A Deep Learning Approach for Hepatic Steatosis
Estimation from Ultrasound Imaging

- 1[0000—0003—2022—0804 : :2[0000—0002—9779—2731
Sara Colantonio®! I, Antonio Salvati2! I

Claudia Caudai![0000-0002-1590—-7890] " Ferryccio
2,3,4,5(0000-0001-9942-0328] [ aura De Rosa2610000-0002-6030-8483] )\ [aria
Antonietta Pascalil[0000—0001—7742—8126]
Glermanese ! [0000—0002—7814—5280]
2,3[0000—0001—8364—9152]

Bonino
, Danila

, Maurizia Rossana
Brunetto , and Francesco Faita6[0000—0002—6201—1843]

! Institute of Information Science and Technologies, National Research Council, Pisa,

Italy
2 Hepatology Unit, Pisa University Hospital, Italy
3 Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
4 Fondazione Italiana Fegato, AREA Science Park, Campus Basovizza, Trieste, Italy
5 IRCSS SDN, Naples, Italy,
6 Institute of Clinical Physiology, National Research Council, Pisa, Italy

Abstract. This paper proposes a simple convolutional neural model as
a novel method to predict the level of hepatic steatosis from ultrasound
data. Hepatic steatosis is the major histologic feature of non-alcoholic
fatty liver disease (NAFLD), which has become a major global health
challenge. Recently a new definition for FLD, that take into account the
risk factors and clinical characteristics of subjects, has been suggested;
the proposed criteria for Metabolic Disfunction-Associated Fatty Liver
Disease (MAFLD) are based on histological (biopsy), imaging or blood
biomarker evidence of fat accumulation in the liver (hepatic steatosis),
in subjects with overweight/obesity or presence of type 2 diabetes mel-
litus. In lean or normal weight, non-diabetic individuals with steatosis,
MAFLD is diagnosed when at least two metabolic abnormalities are
present. Ultrasound examinations are the most used technique to non-
invasively identify liver steatosis in a screening settings. However, the di-
agnosis is operator dependent, as accurate image processing techniques
have not entered yet in the diagnostic routine. In this paper, we dis-
cuss the adoption of simple convolutional neural models to estimate the
degree of steatosis from echographic images in accordance with the state-
of-the-art magnetic resonance spectroscopy measurements (expressed as
percentage of the estimated liver fat). More than 22,000 ultrasound im-
ages were used to train three networks, and results show promising per-
formances in our study (150 subjects).

Keywords: ultrasound (US) - medical imaging - convolutional neural
network - hepatic steatosis.



2 S. Colantonio et al.

1 Introduction

Hepatic steatosis is the major histologic feature of MAFLD, associated with
other liver diseases, as well as to type 2 diabetes, cardiovascular disease, chronic
kidney disease, and some types of extrahepatic malignancies; MAFLD is diag-
nosed when at least two metabolic abnormalities are present [7,6,18]. Hepatic
steatosis is due to the accumulation of fat within the liver and its association
with inflammation, steatohepatitis causes the progression of fibrosis, to cirrhosis
and hepatocellular carcinoma [8, 11]. Therefore, the early detection and accurate
quantification of steatosis is an essential task for prevention and monitoring of
disease progression.

Liver biopsy is nowadays the standard reference diagnostic method to assess
steatosis [2], though it represents an invasive procedure and it may be prone to
errors, due to sampling issues in case of dishomogeneous intrahepatic distribu-
tion. To date, among the noninvasive modalities for the quantitative assessment
of steatosis, the most reproducible and effective one is based on Magnetic Reso-
nance Spectroscopy (MRS), which provides a sensitive, accurate and quantitative
evaluation of liver fat content, the so-called H-MRS index, by using non-ionizing
radiation [9]. An extensive study has demonstrated a high correlation between
H-MRS index and biopsy results (Spearman’s nonparametric correlation coef-
ficient rs = 0.9) [5]. Hence, this modality is currently considered as the non-
invasive gold-standard. Nevertheless, MRS is an expensive diagnostic procedure,
and MRS devices are relatively scarcely available, thus preventing the adoption
of MRS in daily clinical settings. On the other hand, UltraSound (US) imaging
represents a valid approach for the assessment of liver steatosis, as demonstrated
in previous studies [13]. Further to this, US is non-invasive, non-ionizing, inex-
pensive and widely available modality, which may fit also screening purposes.
Recently, some studies have proposed quantitative assessment of hepatic steato-
sis based on ultrasound imaging [17, 19, 12]. In these works, the US-based method-
ologies are generally compared to the H-MRS index. Among these, one of the
most interesting result has been published in 2018 by Di Lascio et al. [10]: the
authors propose and discuss the Steato-Score, a fat liver index representative of
intra-hepatic fat content, which is defined by combining five different ultrasound
parameters, and showed a good correlation with the H-MRS index (adjusted
coefficient of determination R? = 0.72).

