a2 United States Patent

Frieder et al.

US012067021B2

US 12,067,021 B2
Aug. 20, 2024

(10) Patent No.:
45) Date of Patent:

(54) CACHING HISTORICAL EMBEDDINGS IN
CONVERSATIONAL SEARCH

(71) Applicant: Georgetown University, Washington,
DC (US)

(72) Inventors: Ophir Frieder, Chevy Chase, MD
(US); Ida Mele, Latina (IT);
Christina-Ioana Muntean, San
Giuliano Terme (IT); Franco Maria
Nardini, Portoferraio (IT); Raffaele
Perego, Pisa (IT); Nicola Tonellotto,
Pisa (IT)

(73) Assignee: Georgetown University, Washington,

DC (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 18/172,099
(22) TFiled: Feb. 21, 2023

(65) Prior Publication Data
US 2023/0267126 A1 Aug. 24, 2023

Related U.S. Application Data
(60) Provisional application No. 63/313,069, filed on Feb.

23, 2022.
(51) Int.CL

GOG6F 16/2457 (2019.01)

GOG6F 16/242 (2019.01)

(52) US.CL
CPC ... GOGF 16/24578 (2019.01); GOGF 16/243
(2019.01)

702

(58) Field of Classification Search
CPCccue. GOG6F 16/24578; GOG6F 16/243; GO6F
16/3349; G10L 15/22
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2017/0092264 Al* 3/2017 Hakkani-Tur ... GI10L 15/16

2020/0311683 Al* 10/2020 Chua GO6F 18/22
2022/0100358 Al* 3/2022 Tobias G06Q) 50/184
2022/0172713 Al* 6/2022 Kwatra GIOL 15/26
2022/0230629 Al* 7/2022 Zhu ... GOG6F 40/279

* cited by examiner

Primary Examiner — Mariela Reyes

Assistant Examiner — Fatima P Mina

(74) Attorney, Agent, or Firm — Smith Gambrell &
Russel LLP

(57) ABSTRACT

A method and system are described for improving the speed
and efficiency of obtaining conversational search results. A
user may speak a phrase to perform a conversational search
or a series of phrases to perform a series of searches. These
spoken phrases may be enriched by context and then con-
verted into a query embedding. A similarity between the
query embedding and document embeddings is used to
determine the search results including a query cutoff number
of documents and a cache cutoff number of documents. A
second search phrase may use the cache of documents along
with comparisons of the returned documents and the first
query embedding to determine the quality of the cache for
responding to the second search query. If the results are
high-quality then the search may proceed much more rapidly
by applying the second query only to the cached documents
rather than to the server.

16 Claims, 8 Drawing Sheets

704

1% Utterance]—P[Semantic enrichment]/

1 706

Query cutoff most
similar documents

[

Create 1¢ query
embedding

708

l

Cache cutoff most
similar documents

Calculate similarity
betw. 1% query &

-
i
1% query embedding ¥ |

722

716

{ 2 Utterance]—-[Semantic enrichment]

720

724

Create 2™ query
embedding

Calculate :
8(1¢ query, 2 query)
Tquery dist.] &
5(1% query, least similar

doc in cache)
[search dist.]

726

734 730

Calculate similarity
betw. 2 query &
documents

Cache
results
quality?

Calculate similarity
betw. 2 query &
cache documents

Query cutoff most

similar cached docs
732

Query cutoff most

similar documents

U.S. Patent Aug. 20, 2024 Sheet 1 of 8 US 12,067,021 B2

FIG. 1

US 12,067,021 B2

Sheet 2 of 8

Aug. 20, 2024

U.S. Patent

ABPUL S5V

<9l

90¢ v0¢

JEURIIESIBALID

A —

pus-32eg
YIIEBG [RUOIIRSIBALIOT

\

¢0¢

e

(U ERBALL

Y ﬂ‘ ,

v

907 0C

U.S. Patent Aug. 20, 2024 Sheet 3 of 8 US 12,067,021 B2

300

/302 E €

306 (o

302

308

306

FIG. 3

U.S. Patent Aug. 20, 2024 Sheet 4 of 8 US 12,067,021 B2

Process 1: The CACHE pseudo-code

Input :ametric index M, a metric cache C, a query cutoff &,
a cache cutoff k_, a query embedding

Output : a results set R
1 if Empty(C) or LowQuality(, C) then
2 R —NNWM, P, k.)
3 Insert(C, R)
4 R NN, 1, k)

5 return R

FIG. 4

US 12,067,021 B2

Sheet 5 of 8

Allg. 20, 2024

U.S. Patent

T

S "DOid

U.S. Patent Aug. 20, 2024 Sheet 6 of 8 US 12,067,021 B2

FIG. 6

U.S. Patent

15t Utterance

—

Query cutoff most
similar documents

Cache cutoff most
similar documents

1%t query embedding

27 Utterance

720

Aug. 20, 2024

Sheet 7 of 8

US 12,067,021 B2

\.

-

734

N

736

Calculate similarity
betw. 2" query &
cache documents

A 4

Query cutoff most
similar cached docs

732

Query cutoff most
similar documents

\4

N

Cache

results
quality?

~ 704
Semantic enrichment L
v . 706
Create 1% query 4
embedding
708
710 L
A 4 /7
\/ J
Calculate similarity
betw. 1%t query & Documents
documents
J/
722
)
Semantic enrichment
l J
s N\ 724
Create 2™ query e
embedding)
A 4
Calculate :
5(1%t query, 2™ query) 726
[query dist.] &
56(1% query, least similar
doc in cache)
[search dist.]
730
A 4 /

documents

Calculate similarity
betw. 2" query &

A

FIG. 7

U.S. Patent Aug. 20, 2024 Sheet 8 of 8

US 12,067,021 B2

800
COMPUTING DEVICE

808
NETWORK

802 804 806
INPUT/ cPU NETWORK
OUTPUT LA A ADAPTER
810
MEMORY
812

CACHED DOCUMENTS

814
CACHED QUERIES

816
SEARCH RESULTS

818
ALGORITHMS TO EVALUATE QUALITY

820
VISUALIZATION ALGORITHMS

824
OPERATING SYSTEM

850
SERVER

FIG. 8

US 12,067,021 B2

1
CACHING HISTORICAL EMBEDDINGS IN
CONVERSATIONAL SEARCH

CROSS-REFERENCE TO RELATED PATENT
APPLICATION

The present patent application claims priority to U.S.
Provisional Patent Application No. 63/313,069, filed on Feb.
23, 2022, and entitled “Caching Historical Embeddings in
Conversational Search,” the disclosure of which is incorpo-
rated in its entirety herein by reference thereto.

BACKGROUND OF THE INVENTION

The present invention relates to conversational search.

Conversational agents, fueled by language understanding
advancements enabled by large contextualized language
models, can help people perform electronic searches. Multi-
turn conversations commence with a main topic and evolve
with differing facets of the initial topic or an abrupt shift to
a new focus, possibly suggested by the content of the
answers returned.

Traditionally, searches have involved keywords only and
lacked any inherent understanding of human language.
Many searches at the present time originate not from a
keyboard but from an audio input device, such as a smart
speaker. In this context, the use of human language to direct
a query is important. When searching using keywords and
lacking context, the search engine must compare whether
each document or website contains the keywords. Since
many searches now originate from a smart speaker or other
device which can detect audio and understand the basics of
human language, the time to perform a search can be
reduced by considering previous searches performed and
also by taking into account the context.

Accordingly, a need arises for techniques that provide a
fast and effective way to perform searches which take into
account the context of the search query and the results of the
previous searches.

SUMMARY OF THE INVENTION

Aspects of the disclosure relate to systems and methods
for improving the efficiency and speed of a conversational
search.

In an embodiment, a method is described for improving
the speed and efficiency of conversational search. The
method receives a first utterance at a server and may convert
the first utterance into a first query in an embedding space.
Then the method performs a first conversational search on a
remote server by comparing a first similarity of the first
query with an embedding of each document of a plurality of
documents. The method then returns a cache cutoff number
of' documents ranked by the first similarity and a query cutoff
number of documents also ranked by the first similarity.
(Note that in most instances the cache cutoff number of
documents (k_) is much greater than the query cutoff number
of documents (k)). The first query and the cache cutoff
number of documents ranked by the first similarity are
stored in a cache on a local device. The method then may
receive a second utterance to perform a second conversa-
tional search and convert the second utterance into a second
query also in the embedding space. The method may then
determine, at the local device, using the second query and
the cache, whether the second query applied to the cache
documents provides low- or high-quality results. If the
second query applied to the cache produces low-quality

25

30

35

40

45

55

2

results, then a second conversational search may be per-
formed at the server by calculating a second similarity
between the second query and an embedding of each docu-
ment of the plurality of documents and returning the query
cutoff number of documents ranked by the second similarity.
If the second query applied to the cache provides high
quality results, then the second conversational search is
performed at the local device on the cache by calculating a
second similarity of the second query with an embedding of
each document of the cache and returning the query cutoff
number of documents ranked by the second similarity. Then
the method may report the search results to the local device.
The search results may comprise the query cutoff number of
documents ranked by the first similarity from the first
conversational search and the query cutoff number of docu-
ments ranked by a second similarity from the second con-
versational search.

