-time
evolution calculated by the three solvers.

CD CL St
δ+ SPH 1.73 ± 0.27 -0.37 ± 0.77 0.209
LS-FVM 1.63 ± 0.29 -0.41 ± 0.74 0.190
VOF-FVM 1.66 ± 0.33 -0.41 ± 0.80 0.192

Table 2: Case Fr = 0.3. Comparison among solvers of force coefficients and Strouhal
number.
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In Table 2, the mean values, amplitudes and Strouhal numbers output by the
three solvers, are reported. As expected, the free surface highly impacts the mean
values of the force coefficients compared to their unbounded counterparts (see
Table 1 for comparison): the mean lift is not null, and the mean drag coefficient
rises up because of the interaction between the shear layers and the free surface.

Despite the good agreement of the vorticity fields, discrepancies among the
solvers are detectable when observing the values reported in Table 2. The
evaluations given by the two FVM solvers are quite close to each other, while
the δ+ SPH solver overestimates the CD by about 5% with respect to the FVM
solvers, and underestimates CL by about 10%. The oscillation amplitudes are in
fair agreement for both the force coefficients. The lift amplitude C′L presents a
maximum deviation of 4%, while for the C′D, this is about 22% (note that C′D is
about one tenth of CD). The Strouhal numbers obtained from the FVM codes
signals are very close to each other, whereas a discrepancy of 10% (greater) is
experienced by the SPH solver.

6.2. Benchmark II (Fr=1.0, h/d=0.4, Re=180)
In the present subsection, the case with Fr = 1.0 is considered. In this case,

the interaction with the free surface is rather intense, especially in the transient
phase.

Figure 11 depicts the evolution of the free surface and the vorticity at six time
instants, evaluated with the three solvers. The first five time instants correspond
to the transient stage, tU/d < 12, while the last corresponds to the flow field for a
regime (long-time) condition at tU/d = 150.

Again, the solvers are in fair agreement, even though some discrepancies,
related to the different approaches, are noticeable. In the first time instant shown,
tU/d = 4.0, when the free surface deforms because of the pressure drop right past
the cylinder, there are not appreciable differences among the solvers.

At tU/d = 6.0, the deformation of the free surface leads to the formation of a
first small breaking event, followed by a greater plunging jet, at time tU/d = 8.2.
The evolution of the latter leads to a splash-up, evident at time instants tU/d = 10
and tU/d = 12. All the solvers are able to capture these flow features even
if noticeable geometrical differences appear. Nonetheless, the vorticity fields
obtained by the three codes are very similar in shape and intensity. Starting
from tU/d = 10, differences between the VOF-FVM solution and the other two
solvers become more evident. Indeed, the VOF-FVM solution is based on a two-
phase model, and therefore, the breaking events induce entrapment of air bubbles.
Conversely, the δ+-SPH and the LS-FVM are based on a single-phase model, and
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Figure 11: Benchmark II : Contour plot of the vorticity in the near-field computed by
δ+-SPH (left), LS-FVM (middle), VOF-FVM (right). The first five rows show the

transient regime while the bottom row corresponds to the long-time evolution.
Dimensionless vorticity ωd/U scales from -5 (blue) to 5 (red).
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CD CL

δ+ SPH 1.23 ± 0.002 -0.39 ± 0.002
LS-FVM 1.25 ± 0.019 -0.43 ± 0.020
VOF-FVM 1.16 ± 0.016 -0.38 ± 0.019

Table 3: Case Fr = 1. Comparison among solvers of force coefficients.

hence, during the breaking processes, empty cavities are formed, that collapse
during the subsequent time evolution.

In spite of the strong unsteadiness characterizing the initial part of the time
evolution, an almost steady state is reached for tU/d > 100. The bottom row of
Figure 11 refers to the near-field at tU/d = 150. The agreement is evident for
the SPH and the LS-FVM solvers, with the presence of a stable spilling breaking
behind the cylinder, which determines a stable shear layer of positive vorticity.
The Von Kármán shedding is completely inhibited in this benchmark. Looking at
the VOF-FVM solution at tU/d = 150 (right plot of the bottom row of Figure 11),
many air bubbles are entrapped by the spilling breaking in the recirculation region.
On the other hand, despite the presence of the air-bubbles cloud, the vorticity field
obtained through the VOF-FVM is very similar to the δ+-SPH and LS-FVM ones.
From the above results, it may be concluded that the differences between a single-
phase and a two-phase model are not relevant for this Benchmark. A further
confirmation is given by the analysis of the time histories of the force coefficients.

Figure 12 depicts the force coefficients time histories output by the three
solvers. In Table 3, the mean values of force coefficients, calculated by averaging
the quantities in the time interval tU/d ∈ (300, 500), are collected together with
their standard deviations. Although the CD calculated by LS-FVM and δ+-SPH
one are very similar, VOF-FVM about 7% smaller. Conversely, when looking
at the lift coefficient, the CL of VOF-FVM is superimposed on the δ+-SPH one,
while the LS-FVM CL is about 10% lower.

