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Abstract

In this paper we propose a model for the specification of non-
deterministic systems based on a functional approach. The behaviour
of a system is specified by means of a predicate, functional specification
in the sequel, which characterize a set of sequence processing mono-
tonic functions. We introduce a set of combinators on sequence pro-
cessing functions and on functional specifications. Such combinators
together give rise to a Functional Algebra (FA} and then allow for sys-
tematically build specifications in a compositional way. FA is takes as
the natural denotational model for a simple algebra of processes with
input/output actions (PA). PA operators are STOP, input/output-
prefiz, which is a functional variant of action-prefix, and choice. We
show that, under proper conditions, FA is fully abstract w.r.t Test-
ing Equivalence when actions are interpreted as input/output pairs.

Moreover, we show how fuil abstraction can still be guaranteed even
for the whole PA provided the notion of experimenter be modified in
order to take into account the conceptual separation between input
events and output events peculiar of the functional approach.
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Chapter 1

Introduction

A number of formal models and languages for the specification of concurrent
systems and for formally reasoning about them have been proposed in the
literature [Rei85, Hens88, Hoad5, Mil89]. Many of them are based on the
notion of process algebra and are provided with an operational semantics
and various notions of equivalences [vG90].

In the theory of formal semautics for sequential (i.e. non-concurrent )
systems, a functional approach has shown many advantages. This is mainly
due to its sound and well understood mathematical basis which allows for
the direct use of rigorous proof stvles like transformational reasoning [DC89].
Moreover, when objects are defined as fixed-points of recursive equations,
suitable induction principles [BWSS, MNV73] can be used.

In [Kah92] a fixed-point scruanties for a class of distributed systems has
been proposed. Tlie behaviour of a system is modeled as a function from
sequences (sometimes called “sticains™} of input messages to sequences of
output messages. Of course swcl an approach applies only to determin-

istic speccifications of system belivionr. On the other hand, using non-
determinism as a way of !l ¢ v eseential when reasoning about con-
current systems, so, recentlv. ..« .+ ¢ upproaches have been proposed for
extending strean semantic~ Aeterminism {Abr84, Abr89, Bro90,
Bro92a, Bro92b, Dyb86, D~ 0 Ongy3, San92].

In particular we consider it ‘I Sander’s proposals very promising.
In these approaches a specit. +hued as a set of monotonic sequence
processing functions whil ot defined as a higher order boolean
function. In the approach ot 14 . . .iuler of combinators on specifications
are defined which reflect t1i- .0 #tii thyal aspects of the system. The main
combinators in this approacl: e Fused on function composition (pipeline or
cascade), parallel composition .l feedback. Central in this work are notions
of refirement of specifications wlhili are compositional with respect to these
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combinators. In Sander’s approach the topology of the system is given by a
higher order function that is defined as the minimal fixed point solution of a
set of recursive equations. Central to this approach is a higher order logics
for verifying that a function satisfies a given specification.

Of all the above mentioned works only [Ong93] addresses the issue of
algebraic relations between specifications that take progress properties into
account (deadlock etc.) like observational or testing equivalences do for pro-
cess algebras. Indeed, low expressive power w.r.t. progress properties like
deadlock Las been an argunent against stream based approaches in the con-
currency theory community. In particular, it is commonly maintained that
such approaches can be at most as much powerful as trace semantics in the
context of process algebra. Indeed, proposals for trace semantics for data-
flow networks have appeared in the literature, like [Abr§9, Mis90, Jon87].
In [Ongd3] a notion of Testing is introduced that is shown to be equivalent
to applicative bisimulation which is a variant of observational bisimulation
defined by Milner [Mil89]. This notion of Testing takes the internal structure
of process expressions into account. In our appoach we work with a notion
of Testing defined by Hennessy [Hen88] that is only based on externally ob-
servable hehaviour of processes, so a notion of Testing that does not take the
internal structure of processes into account.

In this thesis we show how the key idea of representing a non-deterministic
specification as a set of monotonic sequence-processing functions can be used
for reasoning about progress properties of systems. We show the relation
between Testing equivalence as defined by Hennessy and equality of specifi-
cations.

Our starting point is Broy’s notion of specification. A possible behaviour
of a system is modeled by a monotonic sequence-processing function which
associates a sequence of output values to each sequence of possible input
values. A non-deterministic specification is then characterized by the set of
all its possible behaviours. Such a set is specified by a functional specifica-
tion, i.e. a hoolean function over monotonic sequence-processing functions.
Functions therefore are central in our theory.

In Chapter 2 we introduce a notation for defining functions and we define
the basic objects in unr approach like messages and sequences.

In Chapter 3 we define the set of monotonic sequence processing func-
tions. They serve as the semantical objects for modeling possible behaviours
of systems. We show how non-determinism can be used to model system
behaviour and we show how non-determinism can be represented by sets of
functions. We define a sct of combinators on monotonic sequence-processing
functions and extend these definitions to specifications. These combinators
resemble those typical uf algebras for finite processes and give rise to whatwe



call Functional Algebra.

In Chapter 4 both an informal and a formal introduction to testing theory
is given. This is essentially the theory of Hennessy for finite processes, when
actions are interpreted as input/output pairs.

In Chapter 5 we present thie main results of this thesis. We show that
the traditional notion of testing equivalence, developed by Hennessy, does
not exactly correspond to equality of sets of functions in the Functional
Algebra. We show that this is due to the fact that in the model of Hennessy
no distinction is made between input and output actions and that output
actions can be influenced by the environment by means of external non-
determinism. We show that a slightly modified model of testing, in which
the experimenter has no influence ou the output of a specification other than
by means of supplying input, does correspond to equality of specifications
in the Functional Algebra. The modified model of testing is shown to be
slightly weaker than the traditional notion of testing.
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Chapter 2

Notation and General
Detfinitions

In this chapter we introduce some general concepts and notation. As we said
in Chapter | we specify systems by sets of functions. So, central in this work
is a notation for defining functions. Section 2.1 introduces the functional
notation Funmath [BouY3] whereas in Section 2.2 the definitions of the basic
objects of owr approach like messages and sequences are given,

2.1 Notation

Funmath (Functional Aathematics) [Bou93] is a formalism that is based
mainly on the mathematical concepts of function and sets and on predicate
calculus allowing for a transformational proof style. From the history of ap-
plied mathematics we know tliat functions and set theory are basic concepts
with which there is a lot of experience in modeling. The motivation and topic
of research for Funmath is to try to find a deep embedding of many useful,
but isolated, theories for describing systems into a functional framework.
Moreover, in doing this, the velition to traditional mathematical notation is
maintained as close as possible. An example is the embedding of temporal
logic in a functional framewaork [vI04] In the following we give a short in-
formal introduction to those featnies of Funmath which we use in the sequel.
A detailed description of the noration can be found in [vT94, Bou93].

e ldentifiers

An identifier is a string of characters or symbols denoting the name of
an object. There exist two kinds of identifiers namely constants and
variables. Constants can e primitive (predefined in Funmath) or new

7
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Notation and General Definitions

A(deﬁned by the user). Examples of primitive constants that are used in

this work are the name of a basic type B denoting the Boolean values
{0,1}, and operators (functions) like A, V, \, etc.. In the thesis we will
also use the predefined type F denoting all functions, ¢ which stands
for the universe, and 7 denoting all possible types. In the sequel we will
denote tl:e boolean value 0 also by false and 1 by true. New constants
can be introduced using a definition of the form:

def a: A with P

In this definition o denotes a single identifier or a tuple of i1dentifiers, A
is an expression denoting a type, and P is a defining proposition. For
example:

def double :IN - IN
with double n = n + n

The existence and uniqueness of the newly defined constant must be
proven by the definer. Recursive definitions are allowed. In the con-
text of this work they are intended in the fixpoint/domain-theoretic
interpretation. For variables see abstraction below.

Function application

Function application denotes an object as the image of an object under
a function. In prefix notation fz denotes the image of z under f.
In case of ligher order functions the convention is that fab stands
for (f «)b. Partial application allows for functions returning functions
as result. This is possible also for infix operators (sometimes called
sectioning).

Tuple denotation \ tuple denotes a function with domain {0,..,n ~1}
for n in IN.

For example: «. 4. . <cuotes the function (a, b, ¢) € {0,1,2} — {a,b, ¢}
such that {«. b, 0 = u, {a,b,¢)l =b,and (a,b,c)2=c.

Notice that iu the above formula {0, 1,2} denotes the range of the func-
tion 0,1,2. That 1s. curly brackets together, {}, denote the operator
range on functions. Normal brackets “(” and “)” are used for grouping
in case of ambhiguity,
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The tuple consisting only of the element « is denoted by re. Consid-
ering tuples as functions is extremely useful in transformational rea-
soning. A small disadvantage is however that in this way we lost the
traditional notation for the one-element set is lost. We will write ca
when we want to denote the one-element set containing only a.

o Abstraction

The only kind of abstraction we use in this thesis is of the form z: X.E.

In this notation « is a single identifier or a tuple of identifiers, X is
an expression denoting a type. The semantics of this formula is that
it denotes the function mapping = {in X) to E. For shortness we
sometimes leave out the type information X in formulas if no confusion
can atise,

We define a number of basic functions which are used in the sequel.

Definition 2.1.1 Universal quantification

def ¥: Feod B — I3
with (¥ f) =0 ¢ {/}

Here Feod B denotes the set of functions with codomain B. In a similar
way existential quantification can be defined as a functjon:

Definition 2.1.2 Ewistential quuntification

def 3: Feod B = B
with (37) =1 € {f}

0

The fact that we defined «onnifiers as functions has no impact on the
readability of formulas. The v v are defined coincides essentially with
the common mathematical v tion . and also the mathematical interpreta-

tion of those formulas reinain~ the same. For instance, the mathematical
formula Yz € X. Pz in Pl is 1o be written as Y(z: X.Pzr) where ¥ is
applied to the abstraction »: \' /’r. The advantage however becomes clear
when manipulating formulas in « transformational proof style.
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In a similar way we can define the union over a set of sets, i.e. the set
extension of the union. UY(x : X . f x) is the Funmath expression for the more

CONITG
U {f =}

e X

An important operator we use is equality on functions which is defined
as:

Definition 2.1.3 Function equality

def = F—->F =B
with [ = g = (Dy = Df) AV(e :Df .fo = go)

In this definition D denotes the domain of a function, the set F here
denotes the set of all functions,

The powerset of a set. X is denoted by P X. It takes a set and gives the
set of all possible snbsets of this set.

The function if ¢ then a else b fi denotes the conditional construct that
gives a if condition ¢ is true, and gives b otherwise.

def if — then — ¢lse — fi:B =T =T
with if ¢ then « else b fi={(b,a) c

Recall that tuples are functions and that B is theset {0,1}. So, (b,a) 0=
and (b, @) I = a. This example shows why it is convenient, from a orthogo-
nality point of view, to deline hoolean values as {0,1}. The if then else fi
function is mainly meant to make definitions look more familiar then the

unsugared form whicl i+ -« 1o define this conditional construct.

The function G t«hes v vural munber n and gives the subset of natural
numbers ranging frorn: 1+~ 1 So, for example 04 = {0,1,2,3}.

The function | 10~ -+« Jomain of a function. In its type a dependent
type construction i~ .. - " . +his construction we express that the type of
the second arguient -+ - .-t~ on the sype of its first argument. Infact, the
type of the second .- -« 1 ~ubset of the domain of the first argument.

def —]_ :F - DDy F
with ¢]y = !
where -\ =2Cy

hr=gqgux
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In the type of | a dependent type construction is used. With this con-
struction we express that the type of the second argument of ] depends on
the type of its first argument. Infact, the type of the second argument is
a subset of the domain of the function given as first argument. For a more
formal treatment of dependent types in Funmath we refer to [vT94].

In order to avoid explicit mentioning the type of frequently used general
functions a notatton for polymorphism is used. For example, the implicit
polymorphic identity function is defined by:

poly A: T def id: 4 — A

with id + =

[n the following we define a number of general operators for obtaining
the the set of minimal or maximal elements of a set ordered by means of a
partial order relation.

poly A:l def min_ — :{AxA) 3 PA=P A
with win, X ={s: X . V(y: X . yrz=z=y)}

So, in this definition r: A x A denotes a partial order relation.
In a similar way we define also mar:

poly A:lU def mar_ — (AxA) 5P AP A
with mar, X ={o: XV V(. X sry=>z2= v)}

2.2 Messages and Sequences

In this section we give definitions for all the basic objects we use in building
our theory. The first thing we need is a set denoting messages, we call it
M. We don’t put any restriction on what a message looks like, but we just
assume we have a countable ~ct ! e,

Given M we define sequen o of niessages over this set. M* denotes all
finite sequences (also called Ticzoi et 3/, M denotes all infinite sequences
over M (also called streaim~ .- .t 1/~ the set of both finite and infinite se-
quences (M“ = M*UM™). Ll wequel we use M“, M* and M™ in the
traditional way. In [Bouy3] it 1~ -liswn that also sequences, , * and . can
be defined as suitable function-.

On M¥ we define soine u~cinl operators. In the definitions below, #
denotes the operator that gives the lengtl of a list, and if ¢ then a else b fi
denotes the conditional expression. that gives a if ¢ is true and b otherwise.
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s Concatenation-

def — + — 1 MY x MY — M¥
with (z + y) & =if k < #z then o k else y (k- #z) fi

e Prefix on sequences

def — > — M x MY > M¥

withae>r=1ta#z

e Postfix on sequences

def — < — MY x M — MY
withes <a=rHr1a

Note that with the above definitions the axioms, that are normally used
to define these operators, can be proven.
We need one more operation on sequences, namely prefix-ordering.

def _.C .: M“x MY B
withe Cy={r=¢e)V3 e MYz +H+2=1y)



Chapter 3

Functional Algebra

In this chapter we define the set of functions which we shall use as se-
mantical objects for modeling possible behaviours of systems. They are
called monotonic sequence processing functions (MSPF). We show how non-
determinisim can be used to model the hehaviour of certain systems and how
non-determinisin can be represented by sets of functions. A set of functions
which models the hehavionr of a system is called a specification. We denote
sets of functions by predicates (i.e. hoolean functions) on those functions.
Each function in the set represents one possible behaviour of the system,

In the case that the behaviour of a system is modeled by only one function,
the set of functions modeling the svatem, contains only one function. Specifi-
cations that contain only oue [hin tion are called deterministic specifications,
specifications containing more thon une function are called non-deterministic
specifications.

We see determinism awd non-deterninism as a properties of specifications
rather than of systems. Non-determinism is used as a means to specify the be-
haviour of a system in an abstiact wav. This makes the often heard statement
that non-determinism is a v~ <+ ept hecause non-deterministic systems

do not exist irrelevant. Nou oo o is a useful concept that makes it
possible to describe certain ' i~ of (sub)systems in such a way that
properties of these systern . e Lor instance one can easily model
the behaviour of a possibls mniiication medinm (which for exam-
ple may corrupt messapi~: .+ nun-ceterministic model. Then such
a model, together witl o " - "+ muodel of a communication protocol,
can be used to show livens - nery properties of the complete system

(medium and protocol towet.

In Section 3.1 we define the -1 ol monotonic sequence processing func-
tions and a graph representation ol them.
- In Section 3.2 a set of (oinbunatons on monotonic sequence processing

L3
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functions is introduced. This combinators are then extended to specifications
in Section 3.3,

3.1 Functions modeling system behaviour

System beliaviour is modeled by a set of functions. Each function is a func-
tion from sequences of input messages to sequences of output messages. In
this context ¢, the empty sequence, models that further communication is
nnspecified, We denote the set of all input and output messages by M, and
we require that the functions are total on the set of all sequences over M.

The cansal relation between input and output implies and is modeled
by requiring prefie monotonicity for functions. So extension of the input
sequence can only lead to extension of the output sequence. Non-monotonic
functions would in fact model behaviours in which providing the system with
"inore input” might produce a change in the output already produced, like
some output "to disappear”, which goes against any notion of computability.
Moreover, for similar reasons we forbid systems to produce "spontaneously”
output wlen no input is provided, i.e. their output on £ must be e. So in the
sequel we will only speak about monotonic sequence processing functions.

For such functions we introduce the notion of derivative. The derivative
of a MSPF-function is the extra output the function produces after having
taken one more input message.

def d: (MY — MY) — MY = M~
with d f (e <m)= o
where f (¢ <m)=f o+

For monetonic sequence processing functions we introduce a graph rep-
resentation, which facilitates characterising a few more properties of them
and which is useful in examples. We will use deterministic labeled trees. For
example the following Mhinction:

def f: M¥ — M~
with fo= fasl=ua
e of ol =1
Hien 1 >=2>3>¢
tixe f o l=c¢
then 1 >3 >¢
else 1 > ¢
ﬁ'
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fi
else £

f

can be represented by the tree in Fig. 3.1.

{a, )

(b,2> 3> ¢g) (¢, t)

Figare 3.1: Tree of function f

A tree is deterministic it and only if all branches going out of each node
are distinct. A deterministic tree is then fully characterised by its prefixed
closed set of sequences of the labels at the arcs in the tree. In our case
such sequences are the incremental traces of the behaviour of the function.
The sequences are sequences of pairs of which the first element contains the
increment in the input and the second elemnent contains the increment in the
output due to the increment in the input. So the output is the derivative of
the function after incrementing the input o with a certain message m. The
free-representation of a function can be construcied in the following way.
Take all the infinite incremental traces of f. Exclude all sequences of which
all outputs are . Shorten all other infinite sequences upto the point from
which the outputs start being = forever. As a last step include all the prefixes
of the sequences that are left. Note that each monotonic sequence processing
function is uniquely represented by its tree. This is due to the way this trees
are constructed. Thix construction is formalized in the following definition of
the function tree which gives a treerepresentation of a monotonic sequence
processing function.