In an embodiment, the cache cutoff number is much
greater than the query cutoff number. In an embodiment, the
first utterance and the second utterance may be semantically
enriched by context before being converted into the first
query and the second query. In an embodiment, determining
whether the second query applied to the cache provides low
or high-quality results comprises determining two distances
in embedding space and comparing the two distances. A
query distance in embedding space is determined between
the first query and the second query. A search distance in
embedding space is determined between the first query and
the least similar document of the returned cache cutoff
number of documents from the first conversational search. If
the query distance is less than or equal to the search distance,
then the second query applied to the cache provides high-
quality results. If the query distance is greater than the
search distance, then the second query applied to the cache
provides low-quality results.

In an embodiment, the distance comparison may be
modified to include a hyperparameter. When the hyperpa-
rameter is included, the comparison is between the search
distance and the query distance plus the hyperparameter
rather than the query distance by itself. Thus, if the query
distance plus the hyperparameter is less than or equal to the
search distance, then the second query applied to the cache
provides high-quality results. If the query distance plus the
hyperparameter is greater than the search distance, then the
second query applied to the cache provides low-quality
results. The hyperparameter may be selected based on user
preference.

In an embodiment, the method may be optimized taking
into account at least one of the following evaluation metrics:
a hit rate, an average query response time, a mean average
precision at query cutoff 200, a mean reciprocal rank at
query cutoff 200, a normalized discounted cumulative gain
at query cutoff 3, a precision at query cutoff 1, a precision
at query cutoff 3, a coverage of a query with respect to the
local cache and the query cutoff number, and similar such
measures as known in the art.

In an embodiment, a system is described for improving
the speed and efficiency of conversational search. The
system comprises a server and a local device. The local
device receives a first utterance and a second utterance and
transmits the first utterance and the second utterance to the
server. The server and the local device perform a method.
The server may convert the first utterance into a first query
in an embedding space. The server performs a first conver-
sational search on a remote server by comparing a first
similarity of the first query with an embedding of each
document of a plurality of documents. The server then

US 12,067,021 B2

3

returns a cache cutoff number of documents ranked by the
first similarity and a query cutoff number of documents also
ranked by the first similarity. (Note that in most instances the
cache cutoff number of documents (k_) is much greater than
the query cutoff number of documents (k)). The first query
and the cache cutoff number of documents ranked by the first
similarity are stored in a cache on the local device. The
second utterance may be converted into a second query in
the embedding space. The local device may then determine
using the second query and the cache whether the second
query applied to the cache documents provides low or
high-quality results. If the second query applied to the cache
produces low-quality results, then a second conversational
search may be performed at the sever by calculating a
second similarity between the second query and an embed-
ding of each document of the plurality of documents and
returning the query cutoff number of documents ranked by
the second similarity. If the second query applied to the
cache provides high-quality results, then the second conver-
sational search is performed at the local device on the cache
by calculating a second similarity of the second query with
an embedding of each document of the cache and returning
the query cutoff number of documents ranked by the second
similarity. Then the local device may report the search
results. The search results may comprise the query cutoff
number of documents ranked by the first similarity from the
first conversational search and the query cutoff number of
documents ranked by a second similarity from the second
conversational search.

In an embodiment, the cache cutoff number is much
greater than the query cutoff number. In an embodiment, the
first utterance and the second utterance may be semantically
enriched by context before being converted into the first
query and the second query. In an embodiment, determining
whether the second query applied to the cache provides low
or high-quality results comprises determining two distances
in embedding space and comparing the two distances. A
query distance in embedding space is determined between
the first query and the second query. A search distance in
embedding space is determined between the first query and
the least similar document of the returned cache cutoff
number of documents from the first conversational search. If
the query distance is less than or equal to the search distance,
then the second query applied to the cache provides high
quality results. If the query distance is greater than the
search distance, then the second query applied to the cache
provides low quality results.

In an embodiment, the distance comparison may be
modified to include a hyperparameter. When the hyperpa-
rameter is included, then the comparison is between search
distance and the query distance plus the hyperparameter
rather than the query distance by itself. Thus, if the query
distance plus the hyperparameter is less than or equal to the
search distance, then the second query applied to the cache
provides high quality results. If the query distance plus the
hyperparameter is greater than the search distance, then the
second query applied to the cache provides low-quality
results. The hyperparameter may be selected based on user
preference.

In an embodiment, the system may be optimized taking
into account at least one of the following evaluation metrics:
a hit rate, an average query response time, a mean average
precision at query cutoff 200, a mean reciprocal rank at
query cutoff 200, a normalized discounted cumulative gain
at query cutoff 3, a precision at query cutoff 1, a precision
at query cutoff 3, a coverage of a query with respect to the

30

40

45

60

4

local cache and the query cutoff number, and similar such
measures as known in the art.

BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features of
the present invention can be understood in detail, a more
particular description of the invention, briefly summarized
above, may be had by reference to embodiments, some of
which are illustrated in the appended drawings. It is to be
noted, however, that the appended drawings illustrate only
typical embodiments of this invention, and the invention
may admit to other equally effective embodiments.

FIG. 1 illustrates a visualization of conversational queries
and relevant documents.

FIG. 2 illustrates an exemplary architecture of a conver-
sational search system with client-side caching.

FIG. 3 illustrates overlapping hyperballs with embed-
dings.

FIG. 4 illustrates an example of the CACHE method in
pseudo-code

FIG. 5 illustrates a correlation between t,, vs. cov,,(q) for
some queries.

FIG. 6 illustrates a correlation between T,, vs. cOV,4,(q)
for some queries.

FIG. 7 illustrates a flow chart of the process.

FIG. 8 illustrates an exemplary electronic computing
device.

Other features of the present embodiments will be appar-
ent from the Detailed Description that follows.

DETAILED DESCRIPTION

In the following detailed description of the preferred
embodiments, reference is made to the accompanying draw-
ings, which form a part hereof, and within which are shown
by way of illustration specific embodiments by which the
invention may be practiced. It is to be understood that other
embodiments may be utilized and structural changes may be
made without departing from the scope of the invention.
Electrical, mechanical, logical, and structural changes may
be made to the embodiments without departing from the
spirit and scope of the present teachings. The following
detailed description is therefore not to be taken in a limiting
sense, and the scope of the present disclosure is defined by
the appended claims and their equivalents.

The present disclosure relates to improving the efficiency
and speed of performing a search query of a set of docu-
ments by including human language context and by includ-
ing documents retrieved from prior search queries.

A user drives an interactive information-discovery pro-
cess by submitting a query about a topic followed by a
sequence of more specific queries, possibly aimed at clari-
fying some aspects of the topic. Documents relevant to the
first query are often relevant and helpful in answering
subsequent queries. This observation suggests the presence
of temporal locality in the lists of results retrieved by
conversational systems for successive queries issued by the
same user in the same conversation. FIG. 1 illustrates a
t-SNE bi-dimensional visualization of dense representations
for the queries and the relevant documents of five manually
rewritten conversations from the Text Retrieval Conference
2019 Conversational Assistance Track dataset (TREC 2019
CASsT dataset). As illustrated, there is a clear spatial clus-
tering among queries in the same conversation, as well as a
clear spatial clustering of relevant documents for these
queries.

US 12,067,021 B2

5

The locality may be exploited to improve efficiency in
conversational systems by caching the query results on the
client side. Rather than caching pages of results answering
queries likely to be resubmitted, the documents are cached
about a topic, as their content will likely be likewise relevant
to successive queries issued by the user involved in the
conversation.

Topic caching effectiveness rests on topical locality. Spe-
cifically, if the variety of search domains is limited, the
likelihood that past, and hence potentially cached, docu-
ments are relevant to successive searches is greater.

To capitalize on the deep semantic relationship between
conversation queries and documents, recent advances in
Dense Retrieval (DR) models are leveraged. In the DR
setting, documents are represented by low-dimension
learned embeddings stored for efficient access in a special-
ized metric index, such as that provided by the FAISS
toolkit. Given a query embedded in the same multi-dimen-
sional space, online ranking is performed by means of a
top-k nearest neighbor similarity search based on a metric
distance. In the worst-case scenario, the computational cost
of the nearest neighbor search is directly proportional to the
number of documents stored in the metric index. To improve
the end-to-end responsiveness of the system, a client-side
metric cache is inserted in front of the DR system to reuse
documents retrieved for previous queries in the same con-
versation. Different strategies are investigated for populating
the cache at cold start and updating its content as the
conversation topic evolves.

The metric cache returns an approximate result set for the
current query. Using reproducible experiments based on
TREC CAsT datasets, it is demonstrated that the cache
significantly reduces end-to-end conversational system pro-
cessing times without answer quality degradation. Typically,
a query is answered without accessing the document index
since the cache already stores the most similar documents.
More importantly, the quality of the documents present in
the cache for the current query can be estimated. Based on
this estimate, it is possible to decide if querying the docu-
ment index is potentially beneficial. Depending on the size
of the cache, the hit rate measured on the CAsT conversa-
tions varies between 65% and 75%, illustrating that caching
significantly expedites conversational search by drastically
reducing the number of queries submitted to the document
index on the back-end.