It is evident from the plots of Figure 12 that the δ+ SPH time signals are more
stable than the solutions provided by the two FVM solvers. This is reflected on
the low standard deviation values reported in Table 3 for δ+ SPH. At the present
stage, a conclusive explanation for such an effect is missing, even though one may
suspect to be connected to the in-outflow conditions, or to the ability of the δ+

variant of the particle solver in guaranteeing a more stable flow with respect to
mesh-based solvers. A more in depth-investigation on this topic will be matter of
future works.
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Figure 12: Case Fr = 1: time histories of the cylinder drag (left) and lift (right)
coefficients calculated by three solvers.

6.3. Benchmark III (Fr=0.55,h/d=0.4, Re=180)
If ranked by increasing Froude number, this should have been the second

case. However, it is left as the last one as it has been found to be the most
challenging, involving the so-called “metastable” regime. Such regime consists
of a continuous switch of the flow behavior, where the Von Kármán shedding is
periodically excited and inhibited.

Similarly to the previous test-case, we start by comparing the near-fields given
by the three solvers in the transient stage. Figure 13 shows the vorticity fields for
five time instants in the time range tU/d ∈ [5, 18]. Likewise the Benchmark II, the
flow is again characterized by the formation of a breaking wave, whereas, at the
last time instant tU/d = 18 (bottom row of Figure 13), a stable spilling breaking
takes place and the flow seems to reach an almost steady state. The solutions of
the three solvers are quite similar, although, as for the Benchmark II, the VOF-
FVM exhibits the entrapment of air bubbles with again negligible influence on the
vorticity field.

In Figure 14, where the long-time evolution is depicted, four time instants are
reported and highlighted on the bottom plot with the capital letters A,B,C and
D. The “metastable” behaviour becomes clear when the plots on the first row are
compared to the other three. The weak oscillation of the shear layers shown in
the case A, becomes more intense at later instants B, C, D, for which a full Von
Kármán shedding takes place, equivalently to Benchmark I. During this stage, the
free surface is highly affected by the underlying shear layers dynamics, with the
formation of plunging breaking waves.
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Figure 13: Benchmark III: Contour plot of the vorticity in the near-field computed by
δ+-SPH (left), LS-FVM (middle), VOF-FVM (right). The plots correspond to the

transient stage. Dimensionless vorticity ωd/U scales from -5 (blue) to 5 (red).

These changes induce large variation on the forces; in the bottom plot of
Figure 14 a time history of the lift force is reported. When the Von Kármán
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Figure 14: Benchmark III: Contour plot of the vorticity in the near-field computed by δ+-SPH
(left), LS-FVM (middle), VOF-FVM (right). The plots correspond to the metastable regime.

Dimensionless vorticity ωd/U scales from -5 (blue) to 5 (red). Bottom plot: time history of the
δ+-SPH lift coefficient, capital letters and dots refer to the four time instants selected for the

vorticity plots.
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Figure 15: Case Fr = 0.55. Lift coefficient time evolution calculated by the three solvers.

shedding is excited, the intensity of the lift force increases, as exemplified by the
points corresponding to instants B,C and D.

Analogously to the the vorticity fields, the free-surface shape is similar for the
three algorithms.

It is worth noticing that the time instants selected for the Figure 14 are not the
same for the three solvers, the reason being that the flow alternate states (i.e. Von
Kármán shedding inhibited or excited) develop in slightly different time ranges.

This point is better appreciated in the plots in Figure 15, where the time
histories of the lift forces recorded by the three solvers are displayed. All the
three signals present a fundamental frequency linked to the Von Kármán shedding
and a low frequency modulation. The fundamental frequency, in the right column
of Table 4, is in fair agreement among the solvers.

Conversely, the modulation appears quite irregular, being the metastable
regime driven by a complex non-linear interaction between the cylinder wake
and the breaking events of the free surface. In particular, the amplitudes
of the low frequency modulations predicted by the δ+-SPH and by the two
FVM solvers appear quite different. The VOF-FVM solver shows the higher
amplitude, where the modulation is so intense that during some time intervals
the oscillatory shedding is totally nullified. Conversely, the LS-FVM shows a
weaker modulation, while the δ+-SPH exhibits a modulation with an intermediate
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Figure 16: Case Fr = 0.55. Power Spectral Density (PSD) of the lift coefficient time
histories for the three different solvers.

intensity between the two FVM solvers, but closer to the LS-FVM, something
we attribute to the fact that the LS-FVM and the δ+-SPH implementations solve
single-phase models while the VOF-FVM is solving multiphase incompressible.
Confirming this hypothesis remains as future work.