We first define the set of intinite incremental sequences of a function. We
call this set the i/o-fraces of o monotonic function.

def iotr - (MY — M=) — P (M x M=)=
with dotr f ={ «: P (M x M=)~
oM™ . Y(i:gco. sil0=0ciA
st =3af (elauy)))}
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The following function takes the relevant (parts of) an infinite i/o-trace.

def rel 1 (M x M¥)™ — (M x M¥)
with rel 7 = 7)o
where ¢ m = ming{n ! N.Vj:N.j>n=nm jl=¢)}

The set of relevant i/o-traces can now be defined as:

def reliotr: P (M x M“)® — P (M x M)
with refiotr X = {m. 3(r: X . 7= rel 7)}

Tle prefix closure of a set of ifo-traces is obviously defined as:

def prefelose : P (M x M¥)* =P (M x M*)
with prefelose X = {m . 3(r: X .7 T 1)}
The tree-representation of a monotonic function can now be defined as:
def tree: (M< - M*}) — DFT
with tree f = d
where [ d = prefclose (reliotr {iotr f))
In this definition £ d represents the i/o-traces of tree d. DFT stands
for the set of all Deterministic Functional Trees. This is the set of all tree-
representations of monotonic functions that give ¢ on ¢. Note that mono-

tonicity is essential {or using this representation.
Tlie formal defiition of the function space MSPF follows:

Deﬁnition 3.1.1 Funition spHice (A{SPF)
def MSPF . P M- — M~
with f e MS P

s fr)frf.f

s o, e MY oE oy = f oL f o)

A

tice | is finitely branching
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In the definition above we used the notion of finite branching. A tree
d € DFT is finitely branching if and only if for all s € L d the set

{(m, 7). s> (m,7)€ L d}

1s finite. We can now formally define what a functional specification is and
when it is consistent:

Definition 3.1.2 Specifications (SPEC)
A specification is a hoolean function over MSPE'

SPEC = MSPF - B
3d

Definition 3.1.3 Consisteney
A specification S : SPECT is consistent if and only if

A(f: MSPF . S f = true)

3.2 Function Combinators

In this section we define a constant function (terminator) and two higher
order functions (combinators) which allow for building functions on the basis
of their sequential behavionr and for composing them in a way which deals
in a uniform way hoth with eriernel aud internal non-determinism [Hoa85].
The choice and definition of these functions has been inspired by analogous
operators in process algebra.

Definition 3.2.1 Terminator

def &: AMISPF
with V(e . & 0 =2}

Obviously, £ models the heliavionr of not reacting to any stimulus.

Definition 3.2.2 Input/outpnt prefir on functions
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def (—,—);— M - M* = MSPF — MSPF
with ((m,o)f) ¢
((myoy; Y {k>o)= if k#m
then ¢
else o0 H f o
fi

g =&

This is the analogous oun functions of action-prefiz in process algebras.
Here an “action” consists in receiving a message m producing output o.
Tlhus, the first step of a (deterministic) system described by (m,a); f is re-
- ceiving m as input and producing @ as output. After that, the system behaves
like f. Notice that such a system does not react on sequences which do not
start by m, thus giving = on them.

The next higher order function we define on functions resembles the choice
in process algebra. We want to define the choice in such a way that it has
a number of properties. The first property is that we want it to be able to
express hoth internal and external non-determinism. This means that if we
have two functions, f and g, such that f initially can accept only input a,
and g can accept only input 4, the choice of this two functions must be able
to apply f if it gets input «, and apply ¢ if it gets b.

Tlie second property follows from the fact that we want a choice that can
be applied on any two A[SPF-functions. Suppose both f and g can accept
the same input, but give a different output. In this case the choice of two
functions cannot he modeled by siimply one MSPF-function. It would violate
the basic property of functions, which is that for each input functions can
produce at most oue ontput. Of course we could require, as a restriction,
that choice is only applied to functions in which this situation does not
occur. But that is not the approach we want to take. Another solution, that
is proposed in literatnie wonld he to generate a function that gives a set of

possible outputs on wne nput. Tu our approach we prefer to generate a set
of MSPF-functions.

The third propeirts ~ o spited by our intention to define a notion of test-
ing equivalence, in ti ~1tuiy of functions. In our setting the behaviour of

a system is modeled Ty et of MSPF. If a behaviour is modeled by a set
containing more than one (uuction, this means that we are in precense of in-
ternal non-determini~ii. Tlis means that we assume that a certain “system
run” will behave according to exactly one of the MSPF-functions in the set,
but that we have no infincnce on which particular function it chooses. A
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testing equivalence relation ou specifications requires that we can compare
the observable belaviour of specifications while considering them as black
boxes. So the differences hetween the behaviour of specifications should
become clear only by means of experiments that are performed on the spec-
ifications by interacting with them. These experiments are of the kind of
giving one input message to the specification and observing the output of
the specification. If the output is in agreement with what the experimenter
was expecting, the test can be called successful. Of course the specification
can be non-deterministic and this implies that the same test one time can
be successful, but another time they do not. Civen a certain specification,
we can discriminate different kinds of experiments. Experiments that always
succeed, experiments that never succeed, experiments that sometimes suc-
ceed and sometimes not wlen perforined on the same specification., We want
to model the behaviour of a system by its maximal set of MSPF. This s
the set for which it is impossible to find a MSPF-function that can be added
to the set without changing the observable beliaviour the set models. So for
which it is impossible to add a AISPF-function without changing the set of
tests that must succeed, the set of those that never succeed and the set of
those that both may succeed or may fail for this specification. In chapter 4
a formal introduction to the concept of testing is given. Here we restrict
ourselves to an intuitive motivation for the kind of choice combinator we
walit.

A last obvious requirement is that the functions in the set generated by
the choice on two functions should not accept (give) more than the composed
functions themselves can accept (give).

In the following we show that a number of naive attempts to define the
choice of functions leads to problems with one of the requirements we ex-
plained above.

From these requirements we kiow already the type that the choice-combinator
on functions should have. It takes two V/SPF-functions as arguments and
gives a set of those functions a~ 1e~ult. Sets of MSPF are specifications, and
thus the type in the definition o Liogee 15

def — | —: MSPF — VN = SPEC

Now we describe thiree naioo ntemprs to define choice. For each attempt
we give an example to show wii ol the above requirements it doesn’t meet.

First attempt:
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The first atempt is to define the result of te choice of two functions as the
set of this two functions.

def — [ — : MSPF — MSPF — SPEC
with (fi | ) = {/i. )2}

The problem of this definition is that it cannot expresses external non-
determinism.

. ¢ e )

{a, th) (¢, 13) (a, T1) (c, 13)

(h, 12} (d, td) (b, 12) d, ™
® ® L ® ® J

Fignre 3.2 Choice of two functions

In Fig. 3.2 the choice of two functions is shown. One function can start
accepting input «, the other input ¢. So we would expect that if we give
the specification for example input «, it should always be able to accept it.
However, the set of the two functions represents internal non-determinism.
So the specification, a~ 1 1esnlt of the choice chooses, by itself, either to
behave like one fmuction <1 like the other function in the set. Suppose it
chose to behave like 11 i tion that can only accept ¢ as a first input.

Then it refuses to arve ot «. And thus the specification refuses to
accept input « in thi~ -+ !~ example shows that the specification does
not deal properly v ¢ non-determinism.

Second attempt:

In the first attor: - - il have liked to get the set shown in Fig. 3.3
as a result of the (liuc 1 e tunctions in Fig. 3.2, We can get this function
by taking fi aud exie: ot aath the branches of f, which initially accept an
input which is not vl v those fi accepts initially. And the same for fa

which in this case leads ' thie same function.
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{a, 1) {c, 13) S

(b, 12) (d, )

J

Figure 3.3: Result of cloice in Fig. 3.2

In order to obtain this set we change the definition of choice of the first
attempt into:

def — | — : MSPF — MSPF — SPEC
with (fi [ A)={f. f =} ecatended to f, for different input v
[ = f extended to fy for different input}

However, with this definition we can show an example in which the re-
quirement that the set of functions should be maximal is not met. Consider
the choice of functions in Fig. 3.4, The specification as a result of the choice
deals properly with external and internal non-determinism. But we could
add function ¢ shown in Fig. 3.5 to the set without being able to find a test
that can discriminate the set 5, = {f.fo} and the set S; = {fi, f, v}. To see
this we take a look at function 4. The only thing this function can do more

then fi and f, is that it can wocept hatl b and  after («,7 1). However,
we cannot find a test to find thi~ Jiflerence if this function s together with
fi and fo. This is becanse wlien tosting we can supply ouly one input at a

time and see what happends. [ Lo etion the specification S, gives on any
test can always be explained o~ o thiere were only the two functions from 5.

For example if alter (a,7 1) .ot 4 would be accepted as input, it could
have been because function ¢ il Leen cliosen, but also because of function
fi had been chosen. Since we cannot find a test that shows any difference

in behaviour specified by 5,. we . only conclude that the set with the two
functions was not maximal.

Third attempt:
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(a. 1) (c, T3) {a, 1) {e, 15)

(b, 12) (d, )

fy )

Figure 3.4: A non-maximal set of functions

In the third attenmpt we rry to get divectly the maximal set. We note that
extending the functions with the branches of the other function which start
with a different input was a good idea. So we keep that part. The problem
was in the branches that start with an input both functions could accept.
If we assume that ontput sequiences on non-empty input are never £ these
branches correspond exactly to the input sequences on which both composed
functions can give an ontput which is not the empty sequence. On those
input sequences we duefine foeither as fi or as fo in order to get all possible
combinations.
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(c,

(b, t2)

Figure 3.5: The extra luiction to be added to the ones in Fig. 3.4

def — | — : MSPF — MSPF — SPEC

with (fi [ f) = {f . Vie.ho#eAfho=e=fo=foA
fio=chfio#esfo=fHoh
ho#shfhofke=afo=fioVfoa)}

[t is easy to see that hinction ¢ satisfies this new definition. However,
also this definition does not give the required result. Functions might get
included that are not prefix-inonotonic or that can do observably less then the
original composed functions. Moreover we have to require that for every input
message some non-empty output is produced. Fig. 3.6 shows two functions
that, when composed by the choice dcfined above, give a set in which a non-
monotonic function gets inchided. This function is defined on the sequences
a and a > b > £ as follows:

fla>eg)=f{a>z:) =~

fle>=b>e)y=fi{a -4 - 1230 d>¢
If we brutely require that .+ ¢ linctions, as a result of a choice, only
contains monotonic function- - -t Tunctions that we don’t want. For
example the choice of the twa '+ 1y Fig. 3.4 results in a set containing a
function, shown in Fig. 3.7+~ .+ . it wand output 1 cannot accept any
input anymore. This is les< + - L umposed functions can do, because
those, after input «, either o o woept bor d.

From these naive attemprs oo learn that we have to look for a better
way to insert the missing [unctions i the incomplete set. For that we need
a better understanding of what i of functions exactly should be included.
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. .

(a, tl) {a, 13)
Py 0 [

(b, 12) (b, t4)
° ®
£y f2

Figure 3.6: Inclusion of a non-monotonic function

;, 13 , T8
(¢, 13) @ 11) (e, 15)

Figure 3.7: Function that stops after (e, 7 1)

Let's first study which input/output-pairs the functions in the set resulting
from a choice initially should be able to cope with. Suppose the set of initial
input/output-pairs of a function f; is {(«,7 1),(b,7 2)} and the initial set
of fis {(¢,7 3)}. In order to model external non-determinism, all functions
in the result of the clioice of f; and f, should start with the set which is the
union of the two sets. This has also been shown in the example of the second
attempt above.

Now consider a dilferent case, Suppose f; starts with pairs from the set
{(a,7 1), (b,7 2)} and [, starts with the set {(e,7 3),(b,7 5)}. If we take
the union we get the set X = {(a,7 1),(b,7 2}, (e, 7 3),(b,7 5)}. This set
contains two pairs that Lave input 5 but give different ontput. So this set
cannot be the initial <ot o function can start with. We solve this problem
by creating two finictions instead of one. One function starts with the set
{{a,71),(h,7 2}, (c.7 3)} the other with {(a,7 1),(b,7 5),(c,7 3)}. The
output the specification will give on input / now depends only on the non-
deterministic choice of the specification to behave either like one function
or like the other. The two subsets we obtained from the set X are called
the mazimal functionul ~ubsets (mfs) of the set. A functional set is a set of
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i/o-pairs in which each pair has a different input part. How to obtain such
sets Is formalized in Definition 3.2.4 on page 27.

In order to study the sets of input-output pairs at other points in the
functions we take a look at the example in Fig. 3.4. Here the problem was that
the two functions composed by choice can perform the same trace (a,7 1)
and after that behave different. It turned out that the function that was
missing in the result was the one in which both (4,7 2) and (d, ™ 4) could
be performed after {a,7 1). So we should have created also the function
with the union of the set of pairs of the individual functions after (a,7 1).
More complicated examples show that simply taking the union is not enough,
For example, suppose the first function, after (n,7 1) could perform the
pairs in the set {(4, 7 2), (¢, 7 3)} instead of only {(b,7 2)}. Then we should
have included the function that after (a,7 1) can perform all pairs in the
set {(6,72),(e,73),(d,7 4)}. But now, it is easy to see that the overall
behaviour modeled by the specification would not change if we would add also
functions which after {(a, 7 1) can perform all pairs in {(6,7 2),(d, 7 4)} or in
{{es7 3),{d,m )} orin {(h,7 2),(e, 7 3)}. So, also all these functions should
be included. So, in general, besides the sets characterizing the functions we
started with, we should include also (the maximal functional susbsets of }
their union and all intermediate sets.

The operator we are looking for, and which gives us exactly this kind of
sets, is the closure operator which has been defined in the context of testing
theory by Hennessy [Hen88]. There is only one problem left. This closure
operator gives us not always exactly the sets we are looking for. We have
already seen in the initial case, that taking the union of sets might result in
obtaining sets that are not “functional”, i.e. contain two or more pairs that
have the same input but different output. The solution is to replace such
sets by their maximal functional subsets, like we did in the initial case.

After this analysis we can really construct the set of functions we want
to obtain from the choice of two functions. We use an idea that has been
inspired by mathematical vepresentations of behaviour developed for testing
theory in process algebra. The kev idea is to use the tree-representation we
have defined to represent ASPF-[nctious.

Consider the choice of the functions in Fig. 3.8. These functions we can
also represent by trees wlich are a little bit more sophisticated in the sense
that we label the nodes of the trees by the sets containing the set of successors
at that node. The set of siccessors is the set of i/o-pairs the function can
perform at that node. We get the trees shown in Fig. 3.9. On this kind
of trees we define a sum-combinator, which creates a deterministic tree with
sets of successor sets at its nodes. The idea is to create this tree in such a way
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(a, ©h)

Figure 3.8: Two functions

({ta. t1) (b, 203} o t(b, 12)

Figure 3.9: Einlianced trees of functions in Fig. 3.8

that it can be decomposed uto a set of trees representing functions. This
set contains exactly the <ot of fuuctions we want to have. The sum-operator
is a variant of the +¢y; operator of Hennessy [Hen88]). The set of paths in
the intermediate tice i~ e wnion of the paths of the trees of the functions.
The sets of successor -t~ .t the nodes of the intermediate tree are obtained

by an operator that :~ - on successor sets that are found in the trees
of the functions. [h~ . i is a composition of the closure operator and
an operator for olit.io _ .vnual functional subsets. The closure operator

is defined as follow-

Definttion 3.2.3 {lo<un:
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poly X:lidef c. PPXPPYX
with ¢ ¥ = YV
where ¥V = nuing I
K={Y.AeV=Aecvv
N, X)) Y XU, =4)
(X, X2): Y. X1 CACKX,))

The requirement 3{(X;, X,): V. X, U X; = 4) is also called U-closure
and the requirement 3((X;, X3): V. X; C A C X;) is called convex-closure.
The operator min las been defined in Chapter 2.

For example tlie closure of the set of sets

{{('i‘?l, 51)}! {("”‘9 52)7 (”‘! gl}}}

gives the set

{{(m‘1 51)}3 {(7"’1 '-""2)! (”1 '-"'1)}1
{(m, s1), (m,s2)}, {(m, s, (, s1)}s
{(m, Sl)a (TH., 32_)1 (”1 51)}}

The second function is the function mfs which takes a completed set of
suceessor sets and replaces each non-functional set by its maximal functional
subsets,

Definition 3.2.4

def mfs : PP (M x M) 5P P (M x M)
with mfs W = U(X € ¥ . amfs X)

def smfs : P (M x A*) — P P (M x M*)
with smfs X = marc{}V V' C X A func Y}

def func: P (M x M) = I3
with fune X =V((r,y): N2 r £ y=204y 0)
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The function max used above has been defined in Chapter 2.

Tle summ-combinator on the enhanced trees of the functions is defined by
means of ¢ and mfs. The enhanced trees, on which this sum-combinator is
defined will e formally defined in Chapter 4 and we will call them functional
finite acceptance trees (fFAT). The sum-combinator on this trees is therefore
denoted by +447. In the definition of the sum-combinator below Lgar
denotes the function that given a deterministic tree gives its set of paths.
Function Agar takes a deterministic tree ¢ and a path s in the tree as
arguments and gives tle set of successor sets at the node in ¢ reached by
following s. Agar t s is called the “acceptance set” of the node in tree ¢
identified by s. Note that such a node is uniquely identified by s since ¢ is
deterministic. Function u denotes the pairwise union of two sets of sets. Its

defintion is:

Definition 3.2.5 pairwise union

poly X:l{def u:PPX5PPXPPX
with W« ®=1{Y.3((A,B)e¥x®.Y =A4UB)}

a
The sum-combinator is defined as:
def — 47 —  fTAT = JAT — f[JAT
with t1+gar b =1
where Lgir t = Lgar U Lgar 2 A
./4_{_7’.47' te=mfs ( AﬂAT fy € u AﬁAT 1) 6)
Agar t ~= f s€ Lgar t
then mfs (¢ ( Agar b sU Agar t2 s))
tlse @
f
As an example the 1iee tesulting from the sum-operation applied on the
trees in Fig. 3.9 is shoeon o Ui, 3.10. The resulting tree has acceptance sets
at its nodes. Allelere - o5 cacl set are functional. We can decompose such
a tree into a set ol 1o+ wLich directly represent functions. The set of trees

resulting from deconpoig the tree in Fig. 3.10 is shown in Fig. 3.11. Each
tree in the set is obtaited by choosing one set in each acceptance set at the
nodes of the tree in Iin. 3.10. From each collection we get in that way we
can reconstruct a frev. So, for example, tree a} in Fig. 3.11 is the result of
choosing set {(«.7 1), (4.7 2)} in the set at the root of the tree in Fig. 3.10
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e, 13),d, 5 }1le, 3)})
(d, 5)
Y

Fignre 3.10: Resulting tree

and set {{c, 7 4)} at the node after the arc labeled with the element (6,7 2)
in the set we chose for the root. Then, after the arc labeled with (e,7 4) we
find in the tree in Fig. 3.10 tle set containing only the empty set. So we
choose that one.