The advances relative to the current state-of-the-art
include:

Capitalizing on temporal locality, a client-side document
embedding cache C is proposed for expediting conversa-
tional search systems;

Means are innovated that assess current cache content
quality necessitating document index access only needed to
improve response quality;

Using the TREC CAsT datasets, an improvement in
responsiveness is demonstrated without accuracy degrada-
tion.

A conversational search system architecture is introduced
and the proposed document embedding cache and the asso-
ciated update strategies are discussed.

A conversational search system enriched with client-side
caching is depicted in FIG. 2. A typical client-server archi-
tecture is adopted where a client supervises the conversa-
tional dialogue between a user (or a user’s device) and a
search back-end running on a remote server 202. A user’s
device 204 (e.g., a mobile phone, a smart speaker, PC, etc)
may maintain a cache 206 on the local device 204. This
cache may comprise recent search queries and also an index

10

20

25

30

35

40

45

50

55

60

65

6

of documents found in recent searches and the embeddings
of the documents found in recent queries.

It is assumed that the conversational back-end uses a
dense retrieval model where documents and queries are both
encoded with vector representations, also known as embed-
dings, in the same multi-dimensional latent space; the col-
lection of document embeddings is stored, for efficient
access, in a search system supporting nearest neighbor
search, such as a FAISS index. Each conversational client,
possibly running on a mobile device, deals with a single user
conversation at a time, and hosts a local cache aimed at
reusing, for efficiency reasons, the documents previously
retrieved from the back-end as a result of the previous
utterances of the ongoing conversation. Reusing previously
retrieved results, namely cached results, eliminates the addi-
tional index access, reducing latency and resource load.
Specifically, the twofold goal of the cache is: 1) to improve
user-perceived responsiveness of the system by promptly
answering user utterances with locally cached content; 2) to
reduce the computational load on the back-end server by
lowering the number of server requests as compared to an
analogous solution not adopting client-side caching.

In an embodiment, the client may handle the user con-
versation by semantically enriching those utterances that
lack context and by encoding the rewritten utterance in the
embedding space. Online conversational search is per-
formed in the above settings using the top k nearest neighbor
queries based on a metric distance between the embedding
of the utterance and those of the indexed documents. The
conversational client likewise queries the local cache or the
back-end for the most relevant results answering the current
utterance and presents them to the requesting user. The first
query of a conversation is always answered by querying the
back-end index, and the results retrieved are used to popu-
late the initially empty cache. For successive utterances of
the same conversation, the decision of whether to answer by
leveraging the content of the cache or querying the remote
index is taken locally as explained later. The notation used
is introduced, continuing with a mathematical background
on the metric properties of queries and documents, and with
a detailed specification of the client-side cache together with
an update policy based on the metric properties of query and
document embeddings.

Preliminaries

Each query or document is represented by a vectorin R/,
hereinafter called an embedding. Let D={d,, d,, ..., d,}
be a collection of n documents represented by the embed-
dings ®={¢1, ¢2, . .., ¢n}, where = £(d,) and £:D— R’
is a learned representation function. Similarly, let q, be a
query represented by the embedding ya= £(q,) in the same
multi-dimensional space R’.

Similarly, functions to compare embeddings exist, includ-
ing inner product and Euclidean norm. STAR is used to
encode queries and documents. Since STAR embeddings are
fine-tuned for maximal inner-product search, they cannot
natively exploit the plethora of efficient algorithms devel-
oped for searching in Euclidean metric spaces.

To leverage nearest neighbor search and all the efficient
tools devised for it, maximum inner product similarity
search between embeddings can be adapted to use the
Euclidean distance. Reliance on other distance measures
known in the art is likewise within the scope of this
invention. Given a query embedding {,. R’ and a set of
document embeddings ®={¢,} with ¢[R/, the following
transformation is applied from R’to R™

BT, 0T B 07 Ll P A Bq 1

US 12,067,021 B2

7

where M=max,|0,||. In doing so, the maximization prob-
lem of the inner product (W, 6,) becomes exactly equiva-
lent to the minimization problem of the Euclidean distance
[\W_—0,|. In fact, it can be shown explicitly that:

min| 8 P=min((7,>+B,P-2{ 8)=
min2-2% ¥,.8/M))=max { v 0i)

Hence, hereinafter the task of online ranking is considered
with a dense retriever as a nearest neighbor search task based
on the Euclidean distance among the transformed embed-
dings ¥ and § in R™'. Inmitively, assuming 1=2, the
transformation (1) maps arbitrary query and document vec-
tors in R? into unit-norm query and document vectors in
R3, i.e., the transformed vectors are mapped on the surface
of the unit sphere in R>.

To simplify the notation the bar symbol from the embed-
dings is dropped: Yy—Wy and §—0, and it is assumed that the
learned function £ encodes queries and documents directly
in R™' by also applying the above transformation.
Nearest Neighbor Queries and Metric Distances

Let & be a metric distance function, 8: R*'x R*'— R,
measuring the Euclidean distance between two embeddings
R™*! of valid documents and queries; the smaller the dis-
tance between the embeddings, the more similar the corre-
sponding documents or queries are.

Given a query q,, retrieve NN(q,, k), i.e., the k Nearest
Neighbor documents to q, query according to the distance
function 8(,*). In the metric space R~ NN(q,, k) identi-
fies an hyperball B , centered on Y= £(q,) and with radius
r,, computed as:

Eq. 1b

r; = max Eq. 2

d;ENN(qq.k)

W, L)

The radius r, is thus the distance from q, of the least
similar document among the ones in NN(q,, k). (Without
loss of generality, it is assumed that the least similar docu-
ment is unique, and furthermore that there are not two or
more documents at distance r,, from q_,.)

A new query q,, may now be introduced. Analogously, the
set NN(q,. k) identifies the hyperball B, with radius r,
centered in Y, and including the k embeddings closest to .
If y_#y,, the two hyperballs can be completely disjoint, or
may partially overlap. Now the quantity:

Fp=r—8(WaWs) Eq. 3

may be introduced to detect the case of a partial overlap
in which the query embedding ,, falls within the hyperball
B . i.e., 8(y,,W,)<r,, or, equivalently, £,>0, as illustrated in
FIG. 3.

FIG. 3 illustrates a set of hyperballs B _, B,, and B, for
queries in the embedding space 300. Each hyperball is
centered on the appropriate query V¥, or y,, with a radius of
r,, 1,, or f,. The black squares 302, 304, 306, and 308 each
represent an embedding of a document found in the search.
The hyperball B , contains all the document embeddings
302, 304, 306, and 308 in this example. Thus, all the
documents 302, 304, 306, and 308 would be returned in the
search results for the query . The least similar document
304 to the query of y,, is shown on the circumference of the
hyperball B . The documents labeled as 302 are contained
within the hyperball B _, not on the edges and also not

contained within the other hyperballs B, or B,. Some
documents 306 are contained within the hyperball B , and

other documents 308 within the hyperball B ,. (Note that

20

25

30

35

40

45

50

60

65

8

FIG. 3 approximates the metric properties in a local neigh-
borhood of y, on the (I4+1)-dimensional unit sphere, i.e., in
its locally-Euclidean 1-dimensional tangent plane.)

In this case, there always exists a hyperball B ,, centered

on , with radius #, such that B ,< B . As shown in FIG.
3, some of the documents 302, 304, 306, and 308 in NN(q_,.
k), retrieved for query q,, may belong also to NN(q,, k)

(e.g., documents 308 contained within hyperball B ,.) Spe-
cifically, these documents 308 are all those within the

hyperball B ,. Note that there can be other documents in B,
whose embeddings are contained in B ,, (e.g., documents 306
contained within hyperball B ,), but if such embeddings are

in B ,, then it is guaranteed to follow that the corresponding
documents are the most similar to g, among all the docu-
ments in D . Thus, any documents 308, which are contained
by hyperball B ,, centered on ,, with radius t,<r,, must be
closer to the center (y,) than the other documents in
hyperball B , (i.e., documents 306).

The results described elsewhere in this disclosure show
that the documents relevant for successive queries in a
conversation overlap significantly. To take advantage of
such overlap, a cache for storing historical embeddings is
now introduced that exploits the above metric properties of
dense representations of queries and documents. Given the
representation of the current utterance, the proposed cache
aims at reusing the embeddings already retrieved for previ-
ous utterances of the same conversation for improving the
responsiveness of the system. In the simplistic example
depicted in FIG. 3, the cache would answer query q, by
reusing the embeddings in B, already retrieved for q_,.

A Metric Cache for Conversational Search

Since several queries in a multi-turn conversation may
deal with the same broad topic, documents retrieved for the
starting topic of a conversation might become useful also for
answering subsequent queries within the same conversation.
The properties of nearest neighbor queries in metric spaces
discussed in the previous subsection suggest a simple, but
effective way to exploit temporal locality using a metric
cache C deployed on the client-side of a conversational DR
system.