The Fourier transform of the lift coefficient for this case, smoothed to remove
the oscillations induced by the finite duration of the time series, is presented in
Fig. 16. Consistently with previous appreciations referred to the time histories,
most of the energy is located in the main shedding range (Strouhal number around
0.2) but a non-negligible amount of energy is also present in the low frequency
range (Strouhal number around 0.02). A larger similitude between LS-FVM and
δ+-SPH is also noticeable in the spectra.

The modal (fundamental) value of the main harmonics and subharmonics,
together with their ratio are included in Table 4. This ratio is consistently of order
10 in our analysis, compared to (Sheridan et al., 1995), who report this value to
be of order 100 in their experiments, with much larger Reynolds number and of
course the inherent surface tension

The mechanism underlying those differences among the solvers seems hard
to understand, since, as shown above, sensible differences on the different near-
fields are not evident and, for sure, do not allow to justify the discrepancy on the
forces acting on the cylinder. As shown by Colagrossi et al. (2017b), by using the
ANSYS Fluent solver and by changing the spatial resolution, the time steps and
the distance of the cylinder from the to inflow/outflow boundaries, the lift time
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CD CL S t1 S t2 S t1/S t2

δ+ SPH 1.43 ± 0.31 -0.50 ± 0.11 0.236 0.018 ≈ 13
LS-FVM 1.36 ± 0.26 -0.51 ± 0.12 0.224 0.022 ≈ 10
VOF-FVM 1.48 ± 0.22 -0.46 ± 0.11 0.217 0.014 ≈ 15

Table 4: Case Fr = 0.55. Comparison among solvers of force coefficients and Strouhal
number. S t1 stands for the modal value in the range of the vortex shedding while S t2

refers to the modal value in the subharmonic range.

Figure 17: Case Fr = 0.55. Drag coefficient time evolution calculated by the three
solvers.

history spectra can significantly change.
In Figure 17, the time histories of the drag coefficients calculated by the three

codes are plotted. Also for the CD a low frequency modulation is rather visible.
Similarly to the Benchmark II, the mean values of the force coefficient and the

standard deviation evaluated in the time range tU/d ∈ (300, 600) are reported in
Table 4. Surprisingly, despite the discussed differences among the time behaviors,
the mean values of the global forces and their standard deviations show fair
agreement. A maximum difference of 8.8% between VOF-FVM and LS-FVM
is appreciated on the mean CD and, similarly, of 9.8% between the same solvers
on CL. Regarding the drag coefficient, the standard deviation of the δ+ SPH’s is
larger than the LS-FVM’s (16%) and the VOF-FVM’s (29.5%), whereas the lift
coefficients show almost identical standard deviations.
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Figure 18: Benchmark III. Lyapunov exponent evaluated by the δ-SPH scheme.

7. δ-SPH versus δ+-SPH: relevance of the Shifting technique for capturing
the meta-stable condition

Motivated by this paper aiming to contribute to the Computers & Fluids
“Special issue on Theoretical, numerical and computational advances of the SPH
method for solving fluid problems”, a dedicated analysis has been carried out
regarding the effect of the improvements that the δ+ variant of the SPH formulation
SPH solver has on the performance and accuracy of the solver.

In previous sections, it has been shown that the δ+-SPH model is able to
provide results in qualitative and fair quantitative agreement with those output
by the Finite Volume Methods. In (Bouscasse et al., 2017), it was remarked that
the δ-SPH can also be used for this kind of viscous free-surface flows. However,
after a more detailed analysis, it has been found that the results for the Benchmark
III provided by the δ-SPH are dramatically different than the solutions presented
in subsection 6.3.

Figure 18 shows the contour plot of the Lyapunov exponents obtained with
the δ-SPH for the Benchmark III. As it can be seen, the flow pattern is more
similar to the one of the Benchmark II, rather than to the flow pattern related to
the metastable condition.

Looking at the force coefficient time histories of Figure 19, it is evident that,
after the transient stage, the δ-SPH reaches an almost steady state, thus implying
that the metastable mode is absent and that the wake does not present any relevant
oscillations in the near-field.

Figure 20 depicts an enlarged view of the flow field behind the cylinder. The
left plot corresponds to δ-SPH while the right one to δ+-SPH, both at tU/d = 213.
The distribution of particles appears quite irregular for the former, especially in
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Figure 19: Benchmark III. Time histories of the Drag (top) and Lift (bottom) coefficients
calculated by δ+-SPH (solid line) and δ-SPH (dashed line).