The collection of sets that claracterise tree a} in Fig. 3.11 is marked by
underlining the relevant sets in Fig. 3.10. The decomposition-operator on
trees is defined below. In this definition Spur d s gives the successor set of
a deterministic tree d at the node which is uniquely identified by path s in
d.

def dec: fJAT — PHAT
with dec t = {d . V(s: Lgar d . Sgar d s & Agar t 5)}

The choice-combinator on MSPF-functions is now defined as:

Definition 3.2.6 Choice on MSPE-functions (])

def — | — : MSPF — \[SPF — SPEC
with (fi 0 £) f=tree | = e (tree htgar tree f)

The following lemma prsianteos consistence of choice:

Lemma 3.2.7 Consistency of choice

Vihofo: MSPF . 3(f - MSPE (R | £) 1))
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(a, T1)

a)

(b, 12}

(c, 3)

d)
Figure 3.11: Set of trees resulting from decomposition of tree in Fig. 3.10

Proof
The assert. trivially follows [tom the definitions of tree, +pgar and dec.

a

The following letitata ~liow that MSPF is closed under i/o-prefix and
choice.

Lemma 3.2.8 MS/'0 - i uder ifo-prefix
V(f: MSPF. L ! Y (k,6);f € MSPF)

=]

Lemma 3.2.9 1/~ o uder choice
Y(fi,fa, g MSE V1) g =g € MSPF)

|

The proofs of the-e lninas are omitted becasue they are trivial.
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3.3 Combinators on Functional Specifications

So far we have defined a basic MSPF-function, and two combinators on
MSPF. Our aim is, however, to define specifications, thus sets of MSPF,
in a structured way. This means that we have to “|jft” our combinators on
functions to combinators on specifications. In [Bro92a, Bro92b] Broy pro-
poses a general method for defining combinators on sets of functions based
on combinators on functions. We will apply the same method to our com-
binators. The extension of combinators to specifications is straightforward.
We call the resulting set of combinators our Functional Algebra (FA).

The basic function & can be used to define the basic specification STOP.

Deﬁn_ition 3.3.1 Stop

def STOP : SPEC
with STOP/ = (f = &)

The input/output-prefix combinator on specifications is defined as:

Definition 3.3.2 Input/output-prefic

def 7 —!—; —: M = (M) = SPEC — SPEC
with (?mlo;8) f=3(g. 5 yAf= (m,o);9)

Finally the choice-combinator ou specifications as:

Definition 3.3.3 Choice
def — | — : SPEC — SI'EC = SPEC
with (50 [ So) f= 30/ 1. USPE . Sif A Sofy A (f 1 f2) f)

O

Lemma 3.3.4 Consisteucy o Specddication Combinators

All specifications Luilt using «nly STOP, i/o-prefix on specifications and
choice on specifications ave «onastont,

Proof

Trivial.

a



32 Functional Algebra

Note that the Functional Algebra constitutes the natural denotational
model for the language defined by the following grammar:

$:=STOP | 7mle:S|S[S

This will turn out to be useful in Chapter 5 where other operational and
denotational semantics are defined for this language.



Chapter 4

Introduction to Testing
Equivalence for Functional
Specifications

In this chapter we introduce tlie notion of testing of processes as it is used
in process algebra. [t has been described in detail by Hennessy [Hen88§]
and in this introduction we will follow mainly his approach. The notion of
testing is based ou a model of the Lehaviour of systems. It considers systems
to perform so-called actions, which can be observed by the environment in
which the system is active. These actions, and in particular their relative
ordering in time, represent the behaviour of such a system. The description
of the actions and their order in time is called a behaviowr expression. The
model of the system, only reprosenting its behaviour, is often called a process.

The framework Hennessy nwl to Jdefine a notion of testing equivalence
for processes is mainly based on modeling behaviour by means of transi-
tion system oriented matheniatio ol stenctures. In this chapter we want to
investigate, however, if the <o oncept of testing equivalence can also be
modeled in a framework D~ .10 onotonic stream processing functions.

We like to do so because manit.. . ieam processing functions can serve as
a functional variant for xpecit .ol swatem behaviour. The properties of
functions and their compasit - 1 e well-studied and known as a basis

for powerful proof techuicqpi~ - . .o wiitable to be supported by automa-
tized tools like theorem chevti oo il 1heorem provers. Testing equivalence
has turned out to be an it o0 equivalence in the field of process alge-
bras because it takes progtose Liopettios of processes into account, and it is
based on a widely accepted 1ot of “experimenting.” It reflects the equiva-
lence of processes which exterual Lebavionr cannot be distinguised by means
of experiments. Tlere exist other vouivalences that take progress proper-

33
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ties into account, like bisimulation [Mil89] (and applicative bisimulation in a
functional framework {Ong93]), but they do not compare processes only on
tlie hasis of their external behaviour. For this reason these last equivalences
quite often result to be “too strong.”

To our knowledge liowever, testing equivalence is not yet defined in a
functional framework in which specifications are sets of functions. In this
field it is more common to work with the trace equivalence relation [Abr89)
. which is known to be much weaker then testing equivalence, and which is
not so much suited to deal witli deadlock properties of processes. '

When nusing functions as a model to describe the behaviour of systems,
thiere is a uatural inclination to divide the class of actions a system can
perform into input actions and output actions. Such a strict division is
liowever not necessary.

We will show how to extend the concept of action in such a way that an
action deals hoth with input and output.

In Section 4.1 an informal and formal introduction to the theory of test-
ing is given which resembles very much the introduction given by Hennessy
[Hen88] except that we use actions that deal both with input and output.
The notion of testing equivalence of processes is defined.

In Section 4.2 labeled transition systemns are introduced and a relation on
them is defined that corresponds to testing equivalence.

[n Section 4.3 finite Acceptance Trees are introduced. It is explained
that equality of finite Acceptance Trees correspond to testing equivalence.
Moreover we sliow that under certain conditions finite Acceptance Trees can
he used to represent sets of monotonic stream processing functions. We also
show that under tlie same conditions equality of sets of monotonic stream
processing functions, built from the functional algebra operators STOP,
i/o-prefix and choice, corresponds to testing equivalence in which actions are
represented as inpnt/ontput pairs.

4.1 Concept of Testing

Once we are able to describe the belhaviour of systems it follows almost natu-
rally that we want to ovder these descriptions in certain classes. The criteria
for classification depewd on wlhat aspects of systems we are interested in.
One important aspect of the hehaviour of systems is the behaviour that can
be observed from outside the system, that is without taking into account
the internal structire of the system. Two processes which are denoted by
syntactically different heliaviour expressions still may perform the same ob-
servable hehaviour. For cxample if we have two expressions, say A and B,
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which we combine in the description A | B meaning that the system behaves
either as A or as B we could as well have written B [ A to describe the same
behaviour. So, syntactical different expressions may describe the same be-
haviour. What do we exactly mean by “the same behaviour ?” Summarizing
Hennessy freely we could say @ “Two descriptions are describing the same
behaviour if no liypothetical user can ever distinguish between the behaviour
of the two processes denoted by the two descriptions”. We will formalize
exactly this notion, sticking to our model of systems that accept input and
produce output. This last assumption does not create any fundamental dif-
ference hetween the way testing equivalence is formalized by Hennessy and
the way it is done in this cliapter.

In the following we introduce a series of notions, mainly due to Hennessy,
which will be used for the definition of testing equivalence. Each notion will
be first introduced informally and then formalized.

Consider two processes, p and py, and let us assume that they can pro-
duce non-deterministic behaviour. This means that if we introduce an exper-
imenter it may find say p; reacting different everytime it tests p,’s behaviour
with the same test.

One can imagine that this non-determinism of processes makes it quite
complicated to test if there ave differences between the behaviour of processes.
But when we assume that we can test as often and as long as we want (at
least for processes witll finite beliaviour) we can find three different “classes”
of experitnents, which can discriminate between non-deterministic behaviour
of processes. These three classes are:

L. Experiments that always succeed
2. Experiments that may suceeed and may fail
3. Experiments that never succeed

This leads to the following uotions about the behaviour of a process p.
We can say that p may satisfy au experiment ¢ if ¢ falls in class 1 or 2 above,
We say that p must satisfy an experiment ¢ if ¢ falls in class 1. The “decision”
if an test is successful or not is iu this theory up to the experimenter.

In this framework we now cinnsay that two processes are testing equivalent
if and only if they may satisfv 1he same experiments and they must satisfy
is the same experiments. So in ~hort, we cannot find an experiment that can
demonstrate a difference in their hehaviour.

Example 4.1.1
Let us study the classical exainple of two testing equivalent processes.
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(a,1) (a,1)

(b.2) (b,2)
L 4  J

(c.3) d4) (3 d.4)
L L

Figure 4.1: Two testing equivalent processes

The two pictures in Fig. 4.1 denote two processes with non-deterministic
behaviour. The leftmost picture denotes a process that can take input a give
output 1, and then non-deterministically decide to behave according to the
leftmost or to the rightmost branch of the tree.

The rightmost picture in Fig. 4.1 denotes a process that already at the
beginning decides either to hehave like its leftmost or its rightmost branch.
Suppose we put these processes into two different boxes, so that we cannot
see the differences in the structure, but we can observe their behaviour. Then
we will soon discover that our notions of may and must satisfy cannot show
us any difference in heliaviour between these processes. We can observe
that these processes alwayvs must accept action o followed by b, producing as
vesult 1 followed by 2. Also we can observe that the sequence (a,1)(5,2)(¢,3)
sometimes can be ohscrved, but sometimes not. For example, if p; chooses

to behave like its tieht lnanch, it cannot accept a ¢ and producing a 3 after
input a followed by . Su [or example, the test that reports success after the
sequence (e, L)(&,2)i. b lias heen observed, sometimes fails and sometimes
is successful, for borh oresses! They both may satisfy this test, but, for
both processes, it i~ «ertaindy not the case that they must satisfy this test.

In order to formadioe the concept of testing we introduce P, the set of
processes, £ the ~ct of experimenters, || the interconnection between pro-
cesses and experiniciters determining interactions between them and M a
set of messages of anv kind. The processes from P we denote by p, the ex-
pertmenters from /7 v . For the time being we refrain from further details
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about what exactly processes and experimenters are. These will be defined
a little bit further in this section. '

As we have seen the experimenter and the process have to interact in order
to let a test take place. The combination of experimenter ¢ and process p
will be denoted by « || p, giving a pair in E x P. We define the interaction
relation as a predicate on experimenters, processes and actions. Its type can
be defined as:

def — — — = —(ExP)=5 (Mx M) (ExP)> B

5o the expression e || p — (i, 0) = /|| p’ means that if ¢ wants to test if
process p on input ¢ gives output o and p indeed can accept i and produce o,
they together can perform an interaction step, each reaching a new “state”
denoted by " and p' respectively while performing the same “action” (1, o).

A test uow is defined as a whole series of these kind of interactions:

€0 ” Po = {i, o) ) e — (ir_1, Ok—1) || €k ” P — (z';” Ok) =
This notation is a shorthand for:

'y H o — (4, on) —) “ "
A

vl pe o~ (o) =y e ||
A

A computation is a test of maximal length. This can be in principle finite or
infinite. Maximal means that no further interactions can take place, dueto a
mismatch between what the experimenter wants to test and what a process
can perform. A computation is a success if the experimenter passes through
a certain state, called the success state. The success states are a subset of

the set .
To denote the whole testing sitnation we use the notion of experimental

system which includes all relevant information.

Definition 4.1.2 Erperiniatol <yt m
An experimental system &8 i o fonr-tuple (P E, = —|, Success) where :

P 15 a set of processes
E is a set of experimentors

— 2 EXP) = (U x M) 5 (Ex P)— B a predicate defin-
ing an interaction relation
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Success C© F the set of success states

Let us also introduce tlie set of computations denoted by Coemp(e, p),
containing all computations that start with e || p. Now we can define the
notions of muay satisfy and must satisfy more formally.

Definition 4.1.3

p may ¢ = Comp(e, p) contains a successful computation

p must ¢ = Comp(e, p) contains only successful computations

Based on this definition we can define the following testing preorders on
processes. A relation is called a preorder if it is reflexive and transitive.

Definition 4.1.4 Testing preovders on processes
Given an experimental system &5 (P, E, — —, Success) we can define the
following preorders on processes p,p’ € P: '

HDpC  p=Vie: . pmaye=p maye)

~rnay

i) p W=Vl E L p st € = p must e)
i) pCp=pC  papg 7

g ~ st

a
Testing eqnivalence. denoted by ~, can now be defined as:

Definition 4.1.5 11 <ty equivalence

def ~:P—o /' - U

with p ~ p' = oo Do
a
This definition . -+ - oshizes the notion that two processes are testing
equivalent if no expo o can he found that discriminates their behaviour.
What remains is to ter a0 the notion of a process, an experimenter and

the interactiou relation Letween them. We do this by ineans of giving an op-
erational semantics of a process. This semantics can be modeled by Labeled
Transition Systems (115,
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Definition 4.1.6 Labeled transition system
A labeled transition system is a triple (P, Act, — — ) where

P is an arbitrary set of processes
Act 1s an arbitrary set of actions

= = P x Act x P — B a predicate defining a transition relation

The expression p — « — p’ may be read as : “p may perform action a
and then evolve to the process p." When several steps are made at once we
denote this by the expression p — s = p’, where s is a sequence of actions.

Definition 4.1.7 Processes
The finite processes we consider in this chapter can be denoted by terms
generated by the following grammar!:

Pu=STOP [7n!a;P| P P

PA;, will denote the set of such terms. In the above grammar m is an
element from Af, which denotes an arbitrary set of messages, and o is a
sequence of messages, so 7 € 1/

The operational nature of « process denoted by a term from the set
PA;, can be expressed by menns of the following labeled transition system:
(PA;,, M x M*, — —pr ).

The predicate — — . delines the trausitions that can take place within
the labeled transition system. \We dcfine this predicate in a style introduced

in [MR92]:

'We choose this notation hete 1~ <pthand for the equivalent Funmath definition
because although the notation i~ I <~ | 1o« 1w from the type point of view, it is very familiar
to most computer scientists. Al o1 i place i the sequel we want to avoid to disrupt
the line of the story with extra vt iitian abont the somewhat different sytax that is
used in the Funmath definition I'1 unnarl definition would look like

def E: Te

with £ = STOP [ iy 0y i EY
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def — —,, PAi, x (M x M*) x PA,, = B
with STOP — (m,0) —=,. B = false
Ymles B —(a,y) =2 BB=a=mAc=yAB =8
BU E BI - ("”’3‘7) _>pr‘ B’ = BO - (m,a) _'>pr‘ .Bjl
v
By — (m,c) =, B

In these equatious m € M, « € M,y € M and B,B' € PA,,.
O

The part of a labeled transition system that represents the behaviour
of an expression p can he represented as a tree, where the labels at the
nodes are hehaviour expressions (i.e. expressions from PA;, in our case), the
labels at the edges the “actions” (i.e. input-ouput pairs in our case) and
the expression at the root is p. The labeled transition system part of some
process p handling iupnt and output then looks like the tree in Fig. 4.2.
For easyness of writing we call the subpart of the LTS for a process p also
directly “the LTS p."

m'c ' v;STOP [ Ym! ¢ ;7k! §;STOP

(m, o)
Tl vISTOP %15:STOP
n, n k, &)
STOP o STOP

Figine 2 v 0 718 handling input and output.

To simplify a lin i~ use the form with only the action-labels.
The expressious can '+~ “vrnived once we know what is the expression we
started from. Anexo ot ach a picture starting from the same expression
as in Fig. 4.2 is sl NI 0

Notice that the o o of processes gives an operational semantics to
the language introdiced i Chapter 3. In that chapter a denotational sem-

natics to the same lancuace was given., Ezperimenters can be modeled in the
saime way as processe~. hut with some extra features. To give experimenters
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{m, o) (m, G)

(n, ¥ {k, &)

Figure 4.3: The LTS of Fig. 4.2 without behaviour expressions.

a bit more control over the process they ave testing they are given the pos-
sibility to perform one special action mdependently from the process they
are testing. Moreover they liave a special action with which they can re-
port success. The {abeled transition system denoting the operational nature
therefore looks very similar to that of processes.

Definition 4.1.8 Erperimenters
An experimenter is a process denoted by any term generated by the following
gramimar:

E:=8TOP |"mlo; E

E|FE
with (m,o) € (M x MU {(1.7 D). (w,7 w)}.  PE;, will denote the set
of such terms. The operational semantics is denoted by the LTS
(PE;,, (M x MYu{(l,7 1}, (. Ty}, — o),
where — =, :PE, x (M x M) U{(1,r 1), (w, 7 w)}) x PE;, — B is the
predicate defining the transition relation by the following set of equations
STOP — (m,0) —., I = il
tmlay B — (u,y) =, [ = tANoao=~yAE=F

Es] BV = (m,o) =, 1 = I, —(m,0) =, F

Fy = {(m,o) = £
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As a shorthand we introduce the symbols 1 for (1,71) and W for (w, 7w).