The system for CAChing Historical Embeddings
(CACHE) is specified in Process 1, depicted in FIG. 4. The
system receives a sequence of queries belonging to a user
conversation and answers them returning k documents
retrieved from the metric cache C or the metric index
- containing the document embeddings of the whole
collection. When the conversation is initiated with a query g,
whose embedding is , the cache is empty (line 1 of Process
1). The main index ..#, possibly stored on a remote back-
end server, is thus queried for top NN(.#, y, k) docu-
ments, with cache cutoff k_>>k (line 2). Those k. documents
are then stored in the cache (line 3). The rationale of using
a cache cutoff k. much larger than the query cutoff k is that
of filling the cache with documents that are likely to be
relevant also for the successive queries of the conversation,
i.e., possibly all the documents in the conversation clusters
depicted in FIG. 1. The cache cutoff k, relates in fact with
the radius r, of the hyperball B , illustrated in FIG. 3: the
larger k. the larger r, and the possibility of having docu-
ments relevant to the successive queries of the conversation
in the hyperball B, When a new query of the same
conversation arrives, the quality of the historical embed-
dings stored in the cache for answering it is estimated. This
is accomplished by the function LowQuality (y, €) (line 1).
If the results available in the cache € are likely to be of low

US 12,067,021 B2

9

quality, the query is issued to the main index .# with cache
cutoff k_ and adds the top k. results to C (line 2-3). Even-
tually, the cache is queried for the k nearest neighbor
documents (line 4), and return them (line 5).

Cache quality estimation. The quality of the historical
embeddings stored in € for answering a new query is
estimated heuristically within the function LowQuality(y,
C) called in line 1 of Process 1 (see FIG. 4). Given the
embedding of the new query, the query embedding v,
closest to W among the ones present in C , is first identified,
ie.,

W, = argmind(yy, ¥) Eq. 4

eC

Once v, is identified, the radius r, of the hyperball B _,
depicted in FIG. 3, is considered and Eq. 3 is used to check
if y falls within B . If this happens, it is likely that some of
the documents previously retrieved for y, and stored in
C are relevant even for y. Specifically, the quality estima-
tion heuristics considers the value f=r —8(y,,, ¥,) introduced
in Eq. 3. If #>e, with €20 being a hyperparameter of the
cache, y is answered with the k nearest neighbor documents
stored in the cache, i.e., the NN(C, vy, k) documents;
otherwise, the main embedding index in the conversational
search back-end is queried and the cache is updated accord-
ingly. This quality test has the advantage of efficiency; it
simply requires computing the distances between W and the
embeddings of the few queries previously used to populate
the cache for the current conversation, i.e., the ones that
caused a cache miss and were answered by retrieving the
embeddings from the back-end (lines 2 and 3 of Process 1
in FIG. 4).

In addition, by changing the single hyperparameter E that
measures the distance of a query from the internal border of
the hyperball containing the closest cached query, the qual-
ity-assessment heuristic for the specific needs can be easily
tuned. In the experimental results section of this disclosure,
a simple but effective technique for tuning € to balance the
effectiveness of the results returned is proposed and dis-
cussed and the efficiency improvement with caching is
introduced.

The research questions and the experimental setup aimed
at evaluating the proposed CACHE system in operational
scenarios is now presented. That is, both the accuracy,
namely not hindering response quality, and efficiency,
namely a reduction of index request time, of a conversa-
tional search system that includes CACHE are assessed. The
reference baseline is exactly the same conversational search
system illustrated in FIG. 2 where conversational clients
always forward the queries to the back-end server managing
the document embedding index.

Example Embodiments

In an embodiment, the conversational search system may
use STAR to encode CAsT queries and documents as
embeddings with 769 dimensions. (STAR encoding uses
768 values but one dimension is added to each embedding
by applying the transformation in Eq. 1.) The document
embeddings may be stored in a dense retrieval system
leveraging the FAISS library to efficiently perform similarity
searches between queries and documents. The nearest neigh-
bor search is exact, and no approximation/quantization
mechanisms are deployed.

20

25

30

35

40

45

50

55

60

65

10

Datasets and dense representation. The experimental
evaluations of the system and method described below are
based on the resources provided by the 2019, 2020, and 2021
editions of the TREC Conversational Assistance Track
(CAsT). The CAsT 2019 dataset consists of 50 human-
assessed conversations, while the other two datasets include
25 conversations each, with an average of 10 turns per
conversation. The CAsT 2019 and 2020 include relevance
judgements at passage level, whereas for CAsT 2021 the
relevance judgments are provided at the document level. The
judgments, graded on a three-point scale, refer to passages
of the TREC CAR (Complex Answer Retrieval), and MS-
MARCO (MAchine Reading COmprehension) collections
for CAsT 2019 and 2020, and to documents of
MS-MARCO, KILT, Wikipedia, and Washington Post 2020
for CAsT 20214.

Regarding the dense representation of queries and pas-
sages/documents, the caching strategy is orthogonal with
respect to the choice of the embedding. The state-of-the-art
single-representation models proposed in the literature are:
DPR, ANCE, and STAR. The main difference among these
models is how the fine-tuning of the underlying pre-trained
language model, i.e., BERT, is carried out. The embeddings
computed by the STAR model were selected for the experi-
ments since that model employs hard negative sampling
during fine-tuning, obtaining better representations in terms
of effectiveness with respect to ANCE and DPR. For CAsT
2019 and 2020, a STAR embedding was generated for each
passage in the collections, while for CAsT 2021, each
document was encoded, up to the maximum input length of
512 tokens, in a single STAR embedding.

Given the focus on the efficiency of conversational search,
strictly manually rewritten queries were used in these
embodiments and tests. Missing keywords or mentions to
previous subjects, e.g., pronouns, were resolved in these
tests by human assessors.

CACHE Configurations. The end-to-end performance of
the proposed CACHE system on the three CAsT datasets
was measured. CACHE was compared against the efficiency
and effectiveness of a baseline conversational search system
with no caching, always answering the conversational que-
ries by using the FAISS index hosted by the back-end
(hereinafter indicated as no-caching). The effectiveness of
no-caching on the assessed conversations of the three CAsT
datasets represents an upper bound for the effectiveness of
the CACHE system. Analogously, the no-caching baseline
always retrieving documents via the back-end is considered
as a lower bound for the responsiveness of the conversa-
tional search task addressed.

Two different embodiments of the CACHE system were
evaluated:

a static-CACHE: a metric cache populated with the k_
nearest documents returned by the index for the first query
of each conversation and never updated for the remaining
queries of the conversations;

a dynamic-CACHE: a metric cache updated at query
processing time according to Alg. 1, where LowQuality(y,,
C) returns false if f,2€ (see Eq. 3) for at least one of the
previously cached queries, and true otherwise.

The cache cutoff k. is varied in {1K, 2K, 5K, 10K} to
assess the impact of the number of documents in the cache.
Additionally, since conversations are typically brief, (e.g.,
from 6 to 13 queries for the three CAsT datasets considered)
for efficiency and simplicity of design, no space-freeing,
eviction policy was implemented should the client-side
cache reach maximum capacity. Even without eviction, the
amount of memory needed by the dynamic-CACHE to store

US 12,067,021 B2

11

the embeddings of the documents retrieved from the FAISS
index during a single conversation sufficed and presented no
issues. In addition to the document embeddings, to imple-
ment the LowQuality(e,*) function test, the cache records
also the embeddings Y, (the first query) and radius r, (the
distance in embedding space between the first query and the
least similar of the k.. cached documents) of all the previous
queries q, of the conversation answered on the back-end.

Effectiveness Evaluation. The effectiveness of the no-
caching system, the static-CACHE, and the dynamic-
CACHE were assessed by using the official metrics used to
evaluate CAsT conversational search systems: mean average
precision at query cutoff 200 (MAP@200), mean reciprocal
rank at query cutoff 200 (MRR@200), normalized dis-
counted cumulative gain at query cutoff 3 (nDCG@3), and
precision at query cutoffs 1 and 3 (P@1, P@3). Other
evaluation metrics known in the art are likewise within
scope of this invention. The experiments report statistically
significant differences with respect to the baseline system for
p<0.01 according to the two-sample t-test. In addition to
these standard Information Retrieval (IR) measures, a new
metric is introduced to measure the quality of the approxi-
mate answers retrieved from the cache with respect to the
correct results retrieved form the FAISS index. The coverage
of a query q with respect to a cache C and a given query
cutoff value k, is defined as the intersection, in terms of
nearest neighbor documents, between the top k elements
retrieved for the cache C and the exact top k elements
retrieved from the whole index divided by k

[AN(C, ¢,) NNNM, ¢, k)| Eq. 5

k

covg(g) =

where V is the embedding of query q. The quality of the
approximate answers retrieved from the cache by measuring
the coverage cov,, averaged over the different queries is
reported. The higher cov, at a given query cutoff k is, the
greater is the quality of the approximate k nearest neighbor
documents retrieved from the cache. Of course, cov, (q)=1
for a given cutoff k and query q means that exactly the same
set of answers is retrieved from the cache or the main index.
Moreover, these answers come out to be ranked in the same
order by the distance function adopted. Besides measuring
the quality of the answers retrieved from the cache versus
the main index, the metric cov, is also used to tune the
hyperparameter €.