Figure 20: Benchmark III. Enlarged view of the particles distributions behind the
cylinder at dimensionless time tU/d = 213. The colors are representative of the vorticity

field evaluated by δ-SPH (left) and by δ+-SPH (right).

the neighborhood of the spilling breaking wave. This is not the case for δ+-SPH,
for which the Particle Shifting Technique assumes a crucial role in regularizing
the particle distribution. Because of the noisy particle distribution, also the δ-SPH
vorticity field is more irregular with respect to the one evaluated with δ+-SPH
(the reader interested on this issue is referred to Khayyer et al. (2017); Gotoh
and Khayyer (2018)). On top of these differences, it also appears that the δ-
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SPH solution predicts a jet-flow over the cylinder with a larger steepness than
the one obtained using a particle shifting technique. This is a key-point since
the metastable model is possible only if the jet-flow over the cylinder is almost
horizontal.

In order to better understand the relevance of the results rendered by δ-SPH
for Fr = 0.55 and h/d = 0.4, a series of tests with Fr and h/d around such
reference values were run. The specific objective as to to check whether a
metastable condition could be captured by this SPH model. However, for none
of the tests performed, not discussed for the sake of brevity in detail in this work,
the metastable states appeared.

As a final reflection for this section, the results reported are an interesting
example of how the test-cases suggested in this work can be useful for validating
other CFD solvers.

8. Conclusions

The research question motivating this paper has been whether it is possible to
set relevant, robust and reliable benchmarks for viscous free-surface flows with
complex free-surface dynamics. The method proposed for finding the answer
to this question has consisted of selecting three conditions leading to increasing
flow complexity, and to simulate them using three well established solvers, based
on diverse numerical techniques, namely δ+-SPH and Finite Volume Method,
the latter with either Level-Set or Volume-of-Fluid algorithms to track the free
surface.

Three different solvers, based on those approaches, have been compared
through benchmarks of increasing complexity, established on the common
problem of a submerged horizontal cylinder in an uniform current perpendicular
to its axis, with the Froude number taking the values 0.3, 1.0 and 0.55, and the
submergence ratio being set as 0.4, i.e. with the cylinder close to the undisturbed
free surface.

In the first two benchmarks, i.e. with Froude numbers 0.3 and 1.0, the
solvers have shown fair agreement in forces and vorticity fields, both during the
periodic steady state and also during the initial transient stages. In particular, the
benchmark II (Fr = 1.0) has evidenced that the single or two-phase approaches do
not affect the agreement between the three numerical models.

The last case, with Froude number equal to 0.55, has revealed to be the most
challenging due to the onset of the so-called two metastable states in the cylinder
wake, in which the negative vorticity tongue either remains horizontal, thus
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blocking the shedding of alternate vortices, or gets projected downstream, leading
to alternate shedding and an unsteady free-surface dynamics with breaking. The
periodic switch between these states leads to the presence of a low frequency
harmonic in the time-histories of the force coefficients. This phenomenon had
been previously described in experiments at a larger Reynolds number and in
simulations but quantitative related measures were missing.

In this benchmark, the three solvers are able to capture the metastable
dynamics and output similar mean values for the force coefficients. However,
the choice of the numerical approach seems to slightly affect the time behavior
of the global forces, particularly the intensity and frequency of the referred
subharmonic. In any case, the three solvers output a subharmonic frequency
with Strouhal numbers around 0.02, which makes the ratio between the main
harmonic frequency and the subharmonic to be consistently of order 10. This
result can serve as reference for other solvers and opens the question of how it
depends on the parameters in hand, namely Reynolds number, Froude number
and submergence ratio.

For this particular case (Fr = 0.55, h/d = 0.4), motivated by this paper aiming
to contribute to the Computers & Fluids “Special issue on Theoretical, numerical
and computational advances of the SPH method for solving fluid problems”, a
dedicated analysis has been carried out regarding the effect of the improvements
that the δ+ variant of the SPH formulation has on the performance and accuracy of
the solver. It has been shown that particle shifting, incorporated in the δ+ variant,
is indispensable for capturing the metastable states dynamics, thus becoming
necessary for approaching the kind of problems treated in the paper. This seems
to the authors an important outcome of the present research for SPH practitioners.

Overall, the benchmarks proposed can be considered, first, relevant, as they
deal with the flow around cylinders, one of the most representative configurations
in Engineering Fluid Mechanics; they can be considered, second, robust, since,
together, they encompass a family of related flows wide enough to be comparable
with solutions from multiple solvers; finally, the benchmarks can be considered
reliable because they include solutions obtained with well established solvers that
display the same qualitative features, and similar enough quantitative outcomes
related to local and global quantities.

Considering these points, the benchmarks can be useful for the hydraulic,
marine, and coastal engineering CFD communities, providing them with reference
data for the validation of single and multi-phase Navier-Stokes solvers adopted in
these contexts. At the same time, small but noticeable local and global differences
are present, originated by the difficulties of the numerical methods to capture the
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highly non-linear interactions between the vortex wake and the free surface. A
better understanding of these difficulties, together with a number of side aspects
referred in the text, are left for future work.
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