Having defined processes and experimenters we can formalize their inter-
action. A process and an experimenter that are compatible, i.e. can perform
tlie same kind of actions, can form an “experimental system”.

Definition 4.1.9 Euperimental system
Let LTSp and LTSg be two compatible labeled transition systems
(P,Act, — —,.) and (£, Act U {1,W}, — —.;) then £§ (LTSp,LTSg) is

the experimental system (P, E, — —|, Success) where

o — —y is the predicate defining the interaction relation defined by the
following interaction equation:

ellp—(m,o)—=y e || p

(6 — (m, o) = &' Ap—(m,o) =, p')V
(6 = 1= ¢ Ap=p' A{m,o)=1)

o Success = {e: B .3 E. e =W =, ¢}

For reasouing about testing equivalence of processes denoted by the re-
strictive set of terms of PA;, we will consider the experimental system

ES ({PAw, M x M~ — )y (PEio (M x M*)U {1, W}, — —=.0))
whiclt is the four-tuple
(PAip, PE.,, = —y. Success)

To illustrate the definitions we will work out a number of ex-
amples. For example the experimenter denoted by the expression
Tyl Tmylay; Wi STOP can be interpreted as an experimenter that tries to
find out whetlier a proces can perform the sequence (my, 1) > (Mg, 07) > €.
Which means that it tries 16 find out if a process accepts input m;, and gives
sequence oy as ontput ainl then accepts input m, and gives output o3,

The experimenter ‘g lay; (2mgloy; Wi STOP [?m3los; W;STOP) re-
ports success i the process under test can either perform the sequence
(ml,rf;) >= g o) o= 2o (i LT - (m_-;, 0’3) - E.

Let’s consider a process p defined as

p=Tmla;?m,lo, STOP
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and an experimenter e defined as:
e =?mylay; (1; W, STOP 7m0, STOP)

and let’s see which computations can be found in the experimental system.
One computation is:

ellp = {my,o) =) (1; W;STOP [7m,loy; STOP)||?7mylay; STOP
— 1 =) W;STOP|7m,loy; STOP

This computation is clearly a success, hecause the experimenter expres-
sion in the last step is W; STOP, and thus able to perform a W-action.
Anether computation starting from ¢ and p is:

ellp— (m, o) = (1; W;STOP [71n,!72; STOP)||?m,loy; STOP
— ('N?.Q.,O'g) > STOP ” STOP

This computation is clearly not leading to success. Nowhere in the com-
putation the experimenter is able to perform a W-action as a first action.
Note that now we can couclude p st e, because not all computations
starting from e || p lead to success. The process p, however, defined as
P =Tmyloy; Tinyloy; STOP must satisfy exXperimenter e.

So this test e may only fail in case it tests a process that is not able to
perform {(my, o1) as first “action”. or aftey performing (my, 7)) may perform

(m25 ‘72)'

4.2 Testing Based on Labeled Transition Sys-

tems
In the previous section we fur . . “tep by step the intuitive concept of
what it means to fest systcis . lave non-deterministic behaviour.
Also we defined in that cow - - ol testing-equivalence. This formal-
ization, that fits quite natue., . - utwition we have of testing, turns out
to be unpractical to use in - - omng,

To give an idea of the I, * - g one has to perform we work out
an illustrative example ok © . louss]) but modified a bit to fit to the
input-output actions we woin g

Suppose we want o find oot e following holds:

(my,o0); (g, a2) | (oo ooy I (m1,01); ((m2, 02) || (ma, o3))

~must
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For readability reasous we omitted the STOP-operator.

The “proof” could look like the following reasoning:
Suppose (my,o); (g, 02} [ (mu,a1); (ms, 03) must e, and e is some experi-
menter. The we Lave to show that (my,ay); ((mz,02) | (ma, o3)) must e.
We see several cases:

. If e can immediately perform a W-action, then it is trivial.

2. If not, then suppose e could perform a series of 1-actions and after that
perform a W-action. This case is very similar to case one.

3. Suppose ¢ could perform a series of l-actions followed by a (my, o)-
action. Then we have again several cases:

(a) After the (my, o) there are a number of 1-actions followed by a
W-action. This kind of experimenters must be satisfied also by
the right haud side expression.

(b) After (m, o) there are a mumber of 1-actions followed by (ma, o2},

ending up in say an expression e’. After ¢’ a number of 1-actions

can follow and then a W-action. Indeed also this kind of experi-
menters must be satisfied by the right hand side expression.

(¢) The same as the previous point, only with (g, o7) replaced by

(s, 73).

So indeed we can conclude that for all experimenters e such that the left
hand side expression must e, also the right hand side expression must e.

It is probably clear now that for somewhat more extended examples this
kind of reasoning runs ont of hand. Therefore Hennessy proposed an al-
ternative characterization of the pre-orders C  , T and [, which is

™~y ~rmust

based on labeled transition systems and which makes reasoning about testing
equivalence much sipler.

In order to reason alout labeled transition systems it is useful to introduce
the following operators vn them.

Definition 4.2.1 Opcraines on labeled transition systems
For any labeled transition system({P, Act, — — ) with p € P and s € Act”
we can define:

o the language of £
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def L. P — P Act*
with Lp={s:det™ 3(p": P . p — s —=. p')}
e the successors of p after s has been performed

def 5: P — Act® = P Act
with S ps = {a: Aet . 3((p’, p"): P?. p—s—.p' —a— p")}

e the set of acceptances of p after s

def A:P = Act” =P P Act
with Aps= {5y c. 3p:P.p~s5—.p)}

Sticking to the labeled transition system (PA,,, M x M*, — —,r) We can
ilustrate the ahove definitions by an example.
Suppose we define process p as:

(s )y (Cingy ma) [ (i, 04)) | (may 1) (g, 04)

The corresponding labeled transition system presented in its simplified
form, is given iu Fig. 4.4.

Figure 4.4: A\ labeled transition system

The language of this laheled transition system related to pis

Lp= {z (my,o0) =z (o)) > {1y, 00) > ¢,
(myy ) > (. a5) > 2, (my, a7) > (my, 04} > ¢}
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Some examples of successor sets are:

Spe=c(m, o)

Sp (my, o) ¢ = {(mg,02),(ma, 73), (my, 74) }

Some exainples of acceptance sets:

Ape=1vt{my,m)
Ap(m,o)>=c= {{(”?-2,0‘2)»(77?':3,0'3)}& (m4,0'4)}

We need one more non-standard operator on sets of sets before we can
introduce au alternative definition of the preorders and T

~rmay ~must

Definition 4.2.2

poly X:Udef —cC —:PPX—+PPX -8B
with ® cC W =Y(A4:®.3(B:¥. B C A))

For example {¢ a,{a,0}} CC {v a,¢ b,{a,b,c}} because t a C¢ a and
¢ o C {a,b}. Note that if & = then trivially & CC ¥ for every .
The alternative definitions for the preorders can now be formulated as:

Definition 4.2.3 Trsting preovders for labeled transition systems
def <., : P1. = P4, = B
with p €,y p'=LpC Ly

def st P-"'uu - P-'l;,, - B
Wit‘h I’ <<mu.s! ,”" = .?;'\\ . (.‘I[ X /I‘Jf*)* . A ])f s CC A p S)

def «: P4, — 1"t . -1
with p < p' =, 0’ Ap Lot P’

A useful lema teiated to these preorders 1s:

Lemma 4.2.4
For all p and p' in 11,
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Ap'sCCAps=Lp'CLp

Proof
A proof of this lemma can be found in [Hen88].

O
Testing equivalence can now also be defined.

Definition 4.2.5 Trsting equivalence based on labeled transition systems

def ~:P4;, - P, - B
with p ~ p'=p K p'Ap <« p

|
Of course we have to slow that the preorders on labeled transition sys-
tems, oy and &y, correspond exactly to the preorders [ and
~may
— We will restrict ourselves here to remark that the input-output
~rnus

tuples we have heen using upto now can safely (trivially) be replaced by
action names like «, b, ¢ etc.. Different tuples getting different names. The
whole formalization we did then boils down to exactly the theory and proofs
Hennessy developed in his hook [Hen$8],

Since we did nothing really different from the theory developed in [Hen8§]
the following lolds.

Lemma 4.2.6
For all p and p in PA;, the following preorders are equivalent:

P [ P’ = P <<mr:y P,

oy

p E PI = '[) <<mu.n' ["1’

st

pCp =p <y

That the definitions hasced on labeled transition systems make it easier to
reason about testing equivalence properties of processes is shown in the next
example, which considers the sanie problem as in the example on page 43.

The problem was to find ont if the following holds:

(mi,a1); (ma, ) [ (oo ilmg, o) © 0 (my, o0):; ((ma, 52} | (ms, 03))

st

Now we can replace this by the following:
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-(ml,r:rl); (ma,02) [ (e, o1); (ma, 03) Lmuse (M1, 01); (M2, 02) | (m3,03))

Aud according to the definition of «,..a the only thing we need to
do is to check if for all s € {(m,o1),(m2,02), (ma,03)}" it holds that
Ap' s CCApsif p represents the left hand side expression and p’ the
expression on the right hand side. We soon find out that we only need to
check this for a few essential sequences because for sequences s that do not
belong to L p', A p' s will be the empty set, and in that case the property
trivially holds.

So we clieck:

& v =&

Ap s

e (my, o)

CC

e (my, o)
Ape

o s ={m,m)

Ap's

[ {('HJ.),(TZ).(;‘Hq.(T.;)}
ZC
{{, (IH-Z,O’_,],.' [m;,r‘r\;)}

Ap s
o s=(my,oy) (. 7
Ap' s
¢ {)
CCZ
t ¥

Apos
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o s =(my,a;) (ms,03)

Same as previous,

For all other s, A p’ 5 = 1. So we can conclude that p p’ in a much

~must

easier way.

4.3 Finite Acceptance Trees

Although the formalization of testing equivalence based on labeled transition
systems makes it a lot easier to reason about testing equivalence of processes,
it still uses a non-standard and not so straight forward operator CC.

Finite Acceptance Trees are introduced by Hennessy to give a different
representation of processes such that the preorders C and [ {or

~ray ~rnust

equivalently <., and < ,,.st) can be defined in a more elegant way.

Finite Acceptance trees are deterministic, finitely branching, finite trees
that represent the operational beliaviour of a process. As an informal intro-
duction we sketch the idea by means of an example.

Suppose we have a labeled transition system as in Fig. 4.5.

(m.q) (m,, o)
(m,, G,) (m,, o)
Figure 4.5: Fxanple Lileled transition system
The behaviour this labelod 1ouaition system represents can also be pre-
sented by a deterministic tree. 0l las as its labels at the nodes the set of
sets of next actions which can e jetfonned. We would get something like

in Fig. 4.6.

The set {¢ (my,03),7 (1.7} denotes that non-deterministically either
(ma,o2) is performed or (m,. 7,1, This means that, independently of the
environment, the process after haviag returned o on input my, will non-
deterministically, either wait o1 1oy as an input and produce oy, or wait for
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Figure 4.6: Finite acceptance tree representing the LTS in Fig. 4.5

ma, producing o 3. Now, if we look back to the labeled fransition system
in Fig. 4.5, we can verify that the labeled transition system in Fig. 4.3 is
testing-equiivalent to the first one. It is not only testing-equivalent, but also
the most “complete” labeled transition system that is testing equivalent to
the one in figure 4.5. Complete in the sense that no more branches can be
added to the labeled transition system without introducing repetitions or

loosing testing equivalence.

(m,,

{m,.a)

Figrue + 7 ¢ sudeted version of LTS in Fig. 4.5

The represeutat - © < ompleted tree as a deterministic tree with
acceptance sets i~ -~ i~ called a finite Acceptance Tree (fAT). A
pictorial represent.ar -~ - onin Fig. 4.8.

It is also possible - oo ditectly from a, possibly not completed, LTS

its cortesponding finite Voo eptance Tree representation. This can be done by
means of a special “ losnie™ operator on acceptance sets. Given a set of ac-
ceptances A p s of a «oitau LTS p after sequence s has been performed, the
closure operator applicd to sich a set adds exactly the sets that are missing
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fumy. g) 1 (my, G
{{my, q,),(m,, 6)) }}

1@
Figure 4.8: Finite acceptance tree of Fig. 4.3

when compared to the acceptance set we would have obtained from a com-
pleted version of p. This closnure operator has been defined in Section 3.2.3

as:
def c. PPN PP X
with ¢ ¥ = ¥V
where + ¥ = ming A
K={Y.AdeV¥Y= Aclyv
(N, Y . XiUX,=A) v
ALY X, CAC X))

We call a set of sets closed if the following holds:

Definition 4.3.1

def closed : P P (M x V") = B
with closed X = (¢ X = \)

a

In order to define the set ot “iite acceptance trees it is useful to be able
to speak about the collection ol Wil thie closed sets of subsets of a certain set
R. We will call such a collicr oo 116 subset related closed sets of a set R
((sres R). (In Hennessy this oo is called S-set but we chose a different
name to avoid a too heavy vvrloanding of the name §). The definition of
sres is:

poly X:lU def sies PN 5 PPPX
with sres R={N:P P it closed K AR € K}
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In the following definition Lj47 ¢ denotes the language of a deterministic
tree t. The language of a tree is its set of traces. Apur ts denotes the
acceptance set at the node in ¢ indicated by trace s in Liar t. Spurts
denotes the set of labels of all the outgoing branches at the node indicated
by trace s in the deterministic tree t. Note that in deterministic trees a trace
in such a tree uniquely identifies a node. Finite acceptance trees can then be
defined as:

Definition 4.3.2 Finite acceptance trees

A tree ! is a Finite Acceptance Tree if it has a finite number of roots, if its
branches are labeled by elements of A7 x A, if its nodes are labeled by sets
of subsets of M x Af*, and if it satisfies the following three requirements:

e For every action (in, ), every node in the tree ¢ has at most one suc-

cessor branch labeled by (m, )

o For every trace s € Lyr t, Spar t s, 1s finite {finitely branching)

e Foreacli s € Lpr t, Apar t s is an element of sres { Sur t s)
The set of Finite Acceptance trees over M x M* is denoted by fAT pr, pre-
(]

On finite Acceptance Trees we can define two basic operators (, )47 and
+a7 and we can define a hasic tree called NILjqr that help in defining a
translation from process expressions to finite Acceptance Trees.

Note that a finite Acceptance Tree is deterministic (different tuples are
considered as different ~actions”), finitely branching and finite. A finite ac-
ceptance tree is completely defined by its language and its acceptance sets
at eacls node.

The basic acceptance tree and the two basic operators can be defined as:

Definition 4.3.3 [Fuile acceptancee tree operators
def NILjr: fAT
with MLy =/
where Lpyr!=1¢:A
App t~=if ~€ Lrtthen o Qelse D fi

def (—, — )y, M < M™— JAT — fAT

with (m,o)r 1 =

where Lpr i =:: {{(m,0)>s.5€ Lurt}A
A 1 =00 (mya) A
Apr 1ty >=s) = if (n,y)>=s € Luar ¥/



Finite Acceptance Trees 53

then Agsr t s
else

fi

def — +j17 —  fJAT — fAT — JAT

with t)+p4p 8 = ¢

where Lyrt= Lyr U Liap ty A
Apurte= Apyrteu Apar t € A

Apr ts= if s€ Lyrt
then e AHT fos U AIAT fy &)
else {) :
fi

In the last definition « denotes the pairwise union of two sets of sets. Its
definition can be found in Chapter 3 on page 28.

There are a number of interesting and useful properties of ¢ and also of ¢
in combination with U and w [[leus8]. Some of them, which we use in later
sections, we list below. [n this list the B are representing sets of sets.

cl. U BC B then ¢ BC ¢ B

2. ¢ BCc(ehB)

cd. ¢ (BiUBy)=c(c{Byu«(8,)

cd. If A € ¢ B then there is v /4 2 5 <uch that B C A

¢Hh. BC ¢ B

-

cb. ¢ (B;'H. Bz) = (81) "o :

When we have to prove + toperty holds for each element A in
¢ B, for some B, we will ..\, + lntion to the length of the proof of
“A € ¢ B". Ofcourse thi~ .- = - . dupe of the definition of the closure
operator ¢. As an illustiar. . - ool technique we prove property 2.

To prove: ¢ B C ¢ (¢ B).
Which means: V(X . X €« 8 = \ = ¢ (¢ B))

There are three cases 16 L consulered. The first one is the base case,
wheras the second and third «.~~ 11se the induction hypotesis (I.LH.). Case



54 Introdiction to Testing Equivalence for Functional Specifications

i)

The case the last rule used was that X € B.
To prove: X € B= X € ¢ {¢ B)

This 1s easy:

Neb

= { Definition of ¢ or rule ¢5}
XeeB

= { Definition of ¢ or rule ¢5}
XNee(eh)

Case 11)
This is the case that the last rule used was that there are X; and X; in ¢ B
such that X = X; U X;. The length of the proof of each of the statements

XN, € ¢ B, X; € ¢ Bisless than that of X € ¢ B. Then we get:

NeebB

= { Above assumption that X in union closure }
AN, XY (e B XN = X1 UAY)

= {LH. }
(XN, X (e (e B)). X =X1UXy)

= { Definitiou of of ¢, union-closure }

X ec(eB)

Case i)
This is the case that the last rule used was that there are X} and X; in ¢ B

such that X; € XN C \,. The length of the proof of each of the statements
XieeB, X;€cBisless than that of X € ¢ B.
Then we get:

NecehB
= { Assumiption of case i) }
AN (e BN, C X CAG)
= {L.H.}
(XL X)) (e e B X0 S X C A,
= { Definition of ¢, convex closure }

X €c(cB)
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We can now map process algebra expressions onto finite acceptance tree
representatious by the transformation PfAT:

Definition 4.3.4

def PfAT [ —]: PA,, = JAT

with PfAT [STOP] = NiLjr
PAT [Tlosp | = {m, o)jar PAT [ p]
PIAT [ | pd = PIAT [ po} +1a7 PFAT [ py]

The link to testing-equivalence is now induced by a partial order relation

on finite acceptance trees.