To this end, FIG. 5 reports the correlation between f,, vs.
cov,q (q) for the CAsT 2019 train queries, using static-
CACHE with k=10 and k_=1K. The dashed line at ,=0.04
corresponds to the tuned cache update threshold value (the
hyperparameter) used in the experiments. The queries with

20

25

30

35

40

45

50

12

cov,(<0.3, i.e., those with no more than three documents in
the intersection between the static-CACHE contents and
their actual top 10 documents, correspond to £,<0.04. Hence,
in the initial experiments, the value of € is set to 0.04 to
obtain good coverage figures at small query cutoffs. In
answering RQ1. A a different tuning of € aimed at improv-
ing the effectiveness of dynamic-CACHE at large query
cutoffs will also be discussed.

Efficiency Evaluation. The efficiency of the CACHE
systems may be measured in terms of: i) hit rate, i.e., the
percentage of queries, over the total number of queries,
answered directly by the cache without querying the dense
index; ii) average query response time for the CACHE
configurations and the no-caching baseline. The hit rate may
be measured by not considering the first query in each
conversation since each conversation starts with an empty
cache, and the first queries are thus compulsory cache
misses, always answered by the index. Finally, the query
response time, namely latency, is measured as the amount of
time from when a query is submitted to the system to the
time it takes for the response to get back. To better under-
stand the impact of caching, for CACHE the average
response time for hits and misses are measured separately.
The efficiency evaluation in this example was conducted on
a server equipped with an Intel Xeon E5-2630 v3 CPU
clocked at 2.40 GHz and 192 GiB of RAM. In the tests, the
FAISS Python API v1.6.4 is employed. The evaluations of
this embodiment measuring query response time were con-
ducted by using the low-level C++ exhaustive nearest-
neighbor search FAISS APIs. This choice avoids possible
overheads introduced by the Python interpreter which may
come into play when using the standard FAISS high-level
APIs. Moreover, as FAISS is a library designed and opti-
mized for batch retrieval, the efficiency evaluations were
conducted by retrieving results for a batch of queries instead
of a single one. The rationale of this choice assumes that, on
a back-end level, queries coming from different clients can
be batched together before being submitted to FAISS. The
reported response times were obtained as an average of three
different runs.

Results: Effectiveness of Cached Answers to Queries

The results of the experiments conducted on the three
CAGST datasets with the no-caching baseline, static-CACHE,
and dynamic-CACHE are reported in Table 1. For each
dataset, the static, and dynamic versions of CACHE, the
value of the cache cutoff k, is varied as discussed in below
and the symbol V¥ highlights the statistically significant
differences (two-sample t-test with p<0.01) with respect to
the no-caching baseline. The best results for each dataset and
effectiveness metric are shown in bold.

TABLE 1

Retrieval performance measured on CAsT datasets with or without document embedding caching.

k. MAP®@200 MRR@200 nDCG@3 pP@l1 P@3 cov,, Hit Rate

CAsT no- — 0.194 0.647 0.376 0.497 0.495 — —

2019 caching

static- 1K 0.101V¥ 0.507V 0.269V 0.387V 0364V 0.40 100%
CACHE 2K 0.112V 0.567V 0.304V 0.428 0.414¥ 047 100%
5K 0.129V 0.588 0.316V 0.451 0.426 0.56 100%
10K 0.140V 0.611 0.338 0.486 0.459 0.62 100%
dynamic- 1K 0.180V 0.634 0.365 0.474 0.482 091 67.82%
CACHE 2K 0.183V 0.631 0.366 0.480 0.487 0.93 70.69%
5K 0.186V 0.652 0.375 0.503 0.499 094 74.14%
10K 0.190 0.655 0.380 0.509 0.505 096 75.29%

US 12,067,021 B2

13
TABLE 1-continued

14

Retrieval performance measured on CAsT datasets with or without document embedding caching.

k., MAP@200 MRR@200 nDCG@3 P@1 P@3 covy, Hit Rate

CaST mno- — 0.212 0.622 0.338 0471 0473 — —

2020 caching

static- 1K 0.112V 0421V 0.215¥ 0.312V 0.306¥ 035 100%
CACHE 2K 0.1207 0.454¥ 0.236V¥ 0.3517 0.324¥ 041 100%
5K 0.139Y 0.509Y 0.267V 0.394 0.370¥ 048 100%
10K 0.146V 0.518V 0.2707 0.394¥ 0.380¥ 052 100%
dynamic- 1K 0.204 0.624 0.339 0.481 0.478 091 56.02%
CACHE 2K 0.203 0.625 0.336 0.481 0.470 0.93 60.73%
5K 0.208 0.622 0.341 0.476 0.479 0.94 62.83%
10K 0.210 0.625 0.339 0.476 0476 0.96 63.87%

CaST mno- — 0.109 0.584 0.340 0.449 0.411 — —

2021 caching

static- 1K 0.068Y 0.4307 0.226V¥ 0.323¥ 0.283¥ 038 100%
CACHE 2K 0.072V 0.461V 0.2407 0.348V 0.300¥ 042 100%
5K 0.079Y 0.508V 0.2707 0.386 0.338¥ 0.1 100%
10K 0.080V 0.503¥ 0.272V 0.367V¥7 0.338¥ 056 100%
dynamic- 1K 0.106 0.577 0.335 0.443 0.409 0.89 61.97%
CACHE 2K 0.107 0.585 0.338 0.456 0.411 091 63.38%
5K 0.106 0.584 0.334 0.449 0.407 092 66.67%
10K 0.107 0.584 0.336 0.449 0.409 0.94 67.61%

The symbol ¥ highlights the statistically significant differences with respect to no-caching for p < 0.01 according to the two-sample

t-test. Best values for each dataset and metric are shown in bold.

25
By looking at the figures in the table, it is seen that

static-CACHE returns worse results than no-caching for all
the datasets, most of the metrics, and cache cutoffs k.
considered. However, in a few cases, the differences are not
statistically significant. For example, the static-CACHE on
CAsT 2019 with k. =10k does not statistically differ from
no-caching for all metrics but MAP@200. The reuse of the
embeddings retrieved for the first queries of CAsT 2019
conversations is thus so high that even the simple heuristic
of statically caching the top 10k embeddings of the first
query allows the cache to answer effectively the following
queries without further interactions with the back-end. As
expected, by increasing the number k. of statically cached
embeddings from 1K to 10K, the quality for all datasets and
metrics is improved. Interestingly, the static-CACHE per-
forms relatively better at small query cutoffs since in column
P@]1, for 5 times out of 12, the results are not statistically
different from those of no-caching. Such behavior is
explained by observing again FIG. 3: when an incoming
query q, is close to a previously cached one, i.e., f,=0, it is
likely that the relevant documents for g, present in the cache
are those most similar to q, among all those in D. The larger
is query cutoff k, the lower is the probability of the least
similar documents among the ones in NN(q,, k) residing in
the cache.

When considering dynamic-CACHE, based on the heu-
ristic update policy discussed earlier, effectiveness improves
remarkably. Independently of the dataset and the value ofk_,
performance figures are achieved that are not statistically
different from those measured with no-caching for all met-
rics but MAP@200. Indeed, the metrics measured at small
query cutoffs result in some cases to be even slightly better
than those of the baseline even if the improvements are not
statistically significant: since the embeddings relevant for a
conversation are tightly clustered, retrieving them from the
cache rather than from the whole index in some case reduces
noise and provides higher accuracy. MAP@200 is the only
metric for which some configurations of dynamic-CACHE
perform worse than no-caching. This is motivated by the
tuning of threshold € performed by focusing on small query
cutofls, i.e., the ones commonly considered important for
conversational search tasks.

30

35

40

45

50

55

60

65

Effectiveness of the quality assessment heuristic. The
performance exhibited by dynamic-CACHE demonstrates
that the quality assessment heuristic used to determine cache
updates is highly effective. To further corroborate this claim,
the cov,, column of Table 1 reports for static-CACHE and
dynamic-CACHE the mean coverage for k=10 measured by
averaging Eq. (5) over all the conversational queries in the
datasets. This measure counts the cardinality of the inter-
section between the top 10 elements retrieved from the
cache and the exact top 10 elements retrieved from the
whole index, divided by 10. The cov,, values for static-
CACHE ranged between 0.35 to 0.62, justifying the quality
degradation captured by the metrics reported in the table.
With dynamic-CACHE values between 0.89 and 0.96 were
measured, showing that, consistently across different data-
sets and cache configurations, the update heuristics proposed
successfully trigger when the content of the cache needs
refreshing to answer a new topic introduced in the conver-
sation.