Artificial intelligence techniques have recently emerged as the leading tool
in various research fields, and especially in general imaging analysis and com-
puter vision, for several tasks, such as object detection, segmentation, and clas-
sification. Machine and deep learning shows huge potential for enabling the au-
tomation of the NAFLD diagnosis and staging, hence providing a viable alterna-
tive solution to traditional biomedical image processing [14]. Concerning hepatic
steatosis, generally deep learning methods have been used not to estimate the
liver fat fraction but to perform a classification, e.g. to discriminate normal liver
vs. non-alcoholic fatty liver diseases (NAFLD, fat fraction > 5%) [3,16, 1,4, 8]:
most of them show quite desirable performances (about 95% of accuracy). Even
if a coarse classification (e.g. binary classification) could support screening on
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large population, it is not enough accurate to have a clinical impact, e.g. for
patient monitoring. Also, some of the architecture proposed are quite complex
(training up to 22 layers [1], or using a transfer learning approach [3]) and are
trained using small datasets (made of 63 subjects in [1], and of 55 obese patients
in [3]); deeper is the learning architecture, larger should be the dataset, and us-
ing very few data could lead to unstable models (due to over-parametrization).
The work of Han et al. [8], to best of our knowledge, is the most promising
in this research line, developing a quantitative analysis of raw radiofrequency
(RF) ultrasound signal, based on two one-dimensional CNN algorithms: a bi-
nary classifier and a fat fraction estimator. The classifier yielded a classification
accuracy (96%); while the fat fraction estimator predicted fat fraction values
that positively correlated with proton MRI (r = 0.85; p < .001).

The aim of the present work is to provide a CNN model able to accurately
estimate from US images the liver fat fraction; the accuracy of the fat estimation
is assessed with respect to the H-MRS index.

The following Section is devoted to describe the materials and methods of
the present investigation, by including a description of the population study, the
acquisition protocols used to collect the US data, and the preprocessing steps
performed to set the input for the proposed CNN-based method. Section 2.2
provides details of the CNN architectures used in the experimentation, which is
presented in Section 2.3. Results are reported and discussed in Section 3.

2 Materials and Methods

The study population included 150 consecutive patients enrolled the Hepatology
Unit of the University Hospital of Pisa for evidence of hepatic steatosis at the
standard ultrasound examination without with-out increased liver enzymes who
gave their informed consent (their characteristics are reported in 1). Proton MRS
imaging was performed with a MRI scanners (3.0 T) equipped with 32-channel
receiver coils employed on patients in the supine position (Pisa: Philips Ingenia,
Philips Healthcare, Best, Netherlands). The percentage of fat (H-MRS index)
was assessed for each subject, normalizing the fitted signal amplitude of the fat
to the sum of water and fat amplitudes [17]. The population showed different
levels of steatosis: the fat percentage, assessed through the H-MRS index, ranges
from 0.27% to 50.97%.

A mapping between the H-MRS and the classes routinely used in histology
to estrablish the steatosis level has been established in [9] and comprises the
following stratification classes:

class SO corresponds to cases with H-MRS index <= 3.12%
class S1 to cases with H-MRS index > 3.12% and <= 8.77%
class S2 to cases with H-MRS index > 8.77% and <= 13,69%
class S3 to cases with H-MRS index > 13.69%.

In this respect, the distribution of this study population is the following;:
S0: 111 subjects, corresponding to the 74% of the population study;
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Table 1. Characteristics of the study population. Data were expressed as
counts/percentages for categorical variable and mean + standard deviation (sd) for

continuous variables.

n. of subjects % of population
SEX (M:F) 73:77 48.7 : 51.3
mean =+ sd min-max
AGE (years) 53.54 £ 12.66 20.0 - 75.3
BMI (kg/m?) 24.86 + 3.69 15.28 - 33.9
Fat (%) 4.50 £+ 8.01 0.27 - 50.97

S1: 21 subjects, corresponding to the 14% of the population study;
S2: 6 subjects, corresponding to the 4% of the population study;
S3: 12 subjects, corresponding to the 8% of the population study.