Definition 4.3.5

def Sf:lT )‘AT — f/—lT - B
with ¢ <i4T t = ( LfAT I = LfAT t’) A
V(S: LIAT t. -AJ’AT t' s g AfAT 13 S)

a

Lemma 4.3.6
The relation <;47 is a partial order.

Proof
Trivial.

O

If we compare this definition with definition 4.2.3 of a preorder on LTS
we see that the CC operator is substituted by a C while working with closed
acceptance sets. This is based on the following lemmas

Lemma 4.3.7
For all sets of sets A and B

actions A = actions 8= BCCc A=cBCc A

Proof
The proof can be found in [[Tensy).

W]



56 Introduction to Testing Equivalence for Functional Specifications

The function «ctions is defined as:

poly X :U def actions : PP XN =P X
with actions A ={r. IV :A.z€ Y)}

This leads to the following lemma which says that the partial order on
finite acceptance trees is equivalent to the preorder we defined on labeled
transition systems.

Lemma 4.3.8
Y((p.g): PA: . p & g = PAT [»] <uur PFAT A
Proof

The prool of this lemma can be found in [Hen88).

O



Chapter 5

Testing Equivalence for
Functional Specifications

In this chapter we develop functional finite Acceptance Trees. These are
a modification of finite Acceptance Trees. They are constructed in such a
way that they serve in a straighitforward way as a representation for a set of
MSPF -functions.

We show that, under a certain condition, the denotational model we de-
fined in Clapter 3 for expressions built out of STOP, i/o-prefix and choice,
is fully abstract with respect to testing equivalence as introduced in 4. A re-
lation between a denotational model and a notion of behavioural equivalence
is one of full abstraction if the denotational model and the behavioural equiv-
alence induce exactly the same identifications between processes [Hen88].

The condition is that the finite Acceptance Tree of the processes denoted
by the expressions coutain ouly functional acceptance sets, i.e. each set in an
acceptance set does not contain two actions that have the same input part.
We call this restriction the functionality restriction. Informally this means
that two algebraic expressions which are testing equivalent in the operational
sense are represented.by tlie same set of functions when these expressions
are interpreted in the functional alpebra and the other way around under the
condition that the functionality restriction holds.

The main result in this clapter is that we can find a slightly different
but very general notiou ol 1o<ting cquivalence which exactly corresponds
to equality of sets of ALS/F - lunctions. This modified notion of testing is
a slightly weaker than the testing equivalence defined by Hennessy, i.e. it
identifies some more processes in specific cases.

As we will see in Section 5.3 this equivalence follows naturally from a
slightly different notion of what it means to test systems that give output as
a reaction to input.
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In Section 5.1 we show how sets of AMSPF-functions can be derived from
fAT-representations under certain conditions. We introduce functional fATs
as a better representation from which sets of MSPF can be derived. We
shiow that under the functionality vestriction the preorder relation on LTSs
corresponds to the partial order defined on f[fAT.

In Section 5.2 we study the relation between equality of sets of MSPF
and testing equivalence and we show why there is no exact correspondence.

In Section 5.3 we define a slightly modified notion of testing and testing
equivalence and we show that the denotational model defined in Chapter 3
is fully abstract with respect to this modified notion of testing.

In Section 5.4 detailed transformational proofs can be found of all lemmas
that are nsed e this chapter and are not proven in one of the previous

- sechions.

5.1 Finite Acceptance Trees Representing
Sets of Functions

In the previous chapter we gave a short introduction on testing theory, sum-
mavizing a part ol the theory described by Hennessy. There was only one
small syutactical difference. mamely that we kept writing the actions as input-
ouput pairs instead of representing different pairs by action names like a, b,
c.

The reason for using paiis is that we want to use fAT's and a modification
of them as structures ltom which we can derive sets of MSPF-functions.
Since, in the remainder of this chapter, we will study only finite structures
we consider only those VSPF-functions that can be represented by finite
(functional) Acceptance Iiees. Moreover we will also require the increase of

output, as result of an inpur, of finite length.

To illustrate the o oo sl fiest consider a few examples. Consider the
simple and familinn /7~ - 12 5.1, and assume that different symbols such
as m; and a; repres~c: o ont clements.

When we repre~cs - 7/~ in Fig. 5.1 as a finite acceptance tree we get
a picture like iu [

Note that in that o . ntation all sets in every acceptance set are func-
tional. This mean~ti.0 Lo these sets there is no occurence of two tuples
that have the samie o« tis element. In such cases we can decompose the

finite acceptance tiee o o et of deterministic labeled transition systems by
choosing everytime one <ot in caclt acceptance set for every labeled transition
system, The result s poesented n Fig. 5.3,
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(ml.oz) (ml.cl)

(mZ, Gz) (m3, 0_;)

[Figure 5.1 Example LTS

{l(mZ' GZ) ’l (m3, CS) s
{(m;,q),(my, ) }}

L@

Figure 5.2: Finite acceptance tree belonging to LTS in Fig. 5.1

The kind of labeled transition systems we get are not only deterministic
when we consider the complete input output tuples, but also deterministic
when we consider only the input part of the tuples. This makes that we can
find a bijection between this kind of trees and finite monotonic stream pro-
cessing functions as they were defined ju chapter 3. There we actually used
this kind of deterministic L7595 as 1 convenient way to represent monotonic
stream processing functions v eans of a picture.

Of course not all labeled ti.1~1ti01 ~vstemns that we can describe by means
of process expressions have ac oo sets that contain only functional sets.
Consider for instance the exaudem Fig. 5.4 and its finite acceptance tree
representation in Fig. 5.5.

The acceptance sets of the huite acceptance tree in the last figure
do not only contain functional sets,  However we could split the set
{(my, o), (my,01)} into two sets (my,0') and ¢ (my, o) l.e. its maximal
functional subsets, and we could <inply replace the original set by these two
sets. If we do this for all sets that ure not functional, we end up with a set of
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» ®

(m, o) (m, o) (m,, 5)
® ®

(m,, G, (m,, 6) (m,, &) (m4, o))
® .

Fieure 5.3: nctions from decomposing acceptance tree in Fig. 5.2
g I

Fignre 5.4: Example LTS

sets all of which are functional. The result of this can be found in Fig. 5.6.

This finite acceptance tive can be decomposed into a set of functions as
presented in Fig. 5.7 [his last kind of finite acceptance trees we will call

functional finite acce ptavee tree (fFAT).

Iu order to chiceh . - ' lis somewhat reorganised kind of finite ac-

ceptance trees we «. - -on about testing equivalence of processes we
formalize the reproesc © - "1/, We define a partial order on ffATs and
show that this parr - : et the functionality restriction, corresponds
to the testing proon AN

First we formab« © « -av an which we split the non-functional sets into
functional sets. Tlis creranion we called maximal functional subset mfs. It
takes a set ol sets of jruii~ a1 argument and results in a set of sets of pairs,

but the sets of paits aie now all functional. It has already been defined in
Clapter 3 on page 27. We tepeat tlhe definition here.
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t{lm,q). (m,0) }

(L (m;, q) . {(my, 5)).(m;, o)),
{(my. 6).(m,, 6", (m,, g}
{my, §). (my, g1 {(my, 6)),(m,, o}

Lo ‘. . @

Figure 5.5: Resulting acceptance tree containing non-functional sets

{(m, o9, um, )}

{umy, g, {(my, 6y).(m;, 6},
{(m,, @)),(my, 6)},1(my, 03)}

Figure 5.6: Functional finite acceptance tree

def mfs : PP (M x M1 = PP (M x M)
with mfs W = (XN ¥ s V)

def smfs: P (M x M~ ~ D P (M x M)
with smfs X = mar-{) V' 2 XA func Y}

def func: P (M x M) - I3
with fune X =V((a,y): N r £ y=20 #y0)
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(ml,G') (ml’Gl)

(5, GZ‘)

Figure 5.7: Resulting set of functions

We state two properties of mfs which we use later:

Lemma 5.1.1
L. mfs is monotonic

2. For all sets of sets A, B € PP (M x M*)
mfs (AU B)=mfs AUmfs B

Proof

The proofs are straightforward and left to the reader.

J

Now we can define f[JATs. In this definition Lgar ¢ stands for the lan-
guage of the FAT, Syar ! s stands for the set of successors in ¢ at the node
identified by trace s. Ay f s denotes the acceptance set in ¢ at the node
indicated by trace s.

Definition 5.1.2

A functional finite Aceeptonce Tree tis finitely rooted tree, with branches
that are labeled by clenrents ol M x M=) whith nodes that are labeled by sets
of subsets of M x M= .l which satisfies the following three requirements:

o For every action i), every node in tree ¢ has at most one successor
branch fahelod Ly o)

o For every trace ~ & Lyir £, Sgar € s is finite (finitely branching}

e For each s € Ly ! it lolds that Agsr t s is the mfs of a set in
sres (St s).
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We denote the set of finite functional Acceptance Trees over M x M* by

HAT yppg-
[

Like with finite acceptaice trees we can bnild the JAT's from a basic
HAT and two operators. For this we introduce the operator () which is the
pairwise union on sets of sets, hut which moreover replaces possible non-
functional sets by their maximal functional subsets.

Definition 5.1.3
def W: PP (MxM)>PP(MxM)SPP (M x M*)
with W @® = mfs (\V u O)

O

Definition 5.1.4 AT operators

def NILyor: AT
with N7 =t
where Lgyp t=1cA

Apgar t s =1df s € Lyyr t then o () else O fi

def (—, —)gar : M x V" > AT = FAT

with (m,o)gsr t =

where Lpsr t'=1:sU{(m.a)>~s.s€ Lygar t} A
Agar t' ¢
Agar ' ((n ) = b= if (n,y)>s € Lgar t'

then Agar t s
f.".\f‘ @

i

=t i, Tl A

def — tgar — VL v JTAT

with t; 4447 £, =1

where Lgirt= 1., - foor B A
Agar t = 4 .. -, ) Apgar bty € A
Agar ta= o) v = lart

Hieo oefs e | AHAT t sU AffAT 1) .S))
tfae )

Ii
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Like with finite acceptance trees we can also map behaviour expressions

into TATs.
Definition 5.1.5

def PJAT : PA,, — fJAT
with PFAT [STOP] = NILgar
PHAT [Twle;p )= (m,0)gar PFAT [p]
PIFAT [ py [ p2) = PIFAT [ pi] +gar PHAT [ 2]

A partial order <gar on [fAT-representations can easily be defined as:

Definition 5.1.6

def <gir ffAT — [fAT - B
with # Sﬁ’AT t = LﬂAT t = Lﬁ’AT A
Y(s: Lgar . AﬂAT t' s C -AﬁAT ts)

With the introcduction of fJAT we also reached a point where we cannot
take profit of the results estahlished by Hennessy. From now on the neces-
sary properties ave explicitely proven. From every lemma and theorem we
introdice we give either its detailed transformational proof if it is not too
much lengthy, or a proof outline with a reference to the last section of this
chapter where a detailed transformational proof can be found.

First thing we ueed to sliow is that the partial order <gqr on f[JAT is
indeed a partial order. i.e. vellexive, anti-symmetric and transitive. The
proof follows from the fact that the first condition of the definition of <gar
can be replaced by L.yt © Lyar t'. The converse is implied by the second
condition of <gur.

Further we have to show that (AT, <gar,Xgar) is a E-partial order
algebra. With S, 1 the set of operators on ffAT defined in Def. 5.1.4. This
means that we have to <slhow that i/o-prefix and 4+g47 are monotonic with
respect to the partiol vvder <yar.

Lemma 5.1.7
Given ¢ and " in fJAT thew:



Finite Acceptance Trees Representing Sets of Functions 65

)t gar "= V((m,a) (M x M) . (m,o)par t' <gar (m,o)gar )
i) t' <gar V= YV{t: ffAT . ¢t +gar t/ <par i +gAT t”)

Proof

The proof is straightforward and depends nainly on the fact that the oper-
ators () mfs and ¢ are monotonic with respect to set inclusion. A detailed
transformational proof can be found on page 105.

O

The next theorem shows that the partial order <gar corresponds to the
testing preovder < on labeled transition systems if the functionality restric-
tion (£R) holds. This shows that SpaT Is as discriminative as <47 provided
that only process expressions are considered for which the finite acceptance
tree contains only functional acceptance sets. In order to formulate the next
theorem we introduce the notion of e-functional for LTSs.

Definition 5.1.8 Functionality Restriction
A process p is c-functional if its LTS satisfies the following condition:

Vs (M x M) V(Y :c(Aps). func Y))

Formally, the inain theorem we are concerned with in this section can be
stated as:

Theorem 5.1.9 Restricted correspondence of <gar with <
For all p and ¢ in PA,, which are c-functional

pLg=EFPJAT [p | <par PHAT [¢]
Proof

Py
{ Definition of « }

P <ot GNP oy 1
{ Definition of <. aud < puy }

Vs (Mx M) Ay~CCAps)ALpCLyg
{ Lemuna 4.2.4 }

V{ist(Mx M) . Agy~cchAps)nL p=>Lyg
{ Lemma 4.3.7}
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V(s: (MxM).c(Ags)Cc(Aps)AnLp=1Lg)
{p and q are c-functional }
V(is:(MxM) . mfs(c(Ags))CSmfs{(c{Aps)))ALp=1Lyg
{Lemma 5.1.11 }
V(s: (M x M*) . Agar (PFAT [q]) s © Agar (PFAT [p]) s) A
Lp=Lyg
{Lemma 5.1.12 }
Vi{s: (M x M*)*. Apar (PJAT [q]) s © Agar (PFAT [p]) s) A
Lyar PFAT [p]= Lgar PHAT [q]
{ Definition of <gat }
PJAT [p] <gar PFAT [q]

1l

il

The proof of the Theorem above uses a few lemmas which are proven
below. The next lemma states the formal relation between LTSs and ffAT'.
In the proof another lemma is needed which states that:

Lemma 5.1.10
Forall A in PP (M x M~

mfs (¢ (mfs A)) = mfs (¢ A)

Proof

The proof is by induction to the length of the proof of an element being
in ¢ (mfs A) for the prool of wfs (¢ (mfs A)) € mfs (¢ A). The inclusion
mfs (¢ A) C mfs {¢ (mf~ ) van be proven more directly. A detailed proof
can be found on page 107

O

The lemima stati: v =« tomal relation between LTSs and ffATs says
that we can obtain '*+ .. jrance sets of the fJAT by taking together the
acceptance sets intho / /> o1 a certain path, close this set and then replace
all non-functional <+« . it maximal functional subsets.

L.emma 5.1.11
For all p in PA,, aud ~ oM < M)

mfs (¢ {Ap st = Aoyp (PHFAT [p]) s
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Proof

The proof is by structural induction on p. The base case is p =STOP, and
the other cases are p =7m!lo; gand p = ¢ [ ». The only interesting sequences
s are those that are in L P and if relevant we give separate proofs for s = ¢

and for s # &
The base case p = STOP, and s = ¢

Agar (PfJAT [STOP)) ¢

= { Definition of PHfAT }
Agar NlLgyr =

= { Definition of M Lys7 )
¢ )

= { Definition of ¢}
¢ (@)

= { Definition of mfs }
mfs (¢ (¢ )

= { Definition of A STOP ¢}
mfs (¢ (A STOP ¢))

The case p =7m!o; ¢ has two parts:
a) s =¢.

Apgar (PIAT [ p]) =

= { Definition of PFAT }
Agar (m,a)gar (PFAT [ ¢]) =

= { Definition of (w,7) 747 }
te{m,o)

= { Definition of ¢}
cte(m,a)

= { Definition of i/}
mfs {c ¢ {m,a))

= { Definition of A (7m'7:¢) =}
mfs {c (A (Tmlo;q) )

b} s 5 € so suppose s = (. 7) >

Agar (PFAT [Pmloy g 1) (o) > &
= { Definition of Pff17}
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Agar ((m,o)gar (PFAT [ ¢ ])) (m,0) > &'
= { Definition of (m,o)gar (PFAT [ ¢ ]}
Agsr (PHAT [1])
= {ILH.}
mfis (e (A ¢ )
= { Definition of A {Tm!o; ¢) (m,o) > s'}
mfs (¢ (A (Timla;q) (m,a) >=s"))

The case p = ¢ [ » has also two parts:
a) s =¢
First we show that:

Aps

= { LTS have only oue root }
Spe

= { Definition of § on LTS}
SqsUSre

= { LTS have only oue root }
{(Age)u(Are)

The proof of part a) then is:

mfs (¢ (A p )
= { Lemma above }
mfs (¢ (A qgzu Arz))
{Lemma 5H.4.1}
mfs (mfs (¢ (A q2))wmfs (¢ (Are)))
= { Definsition of i}
mfs (e (A g v 0w (e (Are))

- {LH)
Agar (PIIAT b - 0 Agar (PFAT [r]e
= {Deliniteon o »oyr }

Agar (PIAT [ ]y -
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= {Aps=(Aqgs)u(Adrs)}

mfs (¢ ((A ¢ s)U(Ar s)))
= { Rule €3 page 53 }

mfs (¢ (¢ (Ags)Uc(Ars))
= { Lemma 5.1.10 }

mfs (¢ (mfs (e (A qs)Uc{Ars))))
= { mfs distributes over U}

mfs (¢ (mfs (¢ (A qs))Umfs {c (Ars))))
- {LH.}

mfs (¢ ( Agar (PFAT [ 1)) sU Agar (PFAT [7]) 5))
= { Definition of +y47 }

Agar (PJAT [p]) s

The two lemmas above bridge the most crucial parts of the main proof.
What is left is to prove a minor lenuna to reach the right shape of the preorder
definition on fFATs. It states that the language of a certain process is the
same as the language of the [fAT-representation of that process.