Other experimental evaluations of these systems and
methods were conducted aimed at understanding if the
hyperparameter E driving the dynamic-CACHE updates can
be fine-tuned for a specific query cutoff. The investigation is
motivated by the MAP@200 results reported in Table 1
which are slightly lower than the baseline for 5 out of the 12
dynamic-CACHE configurations. Tuning the value of E to
achieve MAP@200 results statistically equivalent to those
of' no-caching enabled retention of the efficiency advantages
of the client-side cache.

Similar to FIG. 5, the plot in FIG. 6 shows the correlation
between the value of 4 vs. cov,,(q) for the CAsT 2019 train
queries with static-CACHE, k=200 and k_=1K. The vertical
dashed line at 1,=0.07 was selected for the case of the
hyperparameter € (the tuned cache updated threshold value)
and was used in the experiments. Even at query cutoff 200,
a strong correlation is observed between 1, and the coverage
metrics of Eq. 5: most of the train queries with coverage
COV,40=0.3 have a value of t,, smaller than 0.07, with a
single query for which this rule of thumb does not strictly
hold. Hence, running the evaluations again with €=0.07
with dynamic-CACHE by varying the cache cutoffk . in {1k,
2k, 5k, 10k}. The results of these experiments, conducted

US 12,067,021 B2

15

with the CAsT 2019 dataset, are reported in Table 2. From
the values reported in the table, increasing from 0.04 to 0.07
the value of E improves the quality of the results returned by
the cache at large cutoffs. Now dynamic-CACHE returns
results that are always, even for MAP@?200, statistically
equivalent to the ones retrieved from the whole index by the
no-caching baseline (according to a two-sample t-test for
p<0.01). The improved quality at cutoff 200 is of course paid
with a decrease in efficiency. While for ©=0.04 (see Table 1)
CAsT 2019 hit rates were measured ranging from 67.82 to
75.29, by setting ©€=0.07 the constraint on cache content
quality is strengthened and correspondingly the number of
cache updates performed is increased. Consequently, the hit
rate now ranges from 46.55 to 58.05, demonstrating a strong
efficiency boost with respect to the no-caching baseline.

TABLE 2

16

10K} always obtaining optimal retrieval performances
thanks to the effectiveness and robustness of the cache-
update heuristic.

Regarding the number of cache updates performed, the
most difficult conversations for the caching strategy in the
three CAsT datasets, namely topic 77, topic 104, and topic
117 for CAsT 2019, 2020, and 2021, respectively were
considered as exemplary cases. These conversations require
the highest number of cache updates: 6, 7, 6 for k =1K and
5, 6,5 fork =10K, respectively. Consider topic 104 of CAsT
2020, the toughest conversation for the memory require-
ments of dynamic-CACHE. At its maximum occupancy,
after the last cache update, the dynamic-CACHE system
stores at most 8 1K+8~8K embeddings for k =1K and
7-10K+7=~70K embeddings for k =10K. In fact, at a given

Retrieval performance on CAsT 2019 of the no-caching baseline

and dynamic-CACHE with € = 0.07.

ke MAP@200 MRR@200 nDCG@3 P@1 P@3 covag, Hit Rate
no-caching — 0.194 0.647 0376 0497 0495 — —
dynamic- 1K 0.193 0.645 0374 0497 0491 083 46.55%
CACHE 2K 0.193 0.644 0375 0497 0493 091 51.15%

SK 0.194 0.645 0375 0497 0493 093 54.02%

10K 0.194 0.648 0375 0497 0493 094 58.05%

The last column of Table 1 reports the cache hit rate, i.e.,
the percentage of conversational queries over the total
answered with the cached embeddings without interacting
with the conversational search back-end. Of course, static-
CACHE results in a trivial 100% hit rate since all the queries
in a conversation are answered with the embeddings initially
retrieved for answering the first query. The lowest possible
workload on the back-end is however paid with a significant
performance drop with respect to the no-caching baseline.
With dynamic-CACHE, instead, high hit rates are achieved
with the optimal answer quality discussed earlier. As
expected, the greater the value of k_, the larger the number
of cached embeddings and the higher the hit rate. With
k_=1K, hit rates range between 56.02% to 67.82%, meaning
that, even with the lowest cache cutoff experimented, more
than half of the conversation queries in the 3 datasets are
answered directly by the cache, without forwarding the
query to the back-end. For k_=10K, the hit rate value is in
the interval [63.87%-75.29%], with more than % of the
queries in the CAsT 2019 dataset answered directly by the
cache. If the hit rate is considered as a measure correlated to
the amount of temporal locality present in the CAsT con-
versations, then the highest locality present in the 2019
dataset is emphasized: on this dataset dynamic-CACHE with
k_=1K achieves a hit rate higher that the ones measured for
k_=10K configurations on CAsT 2020 and 2021.

Worst-case CACHE memory requirements. The memory
occupancy of static-CACHE is limited, fixed, and known in
advance. The worst-case amount of memory required by
dynamic-CACHE depends instead on the value of k_ and on
the number of cache updates performed during a conversa-
tion. The parameter k. establishes the number of embed-
dings added to the cache after every cache miss. Limiting the
value of k_ can be necessary to respect memory constraints
on the client hosting the cache. Anyway, the larger k_ is, the
greater the performance of dynamic-CACHE thanks to the
increased likelihood that upcoming queries in the conver-
sation will be answered directly, without querying the back-
end index. In the experiments, k. was varied in { 1K, 2K, 5K,

30

35

40

45

50

55

60

65

time, dynamic-CACHE stores the k. embedding retrieved
for the first query in the conversation plus k. new embed-
dings for every cache update performed. Indeed, the total
number is lower due to the presence of embeddings retrieved
multiple times from the index on the back-end. The actual
number of cache embeddings for the case considered is 7.5K
and 64K for k =1K and k_=10K, respectively. Since each
embedding is represented with 769 floating point values, the
maximum memory occupation for the largest cache is 64Kx
769%4 bytes 188 MB. Note that if, in the case of dynamic-
CACHE, k_=1K, achieving the same optimal performance
of dynamic-CACHE, k_=10K on CAsT 2020 topic 104, the
maximum occupancy of the cache decreases dramatically to
about 28 MB.
Time Savings for CACHE

Experiments on an embodiment of the system and method
were first conducted to understand the impact of k_ on the
latency of nearest-neighbor queries performed on the remote
back-end. To this end, only the retrieval time measured for
answering a query on the remote index was considered. The
costs of client-server communications were not considered.
The aim is to understand if the value of k_ impacts signifi-
cantly or not the retrieval cost. In fact, when the first query
in the conversation is answered or when the dynamic-
CACHE performed an update of the cache in case of a miss
(lines 1-3 of Process 1, shown in FIG. 4), a large set of k_
embeddings was retrieved from the remote index to increase
the likelihood of storing in the cache documents relevant for
successive queries. However, the query cutoff k commonly
used for answering conversational queries was very small,
e.g., 1,3, 5, and k<<k_. The caching approach can improve
efficiency only if the cost of retrieving from the remote index
k. embeddings is comparable to that of retrieving a much
smaller set of k elements. Otherwise, even if the number of
accesses to the back-end is reduced remarkably, every
retrieval of a large number of results for filling or updating
the cache would jeopardize its efficiency benefits.

The experiment is conducted on the CAsT 2020 dataset by
reporting the average latency (in msec.) of performing

US 12,067,021 B2

17

NN(q, k.) queries on the remote index. Due to the pecu-
liarities of the FAISS library implementation previously
discussed, the response time is measured by retrieving the
top-k,. results for a batch of 216 queries, i.e., the CAsT 2020
test utterances, and by averaging the total response time
(Table 3). Experimental results show that the back-end query
response time was approximately 1 second and was almost
unaffected by the value of k.. These results were expected as
an exhaustive nearest-neighbor search requires the compu-
tation of the distances from the query to all indexed docu-
ments, plus the negligible cost of maintaining the top-k.
closest documents in a min-heap. The result thus confirms
that large k. values do not jeopardize the efficiency of the
whole system when cache misses occur.

TABLE 3

Average response time (msec.) for querying the
FAISS back-end (no-caching) or the static-CACHE
and dynamic-CACHE in case of a cache hit.

k.
1K 2K 5K 10K
no-caching 1,060 1,058 1,061 1,073
static-CACHE 0.14 0.30 0.78 1.59
dynamic-CACHE 0.36 0.70 1.73 3.48

Query Retrieval for Local Cache Vs. Remote Index.

A second experimental evaluation conducted measured
the average retrieval time for querying the client-side cache
(line 4 of Process 1 in FIG. 4) in case of a hit. The
experiment was run for the two caches proposed, i.e.,
static-CACHE and dynamic-CACHE. While the first one
stored a fixed number of documents, the latter employed
cache updates that added document embeddings to the cache
during the conversation. The last two rows of Table 3 report
the average response time of top-3 nearest-neighbor queries
resulting in cache hits for different configurations of static-
CACHE and dynamic-CACHE. As before, latencies were
measured on batches of 216 queries, i.e., the CAsT 2020 test
utterances, by averaging the total response time. The results
of the experiment show that, in case of a hit, querying the
cache requires on average less than 4 milliseconds, more
than 250 times less than querying the back-end. Hit time
increases linearly with the size of the static-CACHE. The
dynamic-CACHE case showed slightly higher latency than
the static-CACHE case. This discrepancy was due to the
updates of the cache being performed during the conversa-
tion that added embeddings to the cache. The use of a cache
in conversational search achieved a reduction in time of up
to four orders of magnitude, i.e., from seconds to a few
tenths of milliseconds, between querying a remote index and
a local cache.