2.1 US data acquisition and preprocessing

The ultrasound data were acquired in the center of Pisa. In particular, several
ultrasound images were acquired, using different projections, according to an
acquisition protocol that included the acquisition of an intercostal or subcostal
longitudinal scan view with subject in supine/left lateral position (named HR)
and an oblique subcostal scan view (named AR). The two different scan views
were chosen in such a way that in the first scan the level of ecogenicity of the
ultrasound beam within both the renal and hepatic parenchyma is appreciable
(i.e. the HR view in which the hepatic parenchyma and the right kidney are
clearly visualized) and the second scan is the oblique subcostal scan view showing
the complete liver parenchyma and diaphragm, i.e. the AR view which provides
a view of the attenuation of the ultrasound beam within the liver parenchyma.

Ultrasound clips were acquired at 30 fps and their duration ranges from few
frames to 224 frames, with an average of 114 frames. The clips were processed
by extracting all the frames as gray images, which were centered and cropped
to the size of 360 x 360 pixels. Each frame inherits a label given by the ground
truth value (H-MRS index). Some remarks about the dataset:

(i) Due to the different length of the US clips, and to the uneven distribution of
the H-MRS index values, the resulting datasets (HR and AR) do not have
the same number of images;

(ii) Several images, namely those extracted from the same clip, are very similar
because of the centrality of the sonographic cone and the acquisition with
fixed probe (Fig. 1);



DL for Hepatic Steatosis Estimation 5

Fig. 1. Example of AR view, on the left and HR view, on the right, of the same patient.

(iii) The ground-truth values are not uniformly distributed in the population
study.

As it usually happens, the dataset is quite unbalanced, which makes identifying
the less present classes a challenging task. Nevertheless, the regression approach
may help coping with this unbalance, as the CNN model learns to approximate
the H-MRS index instead of the class.

2.2 The CNN architecture

Each view was treated independently using both a single-view architecture, and
coupled into a two-branch architecture, in which both AR and HR views are
used to train the predictive model. This was done to understand whether the
peculiarity of each single view contributes with informative content to predict
the H-MRS index.

We designed two CNN architectures: a 5-layer CNN and a two-branch CNN.
The first architecture is used to produce two predictive models: one trained on
AR clips, and the other trained on HR clips; the latter architecture is a two-
branch CNN which has been trained on both AR and HR clips:

AR CNN: 5-layer CNN trained on AR images;
HR CNN: 5-layer CNN trained on HR images;
AR & HR CNN: two-branch CNN trained on both AR and HR images.

All the CNNs have been developed in Python (version 3.7.9, Jupyter environ-
ment), using TensorFlow 2.0.0 and the learning library Scikit-learn 0.23.2.

The first architecture, in Fig. 2, is made of five convolutional layers respec-
tively with 8, 16, 32, 64 and 128 filters. The input images, which are one-channel
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gray images of 360 x 360 pixels, are preliminarily regularized through a batch
normalization. The padding is used to control the size of the images. The activa-
tion function is the REctified Linear Unit (ReLU) for all the convolutional layers
and for the first fully connected layer, while the last fully connected layer uses a
linear activation function to perform the regression. The maxpooling layers have
size (2,2) and stride 2.

The two-branch CNN;, (in Fig. 3), is made of three pieces: the two branches,
i.e. the AR CNN and the HR CNN, and a final tail, in which the weights asso-
ciated with the best regression performances of the two branches are imported
and concatenated, just before the fully connected layers: the last fully connected
layer returns the regression on the subject’s steatosis level.

In order to finalize the best architecture, many attempts have been made us-
ing: different hyperparameters, such as the learning rate and kernel size; the ac-
tivation functions relu, elu, prelu, and swish; normalization L1, L2 and dropout;
and different kinds of weight initialization. It resulted that the model was not
sensitive to such changes. On the other hand, the size and number of convolu-
tional layers and the presence of a fully connected layer before the last regression
layer proved to be very important.

2.3 Model Training and Test

To each subject we associate the ultrasound clips (for each view) and the cor-
responding H-MRS index. This allows us to test the trained model on images
extracted from different subjects, hence to assess the model performances on
never-before-seen cases.

The test set is made selecting 10 patients out of 150 (resulting in 802 AR
and 998 HR images). The selection was performed manually in order to have the
same distribution of disease severity as the whole dataset. In more details the
test set is made of: 6 cases of SO class, 2 of S1 class, 1 of S2 and 1 of S3.

The remaining 140 subjects (13,406 AR and 16,496 HR images) were used
to train independently the AR CNN and the HR CNN.