Lemma 5.1.12
Vip:PAis . Lp= Lgar (PFAT [p])
Proof

By straightforward structural induction to p.

i) Base case p = STOP.

L STOP
= { Definition of £}
{s.3(q:PA;, . STOP - . =_¢)}
= { Definition of STOP !}

fl

{ Definition of ¢ ... ¢

LﬁAT N[LﬂAT
= { Definition of Nif., }
Lgar (PFAT [STOP]I

i) p="mlo; g
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L (Tm!o;q)
= { Definition of L}
{s.3(r: PA, . Tmloyqg — s = 1)}
= { Set theory, definition of — —.}
{(myo)>=5" . Ar:PA;, . q— s =.7)}Use
= { Definition of L}
{(m,o)>-s.s"€LgtUre
- {LH}
{tim,0)>=5" . s € Lgar (PFAT [qN}uce
= { Definition of (1, o )gar (PFAT [¢])}
Lgar {(m o) gar (PFAT [ ¢ ])
= { Definition of P{FAT }
Lyar (PIFAT [Pales g ])
i) p=q|
L{q]r)
= { Definitioun of L}
{s.3(k:PA, . q] v —s—. k)}
= { Definition of 4 | r = (m,0) =, k }
{s 3(k:PAL . g — 5. k) u
{s.3(hk:PAL 0= s =0 k)}
= { Definition of I}
(Lg)u (L)

= {LH}

( Lyar (PUAT Lo 10 o0 Lgar (PFAT [ ]))
= { Defivite o 10 g [ 7]}

Lgar (PJAT | |
= { Defive

Lgar (Pi1vi |}

This completes 10 oot of full abstraction of € with respect to <gar

given the functionality tostiiction,
In the next section v ~how the relation between <g47 and the definition
of a choice operator un [ tions and sets of functions.
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5.2 Function Equality and Testing Equiva-
lence

In Chapter 3 we introduced operators on specifications which were inspired
by operators used in process algebra. In this section we show that equality
of fFAT representation of processes corresponds to equality of specifications.
From section 5.1 we also know that under the functionality restriction equal-
ity of the [fAT-representation of two expressions p and pp corresponds to p;
and p; being testing equivalent. Joining the two results we can indeed con-
clude that equality of specifications built from the basic specification STOP
and the operators on specifications ifo-prefix and choice corresponds to test-
ing equivalence of processes built from the process algebraic operators stop,
action prefix and choice under the functionality restriction,

In order not to confuse all the different interpretations that are given to
behaviour expressions in this chapter, we will denote the functional interpre-
tation of an expression p in SP4;, explicitely as fun{p].

def fun[—1] :S5PdA,, — SPEC
with  fun [STOP] = STOP
Sun [Pinda;p ] =2mla: p

fun [ [ ] = m ﬂ 12

Also let us recall the definition of choice on functions and specifications
introduced in Chapter 3.

def — | — MSPF — VISPr o SPEC
with (f; H/g) f=tree [edoe [tree fi +gar tree fo)

def — [ —: SPEC = Si'1c — SPEC
With (S [ S2) f =300 0 USPFELUS FAS AR LE) f)

The definition of function v . fue fonud on page 29 and of function tree
on page 16, the definition of tho - . Gpevator on FAT in definition 5.1.4 on

page 63. We introduce free Lo ' <ot extension of the function tree, l.e. the
function that given a predicate 1l defines a set of finite MSPF gives the
corresponding set of deterininistic functional trees (DFT). The set DFT is
a subset of FAT. They are thowe [J17s that have at their nodes acceptance
sets that contain exactly one <ot whicl is moreover a functional set.



—J
o

Testing Equivalence for Functional Specifications

def tree: (MSPF — B) — P DFT
with tree A = {d . 3(f: MSPF . A f A d = tree f)}

The theorem we described can now be formalized. The lemmas we use
in the proof that are not proven in previous sections are marked with an *.
They are proven lateron in this section.

Theorem 5.2.1 Restricted Correspondence
For all p; and p, in PA,, which are c-functional

pL~pr = fun | = fun [ p2]

Proof
pr~ P2
= { Lemma 4.2.6 and definition 4.1.5 and 4.2.5 }
M=o
= { Lemma 5.1.9 and definition 5.1.6 and py
and py c-hunctional }
PIAT [m] = PUAT [ 1)
= { Lemma 5.2.2 * }
dec ( PIAT [ ] ) = dec ( PAT [ pa])
= {Lemma 5.2.7 * }
t'rf':'f: { fralm]) = f:e ( fun | p2] )
= { Lemina 5.2.8 = }
funIp) = fun [ p]
O

The first marked lenuna that is used in the proof of the theorem states
that the decomposition of [JATs into sets of deterministic functional trees

(DFTY) is injective.

Lemma 5.2.2 dee /s rnpetive
For all #; and ¢, in [fAT

dec by =dec 1, = 1 =4

Proof

By deriving a contradiction if we assiune that the lemma does not hold.
Suppose:
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dec til =dec b A #
= {Hh#h}
( Lgar = Lygar b AIs: Lyar b Apgar ty s # Agar b s))
\Y%
( Lygar i # Lgar t2)

Each part in the above disjunction is worked out in a separate case:
i)
Agar b8 # Agar fy s
= { Without loss of generality, set theory }
XN XN € Apar hos\ Agar b )
= { Definition of dec }
Jt:dec ty . Spar t s =N At g dec ty)
= { Definition of dec }
dec ty # dec t

And this is in contradiction with onr aswmption that dec t; = dec t,.
i)

Lgar hh # Lgar b

= {¢is for all £ contuined in Lyyp £}
s Lgar 1\ Lgar 10+ # 2)
= { Assume s = &' < . definition of  Agar }
3N AﬁAT hs' . me X))
A
V(Y Agar ta s’ . 2 4
= { Set theory }
Agar tv 8" # Ayar 1. v
= {Case 1) }

dec t) # dec 1y

So also this case leads to a o <t and we can thus conclude that the
above lemma holds.
|

Now we arrived at the vl lennma in the proof of the theorem. The

proof of this lemma requires o wmber of non-trivial other lemma’s. Some of
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them we discuss here-in full detail, others are only mentioned, but a complete
proof can be found in section 3.4.

A central role in the proof of the crucial lemma is a lemma that states
a particular property of the closure operator ¢. This property was not yet
mentioned by Hennessy and thus we are proving it here. The lemma essen-
tially states that when the closure is taken of the union of two sets of sets A
and B, the same result can be reached by taking the union of all sets that
are the result of the closure of a set from A and another from B.

Lemma 5.2.3 Pairuise
For all non-empty sets A and B in PP (M x M7)

c{AUBY=Ul{a.b):(c A) x{c¢ B). ¢ ({n,b}))

Proof
The proof is ou the length of the proof of set X being in ¢ (AU B) in one

direction, and the same technique but for X in ¢ ({«,b}) for 2 in ¢ A and b
in ¢ B in the otler direction. A detailed proof can be found on page 108.

O

Ounce we proved this “pairwise”-lemma, we can easily prove an extension
of this lemima in which non-functional sets are replaced by their maximal

functional subsets.

Lemma 5.2.4 Erxtended pairueise
For all A and B in P P (M x A[*)

mfs (¢ (AU BY) =U((a,b) : (mfs (c A)) x (mfs (c B)) . mfs (c ({a,8})))
Proof

mfs (¢ (AU )
= {Lemvma 52 3}
mfs (U((a. b oo 4y Lo BY. e ({a,b})))
= { Properiv ob s
U, b) (e o= oo ) mfs (e ({a,b})))
= {Set theorn {u b =rvaUe b}
Ul{a, b) (¢ b~ 1o By omfs (e (¢ a Ut b))
= {Rule ¢3 on pege 533}
Ul{a,b): (¢ A) (¢ By . mfs (c {c (¢ a)Uec (e b))
= { Lemuma 5.1.10}
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Ul(a, b) (e A} x (e B) onfs (e {mfs (¢ (¢ a)Uc (¢ 6)))))
= { Property of mfs }
Ulla, b) (e A)y x (e By . mfs (e (mfs (¢ (¢ a))Umfs (c (¢ ))})
= { Definition of ¢; closnre of singleton gives same singleton }
Ul{a, b) i (e A) x{e B).omfs (¢ (mfs (¢ a)Umfs (¢ 8))))
= { Pairwise lemma 5.2.3 }
U((a,b):(c A) x (¢ B) .
mfs (U((e, g}z (mfs (e a)) > (mfs (1 8)) . ¢ ({z,9}))))
= { Set tlieory }
UlCa, by o (mfs (¢ A)) x (mfs (¢ BY) . mfs (¢ ({a,b})))

Now we can almost prove the lemma in the main proof that says that
a fJAT can be decomposed into a set of a special kind of FJAT which we
cafled deterministic functional trees (DFT). These are fATs but at their
nodes they have acceptance sets that contain exactly one set. Remark that
DFT C [JAT and that we therefore can use the operator +y4r on them.
When we do this it is of comse not gnaranteed that the result gives again
an element in DFT. Therefore we define a special +ppr operator that takes
sets of DFT as its arguments and results again in a set of DFT.

Definition 5.2.5

def +ppr: P DFT — P DFT - P DFT
with Di+prr Dy = {d . 3((dy, dy): Dy x Dy . d € dec (di+gar d2))}

The following lemma shows that we can distribute decomposition over
+gar using the plus on sets of DFT.

Lemma 5.2.6
For all p; and p; in SPA,,

dec (PJAT [ Pl] +gar U [ ,”.'])

(dec PHAT [ n]) +prr 1 dve PIAT [ pa])
Proof

The proof can be found on paye 116,
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We now show that a fAT can be decomposed into a set of deterministic
functional trees.

Lemma 5.2.7 Decomposition
For all p in SP4,,

dec (PHAT [p]) = tree (funp])
Proof

By indnction to the structure of expression p.
i) p=STOP
dee (PHAT [STOP))
= { Definition of PfFAT }
dec {(NILgar}
= { Definition of dec }
t NILgaT

= { Definition of tree }

tree (STOP)

= { Definition of fun 1}
tree { fun [STOP])

iy p="mla;q.

dec (PFAT [Poi'miq])

= { Definition of P[fAT}
dec {(m,o)yr 17V [ g M

= {Dﬁ'ﬁll.ﬂ.lutl o el }

(‘IIL,(J‘)ﬁ_‘T (dee 111 [ i ]})
{LH.}

I

(TII,(J’)ﬁAT(IHr '.'lll!]))
{Easy propeaty of free }

i ((HI.,(T]”” f [un[r[]))
{Df‘ﬁliifihll nl-u{ fﬁ{H [] }

tree ( fun [Tudtaig ]
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iyp=qfr.

dec (PFAT [ 4] ¢ ])
= { Definition of PfJAT }

dec (PIFAT [ q ] +gar PHAT [ r])
= { Lemma 5.2.6}

dec (PIAT [ 1) +prr dec (PAT [ 1)
= {LH.}

bree (finlg ]} +orr tree (fun[r])
= { Lemuma 5.4.6 }

~

tree ( fun [ o ])

What remaius to he proven in the main proof on page 72 is the fact

that tree is injective. Of course this proof is based on the idea that we can
uniquely represent a finite ALSPF by a fiuite tree with input-output tuples
at its arcs. This construction was explained on page 16.

Lemma 5.2.8 trec is injective
For all p and ¢ finite PA,,

~

tree ( fun[p]) = e (fun[q])= fun[p] = fun[q]

Proof

The proof of this lemma can he fonnd on page 116,

O

Note that there is a divect telation between the functional framework with
the combinators we detined i ¢ aprer 3 and process algebra. Let us take
the process algebra whicli set ot o riow is called PA and which are defined by
the following grammar wheie o o clements in the set M:

Pu=stop | (m; Pyicl 1
The operational semantics aie defined by a LTS denoted by

(PALM, — =), The predicare = —ur 18 defined by the following set
of equations:
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stop — m —,; P = fulse

miP—-a—=, P=m=anP= P’

PlP,—a=, P= P -0, PV
Py —a—, P

The translation function from this process algebra PA to SPEC can be
defined as follows:

Definition 5.2.9 Transluation

def T: PA — SPEC

with T [stop] =STOP
T [m:B] =%wlr m; T [B]
T[BB] =T [B]]T [B]

Every [ such that T [ B ]/ represents a kind of "acceptor” for (a subset
of} the traces of B in the seuse that for all such traces o it holds fo = o
whereas for all other o' it holds fo' C o'. Because of non-determinism, there

might he more than one snch function.
As a trivial corrolary we have that testing equivalence we have that for

all pand ¢in PA p~qgifandonlyif\fun T [p] =\fun T {¢].

5.3 A Notion of Testing for the Functional
Algebra

In this section we disciiss thie consequences of the functionality restriction we
had to impose on the process expressions in order to prove full abstraction of

testing equivalence w it bty of sets of functions. That this restriction
is really necessary cau 'e - n by the following simple example.
Consider the expir -+ . ictned as

(Tl Tl S TOP T ite; Tmylay; STOP)

This expression . -« «jnesented by the LTS in Fig. 5.8 and by the
FAT shown in Fig. 1+ JAT representation is shown in Fig. 5.10 and
it is clear this can be decomposed into a set of stream processing functions
shown in Fig. 5.11.

Now consider the vxpression 4 defined as
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(m ,0) {m o)
('“1'01) (m{‘cz)

Figure 5.8 LTS of p

fimp,0) 1(m, q)
{(m,0).(m,q)}}

1@

Figure 5.9: fAT-1epresentation of p

mla; (Pmlo; STOP ) 2 'ery)

Also from this expression we can derive its LTS, fAT and HAT represen-
tations and the set of functious. [liev ate shown in the Figs. 5.12, 5.13, 5.14
and 5.15 respectively.

When we compare the f-07 1-cntations we immediately see that they
are different, so based on the tov . 1oty of Hennessy we have to conclude

that the two processes are uot - . quivalent. If we look at their fAT-
interpretations, however, we ..+ .y 4re the same ! So we found two
expressions which are not t<v _ .. .- .lent but which are represented by
the same set of monotonic 11 - ...uesving functions. At first glance this
looks a rather disappoiuting i~ 1311 if we take a closer look at what kind
of expressions exactly make i el it turns out that it is only due to the

way output is dealt witl,
Suppose we indeed cousider the rwo expressions above, p and ¢, equiv-
alent. So suppose a new cinivalence is defined as equality of the [FAT-
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1@

Figure 5.10: ffAT-representation of p

? [ ]

(m ,a) (m ,0)
[ ] 9

(m,0) (m,q)
L ] ®

Figure 5.11: Set of functions representing p

representations of expressions. What does it mean to say that the example
expressions p and ¢ ave equivalent? Well, actually, in this case it means that
in our context of actions seen as input/output pairs we assume that if we give
a certain input to a process we (as environment) cannot have any influence
anymore on the output the process will give, So suppose in our example, we
give input ny after laving given input m and having got output o. We know
both systems are able to vive as an output either oy or o7 In process p this

output is decided intcunaliv. Process g, however, shows that experimenters
in the sense of the theoy of Hennessy can have influence on the output after
input my. We can spedify an experimenter in such a way that process ¢ must

satisfy the test tliat wlrer G ) gives input my and gets result oy, The test
looks like:

2wl tmle W STOP

So the experimenter can somehow forse process ¢ to give the result re-
quired by the experiincuter for obtaining success.
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(m ,c)

(ml.Gl) (m[,csz)

Figure 5.12: LTS of q

L@

Figure 5.13: fAT-representation of ¢

We prefer, however, only the input part of the actions to be subject to
external non-determinism. Tle equivalence, defined as equality of fAT-
representations, models the ontput as something which is a result of the
incoming input upto a certain point, and the state of the process. If there
is more then one output possible, then it is decided by the process itself
which output to provide awd thus the actual output is subject to internal
non-determinism. The fact that after a certain input there are some differ-
ent possibilities for output in this context can be interpreted as that in the
specification an abstraction is imade related to some part of the behaviour of
a system that is not explicitelv inodeled. For example in the model of the
behaviour of an unreliable «lanmel we might not be interested in the exact
cause of why and how the «hannel micht sometimes not succeed in transfer-
ring a message in a proper wav. We might only be interested in modeling
the fact that every now and then some message is damaged by transport
through the channel. That micaus that for some input we have different out-
puts, namely the correct message and a corrupted message. We don't want
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or ]
[ SN

vlm L, )

{tm,.q) 1(m, G}

1@

Figure 5.14: ffAT-representation of ¢

® [ ]

(m ,q) (m ,0)
® L

(ml.cl) (ml.c:z)
® ®

Figure 5.15: Set of functions representing g

to model, however, that the system can be forced to produce only one of the
two possible outcomes when we test the system.

Our notion of output is therfore slightly different from that of Hennessy.
In our model the outpnt i~ vuly depending on the input and on the state the
process reached. After sonwe input hias been supplied and the process reached
a certain state in whicl it «.u produce output, we assume that the output is
completely depending (Lo process itself and can in no way be influenced
anymore by the euvior .ot fu the model proposed by Hennessy actions
are not structuved in ' 1 it /output parts. Moreover output actions are
treated in the same . -~ oot actions (actually, conceptually, there is no
distinction hetween 1.t ad ontput actions). This leaves the possibility
to specify systems ! Lo environment can indeed choose which actual
output a systems shonld report when provided with a certain input for which
different potential ontpurs are possible.

Consider for instance processes p and ¢ in Fig. 5.16. Both processes
accept input inl and niay produce either outl or out2 as output. In partic-
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inl inl inl

outl out2 oui out2

Figure 5.1G: LTS-representation of p and g

ular, after input /nl, process p reaches a state in which p can produce either
output outl or outd. If the environment (for example the experimenter) re-
quires only output outl aud is not prepared to receive out2 the process p will
always provide the required output outl, despite the process is in principle
able to provide also out2.