Assuming that the average conversation is composed of
10 utterances, the no-caching baseline that always queries
the back-end leads to a total response time of about
10x1.06=10.6 seconds. Instead, with static-CACHE, only
one retrieval from the remote index for the first utterance is
performed while the remaining queries are resolved by the
cache. Assuming the use of static-CACHE with 10K embed-
dings, i.e., the one with higher latency, the total response
time for the whole conversation was 1.06+
(9-0.00159)=1.074 seconds, with an overall speedup of
about 9.87x over no-caching. Finally, the use of dynamic-
CACHE implies possible cache updates that may increase
the number of queries answered using the remote index. In
detail, dynamic-CACHE with 10K embeddings obtained a

15

20

25

30

40

45

18

hit rate of about 64% on CAsT 2020 (see Table 1). This
means that, on average, 1+(9-0.36)=4.24 queries were for-
warded to the back-end that cost in total 4.24-1.06=4.49
seconds. The remaining cost came from cache hits. The
number of hits on average was 5.76 and required
5.76:0.00348=0.002 seconds accounting for a total response
time for the whole conversation of 4.242 seconds. Thus, a
speedup of 2.5 times with respect to the no-caching solution
was demonstrated.

The above figures confirm the feasibility and the compu-
tational performance advantages of the client-server solution
for caching historical embeddings for conversational search.

A client-side, document-embedding cache was introduced
for expediting conversational search systems. Although
caching is extensively used in search, a closer look was
taken at how it can be effectively and efficiently exploited in
a novel and challenging setting: a client-server conversa-
tional architecture exploiting state-of-the-art dense retrieval
models and a novel metric cache hosted on the client-side.

Given the high temporal locality of the embeddings
retrieved for answering utterances in a conversation, a cache
can provide a great advantage to expedite conversational
systems. Both queries and documents in a conversation were
proven to lie close together in the embedding space and
given this specific interaction and query properties, the
metric properties of distance computations in a dense
retrieval context can be exploited.

Two types of caching were proposed and the results were
compared in terms of both effectiveness and efficiency with
respect to a no-caching baseline using the same back-end
search solution. The first is a static-CACHE which populates
the cache with documents retrieved based on the first query
of a conversation only. The second, dynamic-CACHE, pro-
poses also an update mechanism that comes in place when
it is determined, via a precise and efficient heuristic strategy,
that the current contents of the cache might not provide
relevant results.

The results of extensive and reproducible experiments
conducted on CAsT datasets show that dynamic-CACHE
achieves hit rates up to 75% with answers quality statisti-
cally equivalent to that of the no-caching baseline. In terms
of efficiency, the response time varies with the size of the
cache, nevertheless queries resulting in cache hits are three
orders of magnitude faster than those processed on the
back-end (accessed only for cache misses by dynamic-
CACHE and for all queries by the no-caching baseline).

The CACHE solution described in this disclosure for
conversational search is a viable and effective solution, also
opening the door for significant further investigation. Its
client-side organization permits, for example, to effectively
integrate models of user-level contextual knowledge.
Equally interesting is the investigation of user-level, per-
sonalized query rewriting strategies and neural representa-
tions.

FIG. 7 illustrates a flow chart of the entire process. A first
utterance 702 is detected by a local device 204 and trans-
mitted to a server 202 remote from the local device 204. In
an embodiment, the local device 204 may also detect the
second utterance and then transmit both the first utterance
and the second utterance to the server together. At the server
202, the first utterance 702 may be semantically enriched
704. At the server 202, the second utterance 720 may be
semantically enriched 722. In an embodiment, the local
device 204 may also perform the semantic enrichment steps
704, 722. The semantically enriched first utterance may be
turned into a first query in an embedding space 706. Many
documents (e.g., web sites) may be accessed by the server
202 and turned into embeddings at 708. At step 710 a

US 12,067,021 B2

19

similarity between the first query 706 and the many docu-
ment embeddings 708 is calculated. In addition, at step 710,
after the similarity between the first query and the many
documents has been calculated, each document may be
ranked according to its similarity with the first query. The
comparison further returns to the local device a query cutoff
number of the most similar documents 712. In addition, the
comparison step also returns to the local device the cache
cutoff number for most similar documents 714, and stores
the result in a cache 716 on the local device. The cache 716
further comprises the first query embedding, for easy
retrieval later in the process. The second utterance 720 is
detected at the local device and transmitted to the server 202.
At the server 202, the second utterance 720 may be seman-
tically enriched 722. (As noted above, the semantic enrich-
ment step is optional and may take place at either the local
device 204 or at the server 202.) Then a second query
embedding may be created at step 724. Next, at step 726,
two distances in embedding space may be calculated and
compared, as noted in the discussion of equation 3 elsewhere
in this disclosure. Briefly if 8(1p,, 1,)=r, then the cached
documents will yield high quality results on the second
query. This result may be modified by the inclusion of a
hyperparameter. The first distance in embedding space may
be calculated between the first query and the second query
and may be called the query distance. The query distance
tells roughly how closely the second query is related to the
first query. The second distance in embedding space may be
called the search distance and may be calculated between the
first query and the least similar document stored in the
cache. The search distance tells roughly the breadth of
coverage of the cached documents 714, which represent
only a small fraction of all the available documents (as
represented by the document embeddings 708). These two
distances in embedding space may then be compared at step
728 to determine whether the cache results, when used in
responding to the second query, produce low-quality results
(the query distance is greater than the search distance) or
high-quality results (the query distance is less than or equal
to the search distance). If low quality results are obtained
from the second query on the cached documents, then at step
730, the similarity between all the document embeddings
708 and the second query are calculated and the query cutoff
number of most similar documents are returned to the local
device at step 732. In the fork when low-quality results are
returned from the second query applied to the cached
documents, the documents stored in the cache 714 may be
updated, replaced, or refreshed with additional documents.
For example, documents which the second query returns but
which were not included in the first query results may simply
be added to the cached documents. In another embodiment,
the cached documents 714 may be replaced entirely by the
results from the new query. In other embodiments insertions
of additional documents may also take place depending on
other conditions, such as, for instance, always limiting the
total number of documents to remain below the cache cutoff
number. If high-quality results are obtained from the second
query 724 on the cached documents 714, then the similarity
between each of the cached documents with the second
query may be calculated at step 724. At step 736, the query
cutoff number of most similar documents from the cache are
returned.
Computer Hardware

The computer or electronic computing devices and hard-
ware are best understood in reference to FIG. 8. The present
system may involve the use of remote servers which are
accessible via a network 808 and in contact with a remote

25

30

40

45

20

server 850, for instance, indexed search results for many
documents stored in many locations. The user’s electronic
device 800 may comprise elements for input and output 802,
such as a keyboard, a mouse, a microphone, a display, a
speaker, a touchpad, and the like. The electronic computing
device 800 may have a central processing unit 804, also
known as a CPU 804. The device may have a network
adapter 806 for connecting to the network 808. In the
memory 810 or storage 810 of the computing device 800,
there may reside algorithms and data. Amongst the algo-
rithms and data stored in the memory 810 are cached
documents 812 and cached queries 814. In addition, there
may be search results 816, algorithms 818 to evaluate the
quality of performing a search on the cached documents
(e.g., LowQuality from algorithm 1 in FIG. 4). The memory
810 may also comprise visualization algorithms 820 (e.g.,
t-SNE algorithm results presented in FIG. 1.)

The present systems and methods may include implemen-
tation on a system or systems that provide multi-processor,
multi-tasking, multi-process, and/or multi-thread comput-
ing, as well as implementation on systems that provide only
single processor, single thread computing. Multi-processor
computing involves performing computing using more than
one processor. Multi-tasking computing involves perform-
ing computing using more than one operating system task.
A task is an operating system concept that refers to the
combination of a program being executed and bookkeeping
information used by the operating system. Whenever a
program is executed, the operating system creates a new task
for it. The task is like an envelope for the program in that it
identifies the program with a task number and attaches other
bookkeeping information to it. Many operating systems,
including Linux, UNIX®, OS/2®, and Windows®, are
capable of running many tasks at the same time and are
called multitasking operating systems. Multi-tasking is the
ability of an operating system to execute more than one
executable at the same time. Each executable is running in
its own address space, meaning that the executables have no
way to share any of their memory. This has advantages,
because it is impossible for any program to damage the
execution of any of the other programs running on the
system. However, the programs have no way to exchange
any information except through the operating system (or by
reading files stored on the file system). Multi-process com-
puting is similar to multi-tasking computing, as the terms
task and process are often used interchangeably, although
some operating systems make a distinction between the two.

The present invention may be a system, a method, and/or
a computer program product at any possible technical detail
level of integration. The computer program product may
include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present
invention. The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device.