Concerning the training, the Adam optimizer, using its default parameters
and the mean squared error as loss function, was used to optimize the gradient
computation; all the three models have been initialized with random weights,
batch size was set to 50; the number of epochs was set to 30, using the early-
stopping criterion (patience = 5) to prevent overfitting.

We adopted a stratified 4-fold cross-validation, recommended for regression
on unbalanced datasets [15]. The values of the validation loss for the four sets
of the 4-fold cross-validation are reported in Table 2. Weights associated with
best performances (set 1 for AR and set 4 for HR) have been imported into the
two-branch architecture and used for a paired regression on the two views (Fig.
3). Finally, we evaluated the performance of the trained models using the test
set of never-seen-before 10 subjects.

Summarizing, we trained three models to predict the hepatic steatosis level
from US images: the CNN in Fig. 2 trained on AR data, the CNN in Fig. 2
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Fig. 2. Sketch of the CNN architecture used for the estimation of hepatic steatosis
level from the AR views and from the HR view.
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Fig. 3. Sketch of the two-branch architecture used for the estimation of hepatic steato-
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trained on HR, data, and the two-branch architecture (Fig. 3) trained on paired
AR and HR data.

3 Results and Discussion

In this work, we investigate if convolutional neural network architectures could
learn to predict the H-MRS index from US sequences. For each subject, two
US clips were acquired from different projections, in order to understand which
one of the two is the most informative, and if the two projections may convey
complementary information about the liver tissue composition.

Performances of the three approaches on the test set have been computed
and reported in Table 3. The AR CNN model, trained on images representing
full parenchyma, achieves the best regression performances compared to the HR
CNN model, with a minimun RMSE of 1.11 and an error standard deviation of
0.77. Also the concatenated architecture, AR & HR CNN, allows to achieve very
good results in regression (RMSE is 1.32 with a standard deviation of 1.11), but
it does not outperform the results obtained with the AR CNN model.

This leads us to think that the HR clips do not provide additional or com-
plementary information with respect to the information already encoded in the
AR images.

A paired T-test has been used to assess the Pearson correlation between the
H-MRS index and the fat fraction predicted by the AR CNN model at each
frame of the test set, achieving a correlation of 0.983, with a p-value < 0.001.

Table 2. Values of the validation loss for the four sets of the 4-fold cross-validation
for the CNN architectures trained on both views.

Set 1 Set 2 Set 3 Set 4 Mean
AR CNN 1.3274 3.0840 2.2256 2.6277 2.3162
HR CNN 3.5108 2.9160 3.1472 2.1721 2.9365

In order to compare the proposed method with similar approaches, already
mentioned in Section 1, we map the fat-liver score computed on the test set
through the AR CNN, the HR CNN, and the AR & HR CNN in the classes
S0-S3, introduced in [9] and described in Section 2.3. The accuracy of the class-
mapping is 90% for all the trained CNNs.We would like to point out that choosing
any of the CNN does not affect the class-mapping at all, i.e. all the CNNs predict
the same class for each never-seen-before subject, misclassifying only one subject
(which belongs to the less represented group, i.e. S2). Also, the classification is
performed patient-level; the accuracy of 90% would increase performing a frame
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Table 3. The performances of the three CNN models evaluated frame by frame in the
test set (RMSE is the root mean square error).

AR CNN HR CNN AR & HR CNN
RMSE 1.1127 1.4476 1.3197
Error Std Dev 0.7701 1.1757 1.1068

by frame classification, coherently with the metrics showed in Table 3 (RMSE
of 1.11, and error standard deviation 0.77).

We can state that our trained CNNs achieve performances comparable to the
best results in literature. In addition, we strongly believe that further improve-
ments could be achieved by increasing the dimension of the dataset.

Regression performances using H-MRS as Ground Truth

o _|
™
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w | |7 ARCNN
3 -+- HRCNN
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5 8
©
>
Ee] _] S3
2 ~
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— -~
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Fig. 4. Comparison of the regression performances on the test set (computed per sub-
ject).

4 Conclusions

We propose to use the deep learning to evaluate the non-alcoholic hepatic steato-
sis starting from US images and using H-MRS as ground truth. We started with
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simple CNN models to investigate the efficacy of this approach. Experimental
results are encouraging and evidence that even simple models enable quite an ac-
curate steatosis evaluation, even with US images only, without having magnetic
resonance available.

In the near future, additional subjects will be included in the study popu-
lation, allowing for the design of more complex and deep models, as well as for
further testing and better validation of the high reliability of our approach.
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