Also process ¢, after input /ol has been given, is in principle able to pro-
vide either output outl or ouf2. But the environment clearly cannot forse
the output to be outl because the choice which output will be provided 1is
up to the process. This also shows why, in Hennessy’s definition of testing
equivalence, the processes are not considered testing equivalent, and more-
over it shows that indeed the ontput can be influenced by the environment
after the input has been given,

In this section we show that cquality of sets of monotonic stream pro-
cessing functions representing processes, which we proved fully abstract with
respect to equality of the [fAT-1cpiesentations of these processes, corresponds
to a very intuitive and gencral votion of testing processes.

In section 5.2 we have proven that cquality of sets of functions represented
by expressions built from STOP ;.1 /out put prefix and choice corresponds
to equality of the FAT-repiescnr it of these expressions. Formally, as a
direct corollary of Theorem % 2! - Litain that

fun[p] C fun [ ]

PIFAT p <gar P4V

We can also find a refation -7, an L7TSs that corresponds to the <gar-
relation on ffAT-vepresentations. \We define the preorders € mapioy Lonustio
and «,, as follows.
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Definition 5.3.1

def — < uyis — : P4 — PA, = B
with p € e P =L p S Ly

dEf - <<mu5fia —: PAiU - PA-:'U - ]B
with p oo pF = V(s (M x M™Y. mfs (¢ (A p' 5)) CCT mfs (¢ (A ps)))

def — «,, —: P, - P4, = B
With P L ])’ = <<mu;,iu ‘Uf A P K rnustio P’

Defining preorders implies that we have to show that they are really
preorders. The proof in this case follows directly from the definitions.

Lemma 5.3.2
The relations € apios Comustio ald &, are preorders.

Proof
Trivial.

a

We define also an equivalence based on the above preorders.

Definition 5.3.3

def — ~,, —: /"1,,. = P4d,, - B
with p ~,. p = p <0 AP Ky p

a
Note that in the .o it pand p’ are c-functional and have the same
set of input/output .ot s s labels of the corresponding LTSs the above
definitions are eqpial *o e onicinal definitions € ay and €Ky on LTS,
Before proviny the iiespondence between <ggq7 and <, we prove two
lemmas that are uscd o the correspondence proof.

Lemma 5.3.4
If W and @ are sets of ~ct~ ol tuples, and if they contain the same labels then
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mfs {c () CC mfs (_C ()

mfs {e (W) Comfs (e (P))
Proof

The proof cousists of two parts, one for each implication.
1) <=-part is trivial,
i1} =-part uses a lemuma which is proven in section 5.4.

£ € mfs (¢ W)

= { Definition of CC}
Ay mfs (e B) . 4 C 1)
= { Definition of wfs }
Hzred.yemfs {t YAy C )
= { Lemmma 5.4.7}
(rUz)E€cPAremfs (L {xUz))
= { Definition of wfs }

&€ nifs (¢ b)

The second lemma is a lemima which is very similar to lemma 4.2.4.

Lemma 5.3.5
For all p and p' in PA,,

P «rmmhu I” = L P’ g L I
Proof

se Ly
{ Definition of L7}
Fr:PA;, . p' =5 —.
= { Definition of 4 -}
Ap' s#0
= { Definition of « }
c(Ap s)#0
= { Definition of i~}
mfs (e (A p" ) #0

1l
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= { Definition of € ustis }
mfs (¢ (Aps))#0

= { Definition of mfs and ¢}
Aps#0D

= { Definition of L}
se Lp

The next lemma states the correspondence between <, and <gar.

Lemma 5.3.6
- For all p and ¢ in Pe,
PEAT [ p) <gar PUAT [¢]

P
Proof

PIFAT [ p] SyAT PIFAT [ ¢ ]
{ Deﬁuiti«.m of SIHT }
Vs (M x M) . Agpr (PFAT [¢1) s © Apgar (PFAT [p]s)A
Lyar (PFAT [p ) = Lgar (PFAT [ q]))
{ Lenmna 5112}

V(s (M x M) Ayt (PFAT [q]) s © Agar (PFAT [p]) s) A
l.o=1Lyg

{ Lemma 5011}

Vis: (M x M)y s (e (Aqgs))Smfs (c(Aps)A Lp=>Lyg)
{Lemuny 7 44}

si (M x Mo i (Ags) CCmfs (e (Aps)ALp=Ly)
{ Lemnia Wt

1H

[l

V{s: (A < M e (Agshcemfs (c(Aps))ALpCLaq)
= {(Detirnr 0 and Kostio )

P Lonnarn e
= {Defnnnen ot <2}

p <Ko g
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Notice that for processes p of Fig. 5.8 and ¢ of Fig. 512 p ~,, 4.

o this last part of tlyis section we will show that the definitions of Komayio
and <, cortespond to a very intuitive and general notion of testing
processes whicl is ouly slightly different from that used in the standard
testing theory Ly Heunessy.

Suppose we have a process p, and we want to test the behaviour of this
process. What we will do is to supply it with an input and start waiting for
possible output of the process. For every possible output the process might
give the experimenter must be prepared to receive it and to decide how to
go on with testing. i.e. what input to give next, how to react etc.. If the
experimenter at a certain point is satisfied about the results of the test it can
decide to report success,

We model this by means of a new definition for experimenters and for
their interaction with processes. The set of processes are the same as those
defined in definition 4.1.7 on page 39.

The set of experimenters is defined as follows.

Definition 5.3.7 Output respecting crperimenters
An output respecting experimenter is a process denoted by a term in the set

PEQ;, and which behaviour is given by the LTS (PEO;,, M x M*, — =.,,),

where
o PEQ;, is the set of terms generated by the grammar
£:=S8TOP ["m!F | E| E |1, E|W; E
with m € M and F € M~ = F a total function from sequences over
M~ to expressions

® — = (PE, < (M x V") x PEQ,, = B is the transition predicate
defined by the following <ot of equations

STOP — (m.a) —. I = [ulse
?m!F—(n.,r:r)—-, l'sm=nAoce M*"ANE'=F o«

E}) ﬂ E] —- (IH.fT) -, = EU - (m,cr) b O E’
V
Ey —(m,0) =, E'
Wi E—(mao)>, 's(mo)=WAE =E
LE-(mo)o,, . F=(nog)=1ANE =E
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o
oo

o

In the grammar fov PEO,, F stands for a tofal function from M* to I
the set of expressions. From compuntability theory we know that there does
not exist one single language in which all and only total functions from M~
to £ can be expressed. But of course we can take a language in which we can
express all total functions and also partial functions (for example Funmath).
[t is then an obligation of tlie experimenter that the functions used to express
the experiments are all total. Notice also that by requiring F : M* — E we
restrict our testing theory only to tliose processes {and then functions) which
can react only witls finite sequences on any single message. We justify this
restriction by the assumption that any practical experimenter can recognize
only output of finite length.

Tlie interaction hetween processes and experimenters is cdefined in the
following experimental system:

Definition 5.3.8 [Lrperimental system respecting output
Let LTSp awdd LTSg be two compatible labeled transition systems
(P, Act, = =) and (E, Act | — —up,) then €5 (LTSp, LTSg) is the ex-
perimental system (P, £, — —y, Success) where
o — —y is a predicate defining the interaction relation by the following
equation:

!

€ H o= (. o) — e Hp

(¢ — (. 0) = € Ap = (m,0) =, p')V
(¢ =1=,,,cAp=p Almo)=1
I3 ?

o Success = {e: £ St E e =W o, e)}

a

For uniformity. Lere o i tename the relations may and must by
may i, and nmeust O o st the definition of the experimental system is
essentially the saime .- © . ition we gave on page 42. Only the definition
of experimentersi~’ . .- 1t a way that experimenters cannot influence
the output of a prae. “rent way than via giving input to the process.

Like in Hennesss - 11 we can define two kinds of experiments that
will turn ont to b o+ [his means they are enough (together with one
mare kind of test vi 7 < dehned later) to discriminate all processes that

can be discriminated by usiug the whole range of tests.
We introcice the Lollowing shorthand notation to represent these tests in
a readable form,
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Definition 5.3.9

Tmls B =1Tm'F where F o = E

tmlo [B\]; By = 7! F where Fy= f v =0
then E,
else E)
fr

l(a:d. 70 Fy= 7a!F Do ] et F

where 4 = {u;, ., a;}

Now we introdnce the two kinds of essential experimenters. The first
kind expresses that the experiment can only fail if a process, after having
performed the sequence s, accepts input « and gives output o,. If we assume
that the sequence s is the sequence {my, a1) >= (mg, o) > . > (M, 0,), we
can express this test called ¢ (s, (v, 7,)) as:

e s, (u,m,))= 1,W] (Trnlo (1, W; STOP];
(LW [ (7m,te,[1; W, STOPY;

(LW [ i2m, s, [1; W; STOP);
(1; w U ("uler i[].'. W; STOP], STOP)))
The second type of essentiul 1<t anly fails if a process, after performing
a sequence s as defined before. vt wecept any input denoted by a finite
set A ={a,.., a}.
e(s,d)= LW [ (0, - 1 W STOPJ;
(LW]( - 1 W.STOPJ;

(1, W] (Vo' TE W STOP];
T(a: A7 ule W, STOP)..)
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Let £ denote the set of all experiments of the form e (s,(a,04)) or
e (s,4). We first prove a small lenna that will be used in the proof of

correspondence.

Lemma 5.3.10
For all p and p’ in Pd;, and s in (A x iV

pCE paselpy=>selp

~~nstio

Proof

[f 5 =z, then trivially s € L p.

Suppose s = ' < a aud a € M x M™. This part is proven by deriving a
contradiction if we assame s <o & L p.

s g Lop
= { Definition of of essential test € (s',a)}
p st e (s’ 0)
= { Definition of p Ef‘m“” '}
pomust e (8 a) ‘
= { Definition of L p'}
(s <u)gLp

But we had assuied that (s’ < a) € L p', so we derived indeed a contra-
diction, and thus the lemma Lolds.

(]
For proving the correspondence between p C p'and p Kmusno P we
musgito
first prove that p c” pimplies p Lonustio p' in the following lemma.
M TP TR ]

Lemma 5.3.11
For all pand p'in 121wl £ ={e {s,0),¢(s,A)} and s € (M x M")

pEE pl=op o

~nnstio

Proof

From the delinition ol &, Wwe know we must show that
mfs (¢ (A p' s)) CC i~ (e (A ps)). Note that we only need to con-
sider sequences of tuples » which are in L p’, because if s¢ L p' then
Ap' s=0, and tlns wfs (¢ (A p's))=0 and then the relation CC
trivially holds.
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So, consider s € L p'. From lemima 5.3.10 we know that then also s € [ P
and thus A p s # @ and thus also mfs (¢ (Aps)) #0.
Now we can continue the proof by deriving a coutradiction if we assume

that mfs (¢ (A p" s)} CCT mfs (¢ {A p 5)) does not hold.

mfs (¢ (A p" ) CC mfs (¢ (A ps)) = false
= {mfs (¢ (A ¢ s))# 0for g € {p,p'}, definition of CC}
AR mfs (e (Ap's) . V(S:mfs (c (Aps).S§ Z R))

Now we first show that in eacli set S € mfs (¢ (A p s)) we can choose an
element (m, 7} in such a way that it is not only different from all elements mn
the set R, but such that the input part m is different from all input parts of
elements in B. We show this by contradiction: for any S € mfs (¢ (A p s))
we assume that it is impossible to choose such an element and we reach
a contradiction. For easyness of notation, let mfs (¢ (A p s)) be the set
{81, ., S} Let also fuuction inpats be defined as follows:

def inputs : P (M x M) =P A
with inputs A = {im . e M* . (m,0) € A)}

So, now suppose that S, differs from R only by elements that differ only
in their output part. Whicl is

iputs S, Cinputs RA3((m,5): S, . (m,0) & R)

Because of the definitions of mfs and ¢, for each 5; one of the following
cases apply:

1S5 e€Adps
i S{EC(APS)/\.S',‘E’A/;.\

HE S €mfs (e (Aps))AS, 2 A snS, Zc(Aps)

Case i) Suppose S, € 4 ;) ~.

We first show that aetrons (A ' 5) C actions (A p 5). The function
actions has been defined on pge 36 For A p' s =0 or if A p' s contains
only the empty set this is trivial [or A p" s # 0 and containing a non-empty
set we can derive:
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HK:Ap' s. (mn,0)€ )

= { Definition of L}
s=<{m,o)e Ly

= {pCk P, lemna 5.3.10 }

~hnstio
s=<{ma)eLyp
= { Definition of A}
A A p s (o) e R
= { Definition of actions }
(i, o} € actions (A p s)

Now we can show that we can find in ¢ (A p s) a set T which is an
“enriclunent of S; with exactly those elements in R which have the same
inpnt part as those in Si. We can do this because T is an intermediate set
between 9;, which is in A4 p s and actions (A p s) which is an element of
¢ (A p s) by property of ¢ and which contains all elements that are in R
hecanse we showed actions (A p' s} C actions (A p s). Formally, given S;
and R as above:

inpitts S; C inputs RAS, € Aps
= { actions (A p' s) C uctions (A p s), prop.c }
A T:c{Aps). inputs S; = inputs T A
T =5 uU{(mw.a). w € inputs 5 A (m,0) € R})

It ix now easy to sce that the set T = {(m,a). m € inputs 5; A (m,7) €
R} is an element of wfs (¢ {A ps)). In fact T C T € ¢ (A p s); more-
over T'is functional since " C R and it is maximal. This last fact can be
proven by contradictivi ~nppose there exists an element (n,7) € T\ T,
then by definitiou of 7. <ince mputs T = inputs S; C inputs R, there exists
(n,v') € T'and since 7' i~ Lisctional we get ¥ = 4. So, in the end we found
an §; € mfs (¢ (A p ~vov ot 5 T R Such an S is exactly T'. Formally:

A T:c(Ap- Lt S =dnputs T A
T=5"1"1 + oo Z inputs S; A (m,o) € R})
= {Def. {7 ={(m,o}. m € inputs S;A{m,a) € R}}

S rmfs 1o A0 8, =T AS CR)
This last fact contradiors the assnmption (pa.gé 91)

AR mfs (e (A <. ¥(S:mfs (e {(Aps)).SZR))
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The reasoning above is illustrated b_y; IYig. 5.17.
Case ii) Suppose S € ¢ (A ps) bhut not in A p s itself, and such that
inputs S C inputs R, In this case the reasoning is the same as in case i).

Case iii) Suppose S; € mfs {¢ (A p £)) but S, ¢Apsand S;¢c(Aps).
In that case Dby definition of mfs we know that there exists
a set Nec{Aps) sucl that inputs §; = imputs &' and  then
inputs K Cinputs R, For N we can setup a reasoning like in case ii)
leading to the fact that there will exist a set in mfs (¢ (A p s}) which is a
subset of R which is in contradiction with tle assumptions, and thus such a
S; cannot exist,

This ends the proof for eacii of the cases for S; and shows that in all sets 1n
mfs {¢ (A p s)) = {5, ... 5} we car chioose an element, with an input part
different from all elements in 7. Aud hecause we can find such an element,
in each 5; we can also find it in cach set i A p s. Infact let A; be a set in
c (A p s} Ifit is functional then A, = 5, for some S;. If it is not functional
then it includes some functional set S,. Tu particular this holds for all A; in
Aps.

Now let’s choose ineach 5., 1 <7 < £ one element &; such that the input
part of r; is not in inputs £, Lot's eall A the set of input parts of all this
elements +,. So

A = {;f.'() .x g {;r], s Y }}
then we can he sure that
p must e (s, 4)

because for eachi set 4; € A p < there exists an element (z,0) with r € A as
shown hefore.

Now we show that p’ st 0 1+ 1), So we will show that there exists a
state r which can be reachod 1a o' Ly performing s such that the following
computation is unsuccessful

ef{s, )l p—s—=.0 L W STOPR) | r

Which means that inpue. ~ b =0,

There are three possilal: .
) Re€ A p s which means 0 exists an 7 such that § r € Ap' sand
Sr=~R Aud we know th. .. AN mputs A =10so p’ mgst e (s, A).

HRec(Ap s)but R g A, This muplies that by property of closure
there exists an r such that & 2 /7. <o again we have that p' mist ;e (s, A).



04 Testing Equivalence for Functional Specifications

i) Remfs {le (Ap' s))ybut B¢ Ap s and Rg ¢ (A p's). This means
that tliere exists a set & in ¢ (A p' s) such that R € mfs (+ K). Because of
a property of closure we know that there exists an r such that § » € K which
implies inpats (S r) € inputs K. Since R is a maximal functional subset of
K we know that inputs K = inputs R, so inputs (S r) C inputs R. Thus
also in this case we can find an r and thus an § r such that the computation
cannot be continued to lead to a success. So once more p' mist ;e (s, A).
This proves the lemma.

O

The proven letima plays a major role in the following theorem that states
the correspondence hetween the preorders.

Theorem 5.3.12 Correspondence
For every p and p' in Py,

(n'-) P E ]Jf = P <<mlu,lir) P,

™~y

l’}) P g " Pt = # <<mua'fl'u ,"’
pg PEp L

~in
Proof
Part a)
We first prove:
Y(e: PEQio . p muy e = p' may i, €)
=
I <<rrmyin [},

The proof is by deiiving a contradiction if p €mayio p' does not hold.
We first define the [Gllowimg test for a certain sequence s equal to
(my, 1) > . > (g oo bt anly succeeds if the process under test performs
exactly s.

e{s)= 7 7, STOPL
('.)u.'_."‘r_ SF()P]

? ol STOP]: W)L
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Now we derive:

2 g ¢S fulse
= { Definition of <, }
LpZ Ly
= { Set theory }
Hs:Lp.sg L)
= { Testing and definition of « (s)}
s Lop.pomay e (YA p ndy e (5))

And this is in contradiction with the assumption that all tests p may
satisfy also p' may satisfy. Avd thus p K payin M
Now we prove the reverse divection of part a. So we prove:

P <<rrm_r,u'u P’
=
Yie: PEO. . pomay e = p may 0€)

Suppose p nay ¢, for a certain experiment e, so in the set of all com-
putations starting from « || p there must be at least one computation leading
to success. Take this computation.

ellp=reglpo—{m, o0 = ¢ | e = e || e

This computation gives vise to two derivations: e — s’ —. e, and
p— s =, pi where s" is equal to 5 upto some 1-steps.