The computer readable storage medium 810 may be, for
example, but is not limited to, an electronic storage device,
a magnetic storage device, an optical storage device, an
electromagnetic storage device, a semiconductor storage
device, or any suitable combination of the foregoing. A
non-exhaustive list of more specific examples of the com-
puter readable storage medium includes the following: a
portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), a static random access memory (SRAM), a por-

US 12,067,021 B2

21

table compact disc read-only memory (CD-ROM), a digital
versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised
structures in a groove having instructions recorded thereon,
and any suitable combination of the foregoing. A computer
readable storage medium, as used herein, is not to be
construed as being transitory signals per se, such as radio
waves or other freely propagating electromagnetic waves,
electromagnetic waves propagating through a waveguide or
other transmission media (e.g., light pulses passing through
a fiber-optic cable), or electrical signals transmitted through
a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network
808, for example, the Internet, a local area network, a wide
area network and/or a wireless network. The network may
comprise copper transmission cables, optical transmission
fibers, wireless transmission, routers, firewalls, switches,
gateway computers, and/or edge servers. A network adapter
card 806 or network interface in each computing/processing
device receives computer readable program instructions
from the network and forwards the computer readable
program instructions for storage in a computer readable
storage medium within the respective computing/processing
device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, con-
figuration data for integrated circuitry, or either source code
or object code written in any combination of one or more
programming languages, including an object-oriented pro-
gramming language such as Smalltalk, C++, or the like, and
procedural programming languages, such as the “C” pro-
gramming language or similar programming languages. The
computer readable program instructions may execute
entirely on the user’s computer, partly on the user’s com-
puter, as a stand-alone software package, partly on the user’s
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, in order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions. These
computer readable program instructions may be provided to
a processor of a general-purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which

30

35

40

45

55

22

execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks.

These computer readable program instructions may also
be stored in a computer readable storage medium that can
direct a computer, a programmable data processing appara-
tus, and/or other devices to function in a particular manner,
such that the computer readable storage medium having
instructions stored therein comprises an article of manufac-
ture including instructions which implement aspects of the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer-imple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the blocks may occur out of the order
noted in the Figures. For example, two blocks shown in
succession may, in fact, be executed substantially concur-
rently, or in the reverse order, depending upon the function-
ality involved. It will also be noted that each block of the
block diagrams and/or flowchart illustration, and combina-
tions of blocks in the block diagrams and/or flowchart
illustration, can be implemented by special purpose hard-
ware-based systems that perform the specified functions or
acts, or that carry out combinations of special purpose
hardware and computer instructions.

Although specific embodiments of the present invention
have been described, it will be understood by those of skill
in the art that there are other embodiments that are equiva-
lent to the described embodiments. Accordingly, it is to be
understood that the invention is not to be limited by the
specific illustrated embodiments, but only by the scope of
the appended claims.

What is claimed is:

1. A method for improving the speed and efficiency of
obtaining search results comprising the steps of:

receiving a first utterance at a server;

converting the first utterance into a first query in an

embedding space;

performing, at the server, a first conversational search by:

comparing a first similarity of the first query with an
embedding of each document of a plurality of docu-
ments;

returning a cache cutoff number of documents ranked
by the first similarity; and

returning a query cutoff number of documents ranked
by the first similarity;

storing as a cache, on a local device, the first query and the

cache cutoff number of documents ranked by the first
similarity;

receiving a second utterance at the server;

US 12,067,021 B2

23

converting the second utterance into a second query in the

embedding space;

determining, at the local device, using the second query

and the cache whether the second query applied to the
cache documents provides low quality results or high
quality results;

if the second query applied to the cache provides low

quality results, then performing a second conversa-

tional search on the server by:

calculating a second similarity of the second query with
an embedding of each document of the plurality of
documents; and

returning the query cutoff number of documents ranked
by the second similarity;

if the second query applied to the cache provides high

quality results, then performing, at the local device, the

second conversational search by:

calculating a second similarity of the second query with
an embedding of each document of the cache; and

returning the query cutoff number of documents ranked
by the second similarity;

reporting the query cutoff number of documents ranked

by the first similarity to the local device; and
reporting the query cutoff number of documents ranked
by the second similarity to the local device.

2. The method of claim 1, wherein the cache cutoff
number is greater than the query cutoff number.

3. The method of claim 1, wherein the first utterance and
the second utterance are semantically enriched by context
prior to being converted into the first query and the second
query.

4. The method of claim 1, wherein determining whether
the second query applied to the cache provides low quality
results or high-quality results comprises:

determining a query distance in embedding space between

the first query and the second query;

determining a search distance in embedding space

between the first query and the least similar document
of the returned cache cutoff number of documents from
the first conversational search; and

comparing the query distance with the search distance:

if the query distance is less than or equal to the search
distance, then the second query applied to the cache
provides high quality results;

if the query distance is greater than the search distance,
then the second query applied to the cache provides
low quality results.

5. The method of claim 4, wherein comparing the query
distance with the search distance further comprises:

if the query distance plus a hyperparameter is less than or

equal to the search distance, then the second query
applied to the cache provides high quality results;

if the query distance plus the hyperparameter is greater

than the search distance, then the second query applied
to the cache provides low quality results.

6. The method of claim 5, wherein the hyperparameter is
selected based on a user preference.

7. The method of claim 1, wherein the second conversa-
tional search is optimized taking into account at least one of
the following evaluation metrics: a hit rate, an average query
response time, a mean average precision at query cutoff 200,
a mean reciprocal rank at query cutoff 200, a normalized
discounted cumulative gain at query cutoff 3, a precision at
query cutoff 1, a precision at query cutoff 3, and a coverage
of a query with respect to the local cache and the query
cutoff number.

15

20

25

30

35

40

45

50

65

24

8. The method of claim 1, wherein the local device
comprises at least one of a mobile phone, a smart speaker,
an internet of things device, a personal computer, or a laptop
computer.

9. A system for improving the speed and efficiency of
obtaining search results comprising:

a local device for receiving a first utterance and a second
utterance and transmitting the first utterance and the
second utterance to a server;

the server and the local device to perform a method
comprising:
converting, at the server, the first utterance into a first

query in an embedding space;
performing, at the server, a first conversational search
by:
comparing a first similarity of the first query with an
embedding of each document of a plurality of
documents;
returning a cache cutoff number of documents
ranked by the first similarity; and
returning a query cutoff number of documents
ranked by the first similarity;
storing as a cache, on the local device, the first query
and the cache cutoff number of documents ranked by
the first similarity;
converting, at the server, the second utterance into a
second query in the embedding space;
determining, at the local device, using the second query
and the cache whether the second query applied to
the cache documents provides low-quality results or
high-quality results;
if the second query applied to the cache provides
low-quality results, then performing a second con-
versational search on the server by:
calculating a second similarity of the second query
with an embedding of each document of the
plurality of documents; and
returning the query cutoff number of documents
ranked by the second similarity;
if the second query applied to the cache provides
high-quality results, then performing, at the local
device, the second conversational search by:
calculating a second similarity of the second query
with an embedding of each document of the cache;
and
returning the query cutoff number of documents
ranked by the second similarity;
reporting the query cutoff number of documents ranked
by the first similarity to the local device; and
reporting the query cutoff number of documents ranked
by the second similarity to the local device.

10. The system of claim 9, wherein the cache cutoff
number is greater than the query cutoff number.

11. The system of claim 9, wherein the first utterance and
the second utterance are semantically enriched by context
prior to being converted into the first query and the second
query.

12. The system of claim 9, wherein determining whether
the second query applied to the cache provides low-quality
results or high-quality results comprises:

determining a query distance in embedding space between
the first query and the second query;

determining a search distance in embedding space
between the first query and the least similar document
of the returned cache cutoff number of documents from
the first conversational search; and

comparing the query distance with the search distance:

US 12,067,021 B2

25

if the query distance is less than or equal to the search
distance, then the second query applied to the cache
provides high-quality results;

if the query distance is greater than the search distance,
then the second query applied to the cache provides
low-quality results.

13. The system of claim 12, wherein comparing the query
distance with the search distance further comprises:

if the query distance plus a hyperparameter is less than or

equal to the search distance, then the second query
applied to the cache provides high-quality results;

if the query distance plus the hyperparameter is greater

than the search distance, then the second query applied
to the cache provides low-quality results.

14. The system of claim 13, wherein the hyperparameter
is selected based on a user preference.

15. The system of claim 9, wherein the second conver-
sational search is optimized taking into account at least one
of the following evaluation metrics: a hit rate, an average
query response time, a mean average precision at query
cutoff 200, a mean reciprocal rank at query cutoff 200, a
normalized discounted cumulative gain at query cutoff 3, a
precision at query cutoff 1, a precision at query cutoff 3, and
a coverage of a query with respect to the local cache and the
query cutoff number.

16. The system of claim 9, wherein the local device
comprises at least one of a mobile phone, a smart speaker,
an internet of things device, a personal computer, or a laptop
computer.

10

20

25

30

26