We Lkrow that by definition p e p’ =L p C L p'. So also p' can
perform p' — s —. pi' for a certuin p’. and thus can be composed with the
derivation we had for e. And since rhis experimenter e reported success
somewhere, also this time it will do <o hecanse it is the same derivation for
e. Thus p' may ;,¢.

Part b)
The implication p Emum“ ph = o p'is already proven by lemma
5.3.11. The implication in the tovierse direction can be proven as follows.

Suppose p Koo 1 a0l p st e We have to show that p’ must ,e.
Let’s consider an arbitrary coinpitation starting from e || p'. Note that this
cannot be extended.

ellp =elipo’ = (m o =, [N
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We must prove that {or some n € {0, .., k}, e, € Success. This computa-
tion gives rise to two derivations: ¢ — s’ —+. e and p’ — s —. pi’ for some
s € (M x M) Turthennore s’ 1s equal to s upto 1-steps.

Now & (pi') € A p' s aud then there exists T € mfs (¢ A p’ s)) with
T C S (p'). Moreover, since mfs (¢ (A p' s)) CC mfs (¢ (A p s)) we can
find 8" € mfs (¢ (A p s)) such that ' C T. So we get ' € S (p').

Now there are three cases for S

i) "¢ A ps. Iu that case there exists an r such that p —s —.r and
§ 0 C 8 {p). So el cannot be extended and therefore the deriva-
tions ¢ — & =, rp and p - s =, r can be combined to give a computation
el p = = || e And since pomust e it follows that e, € Success for
Csome n € {1k}

i1} S € ¢ (A p s), so there exists a set S 7 in A p s such that § » € 5" and
thus S # € 5 ('), Then a similar reasoning as in case i) can be performed.

i) S € mfs (¢ (A p s)), so there exists a set K in ¢ (A p s) such that
S' e mfs (v K). And there is a set S rin A p s such that S5 T K. We
know that $* C § ('). We kuow also that e || ps' cannot be extended, and
that inputs {S ) C inputs S* because of the definition of mfs. This, together
with the fact that e {| 22" cannot be extended, brings to the fact that also
e, || r cannot be extended.

Part c)
This obvionsly follows from parts a) and b).

d

Tlieorem 5.3.12 gives ns a wumber of interesting results. The first resuls

is that, as an inunediste cortollary we can conclude that & coincides
~mustio
with ¥ whiere [« the set of expertimenters characterised by e (s, a)

~nnstio

and e (s, A) for avhiteany <o and A.

If we add also + [~ 1, [ it is easy to see that also [ coincides with
~ia

|;JE . So the set £ <tais enough kinds of tests to discriminate the pro-
cesses we want to i~ 1ininate and we know that adding more kinds of tests
does not increase the disciiminative power.

Moreover, for expiessing the essential tests in £ we showed that we needed
only a few kinds of [ tiuns for the function part called F in the syntax of
experimenters. \We nevded ouly constant functions that map every output

stream into the samc experimenter expression and we needed functions that
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on one certaii output stream give a certain expression e; and for all others

the expression ;.

def F..:M" = PEQ;,

with F., s = ¢

def F,. . : M — PEO,

with Foy 0, v= if vy =0
then e,
else e

f

We can immediately sce that these two kinds of functions are total on the
domain A" and they provide s a syutax so that we can have a language to
express all the experimenters we need.

Another resnlt is that the cause of the difference between classical test-
ing equivalence as defined by Hennessy for process algebra and the testing
equivalence we found appropriate in our hinctional approach is a slightly dif-
ferent treatment of actions that denote output. In the theory of Hennessy no
difference is made hetween actious that denote input and those that denote
output, they are all just cousidered actions. This resulted in the fact that
both input and output actions cau be inflnenced by the environment. This
means that if a process after a certain input is in a state in which it can
perform more then one output action, and the environment (experimenter)
requires a specific one of this outputs to occur, the process will always give
the required ontput. The output in the theory of Hennessy therefore may
depend on the preceding iupnt. the state the process reached end the re-
quirements of the environment ot expressed by explicit communication to
the process via input actions.

In our definttion of testing oo ivalence for a functional framework there is
a difference between input and o0 A process reacts on an input provided
by the environment dependine - e tate the process is in and its output
can only depend on preceding oo oo and the state the process reached. The
result is that owr definition ol 1o<1iny cquivalence corresponds to equality of

sets of monotonic stream processing finctions. It is an equivalence which is
very much simitar to the classica! testing equivalence for process algebra, but
a little bit weaker becanse in ~uine cuses processes are identified which are
not identified by the classical 1e<tiug cquivalence refation.
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5.4 Detailed Transformational Proofs

This section contains a number of detailed transformational proofs of a num-
ber of letnmas that are stated in this chapter, Their proofs are included in
a separate section in order to avoid too much lenghty and detailed proofs to
interrupt the main ue of the story.

First we state and prove a number of auxiliary lemmas which were not
statec before, and whicl: will be used in the sequel.

Lemma 5.4.1
For all 4 awd Bin PP M x M”

mfs (A w B) = wfs {mfs A w mfs B)

Proof
The proof cousists of twa parts:

i) mfs (A w B)YC mfs (mfs A wmfs B)

X ewmfs (A u 1)
= { Definition of mfs }
AY:Au B NeEwmfsY)

= {D(’ﬁllifiml ol }
F(YL Y A x B Y =YiuYoaanXemfs Y)
= { Logic } :
(Y, Vo)< BN € mfs (YU Y2))
= {Set thewy '}
(K, cmfs (0 Y0 Wy ofs (0 Y,) 0 X € mfs (KU KG))
= {YieAd.dy,zB)

K cmfs A K BN emfs (KU K))
= { Definur ..

Xemfs{(rn 1 3Y)
i)y mfs (mfs A w ors (4 u B)
Nemfso 0 oo B))
= { Detur SN
Y ((mfs b0 s B X Emfs Y)

11

{ D(‘ﬁll.i'lwlh vl ow }
(A cmfs A h, B Y =KIUKGAX €mfs Y)
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= { Definition of mfs over set of sets }
A A B B 3K s mfs (0 Ay), Ry s (o B). X €mfs (KU K)))
= { Set theory }
A AB B X emfs (A UB))
= { Definition of » }

XN € mfs (A u B)

|

Lemma 5.4.2
Foralt A€ P P (M x M)

V(Y ielmfs A) . X emfs V= X € mfs (¢ A))

Proof
The proof is by induetion on the length of the proof of Y being in ¢ (mfs A),

and because of the definition of ¢ there are three cases.

i) Y emfs A
Y ewmfs A
= {ACcA=mfs AC ufs (c A))}
Y €mfs (¢ A)
= { ¥ is functional and X € mfs (v V), 50 X = Y}
X € mfs (¢ A)

1) Y=YiUY,and Y € ¢ (infs ) and ¥, € ¢ (mfs A). By LH. we have
that

VN, Nvemfs (0 Y= N € nfs (c A) A
Ao €mfs (1 Vo= N, 2 mfs (¢ A))

7

We can now prove that X € .} - = X\ mfs (¢ A):

Nemfs (v V)
{ Definition of )

Xemfs t (Vyuy.
{ Definition of .

Xemfs (0 Y1) uwir Y,
{Lemma 5.4.1 }

Xemfs (mfs (0 Y1) v i (0 43)
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{ Definition of w }
N omfs (0 V1), Ny omfs (0 Yy) 0 X emfs (¢ (KLU X))

= {L.H.}
N mfs (e ANy mfs (e A) X e mfs (0 (XU Xa)))
= { Defiuition of mfs }

N e A R e AL X € fs ( KA X; € mfs (¢ Ky A
Nemfs (n (X1 UAXY)))
= { Definition of w }
N e ANy ie AL X € mfs (mfs (¢ Ky) v mfs (0 Kq)))
{Lemma 4.1 }
N e mfs (r Nyw o BY)
{ Definition of . }
Nog mfs (¢ (KU RY))
= [{(MUK)€cA}
N e mfs (¢ A)
i) Y, C Y CY,and Yy € (mfs A) and Y3 € ¢ (mfs A).
By LH. we Lave that
VIXLN, . X €mfs (0 Yy) = X1 € mfs (¢ A)A
X, € mfs (1 Y3) => X; € mfs (¢ A))
We cau now prove that X € mfs Y = X € mfs (¢ A).
Xemfs (v Y)
=! { ¥, C Y C Y,,prop. of closure }
Y. VY C YA
N smfs (VLN e mfs (v Ve) . KT S X C X))
= {L.H.}
Xy omfs (e ) Normfs (¢ 4) . X1 € X C Xy)
= { Delinition ol mf~}

3([\.1 e I'\._i T
N s o NN sl (0 K) L X € X CAR))

i

ill

= { N} € N.and set theory }
3R e AR A N s (0 KDy Xgimfs (0 Ry)
N AN DTN CNUR)AX €mfs (¢ K))))
= { K€ L}

N emfs (¢ )
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Note at derivation step marked 1) in the above proof,
This step can be done hecanse convex closure. If ¥, € ¢ {mfs A) and
Yo€ e (mfs d) thenalsoall ¥i'st. MV C ¥)'C Voine (mfs A}. So we can
take a biguer Yi" inhetween Yy and ¥ as a lowerbound of Y. This is needed
i case ¥ itself is uot functional. From this we can get an X} € mfs Y s.t.
X, C XL

a

Lemma 5.4.3
For all sets a and b

Xec{a b} )= a T XVICY

Proof
The proof is by induction to the length of the proof of X' € ¢ ({a, b}), leading

to three cases.
Case a) X' € {a, b}, 50 X = wor X = b aud this, trivially, ends the proof of

this case.
Case b}

X=NubnaXiee{a,b})AX,€c({a, b))
= { LH.and logics }
aCXivVaC X,V
FC X, VHC NV
h S X1 vVaC )V
h S X1 viCAy)
= { Set theory }

« S XU X,V

cUbCXjuX,v

b S X1UX,
{A=xu0x;}

a CXVaULCTXVvih XY

= { Set theory }

« CXVLICX

Fr S o et
N

(
(
(
(

il

Case ¢)

NSNS AN e {ubl)AN, €c ({a,b})
=  {LH.}



[02 Testing Equivalence for Functional Specifications

Lenima 5.4.4

For sets n aud b and for all X
Nec{a b} )= N CalUb

Proof

- Proof by induction to the length of the proof of X € ¢ ({«,b}) leading to
three cases.

("ase a)

N e {a, b} implies X' =« or X = b, and thus trivially X C aU b.

Case b)

X=X UX, AN €c({a, b)) AXz €c ({a,b})

= {L.LH.}
N CuUAN, CuUd
= { Set theory }

NUuX, Cauul
{ Definition of of X'}
XTaUl

(ase )

NCNXCV ANV 2e({,b)AX; € ({a,b})
= {LH.}

NCXNXCAN, -\ TvobAXyCalUb
= {Set to

NCX,Cu
= {Set it

ANCaUlb

a

Lemma 5.4.5 Funciion Lo s injective
For all f and g finte MSDF
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tree f = tree g = [ =y
Proof
Trivial from the construction of trees.

a

Lemma 5.4.6
For all p and ¢ in PA,,

tree (p | g} = tree p +ppr tree ¢
Proof

o € f;;F' (0]
{ Definition of e }
(] g) fad=tre f)
{ Definition of | on specifications }
AU v fon g Ln (L R) £ Ad = tree £))
{ Definition of [ on hurtions }
NS p AN fan
tree f € dec (tree fi4+par e LY A d = tree m
{ Logic } '
A Ay p iNghadedie (hree fitpgar tree f))
{ Logic }
Ady,do hiofo o p i Ny fo A d, = tree h Ndy = tree f A
d € dee (dy+gar d,))
{ Definition of trr }

H(rll,rfz . ('(l = (f;-:f Y Y r.,') Ad e (d1+ﬂ’AT ([2))
{ Definition of -,

i

il

1

d € (tiee p) +ppp e

0

Lemma 5.4,7
For all ¥ and @ sets of scts of tuples such that they have the same labels
and = is functional
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zecPAyEmfs{e z)AyCQr

=
ez €c O A€ mfs{t (rUz))
Proof
First we prove that + U 2 € ¢ &. We know that z € ¢ ®and z € z U z. More-

over, from a property of ¢ we know that J® € ¢ ® (I over a set of sets is
the union of all the sets this set contains). Also clearly |J ® = labels W¥. So:

@ C labels W

= { lubels ¥ = lubels €}
rC labels @

= {labels & =)D}
r Y &

= {z€cd}
rCyUdAzecd

= {:€cd=:Cd}

rUzCUd

= {CruUz}
:C(rUA (U CUD

= { Definition of ¢, convex closure }
sUz€cd

Now we prove that r € mfs (+ {x U z)). The proof is by derivation of a con-
tradiction. Suppose + & mfs {¢ (U 2)).

r & omfs (1 (U o))
= { Defiuition of wfs }
Ak:Pleuz) o ZHAfunc k)

= {Set theay }
JNa:z.ad " w i

= {y€mi~ . 1Nz =y see note below}
EO =2yl

= { Logic~ -+ o« maximal functional subset }

.[.'.' f'.!'x‘ not _/.HH( toorroe!

The fact that we detive that k is not functional is in contradiction with
assumptions. So we proved o € mfs (¢ (24U 2)). Note that it cannot be
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the case that in the oue but last step in the proof above y C (21 z). The
reason is that o+ is functional, so also =1z iy functional. Moreover y C z
and y € mfs (¢ =), which means that y is maximal and thus should contain
all elementsin + Nz, So y=.unN-=.

0

With the extra lemimas proven above we can give a formal proof of the
lemmas stated in previous sections of this chapter.

Lemma 5.1.7
Given t' and " in [JAT then:

it Sﬁ.-{T t" = V((H.’,(J‘) : (U X 1}“) . (IH.,O'JﬁrAT t! SHAT (m,o‘)ﬂAT t”)
it <HAT t" = Y{t: fJAT . ¢ FgaT ¢ <par i +gar t”)
Proof

Case i:
This case can be proven in two subcases:

(L) Lﬁ._”‘ [.'!l..r}’)ﬂ‘,17" t = Lﬁ.-lT (H.’.,O‘)ﬁAT ¢
b)Vire Lyar . Agar ((no)par 1) 7 C Agar ((m, o) gar t') )

Case 1.a:

Lgar ((myo)gar 1)
= { Definition of (rv.m) 77t }
ceU{(m,a)>m. 76 Laypt'}

{¢ Sgar "= L. = Lgar t"}
veU{(m,e)o-m. 52 Lo 1"}
= { Definition of (v, 70\ p 17}

Lgar ((m,a)gar ")

H

Case 1.h:

First in case 7 = <;
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Agar ((n,o)ar 1) 2

= { Definition of {(m,o)gar }
ri ()

= { Definition of {(m, 7)gar }
Agar {(m o)gar t') €

And in case m # 2
Let # = (n,v) > n'

((myo)gar ) ™=
Apgar ((m a)gar ') m=0)
(r 0= (o) = Agpr {(m,o)gar t"ym= Agar t" 7' A
Apar ((m a)gar t') 7= Agar t' ')
= [t Zpar 1" = Aur t" o' C Agar t' 7'}
70 # ()= Agar ((m,o)gar 1) 7= Agar ((m,0)gar t') 7 A
r0={m.a)= Agir {((m,o)gar t")Y 7 S Agar ({(m,0)gar t') 7
= { Set theory } '
Vi Lyar 1)\ 2 Agar (O, 0)gar t7) 7 © Agar ((m, o)gar t) 7

(e b ()= Apgar ((

|

(Case ii:
This case can be proven in two subcases:

a) Lgar (t +aa7 t') = Lgar (£ +ga7 t7)
N Lyar (8 +uvr 1) Agar (8 4gar t7) 7 C Agar (t +gar t') 7)

Case ii.a:

Lgsr ( +uis 10
= { Definitioe. -t -y r }
Lgar t' U Loy
= {1t <y "= Lyar t'= Lgar t"}
Lygar tU Lyt
= { Defiuition of + 7}
Lygar {t +par 17
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Case 11.1y:
First the case that 7 = =

Agar (E +gar 1) ¢
= { Definition of 44,7}
Agar t ¢ @ Agar 1" ¢
- { Definition of (2} mfs mouotonic w.r.t. -
and Apyr 1" 2 C Agar t' ¢}
Agar t e @ Agar t' =
= { Definition of 4447}
Apgar (t +gar t') ¢

The case that 7 # =

A_IHT (1 Fagar )W
= { Definition of 44,7}
H.’._f.S ((.‘ ( AﬁﬁlT b U 'AIHT ﬁ” TI'))

{ mfs and ¢ are monotonic w.r.t. -

iN

and Agyr 1" 7 C Ayur ' 7}

mfs (¢ ( Agar t 70 Agar t' 7))
= { Definition of +,r )

Agar (t +gar t')

Remark: The fact that wfs aud v are monotonic w.r.t. C 1s easy to see
and the proof is left to the weader The proof that ¢ is monotonic w.r.t. -
can be found in [Henss).

Lemma 5.1.10
V(4 PP (."'l}r « Mty |.'n‘f.'~'-‘ 4)) = mfs (C A))
Proof

First we prove mfs (¢ (mfs 110 C mfs (e A)) which means that we have to
prove that ¥(ir . & € mfs (¢ (1) A1) =0 € mfs (¢ A))).
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z € mfs (e (mfs A))
= {Definition of mfs }

(Ve (mfs Ay e € mfs (0 YV))
= { Lemma 5.4.2 }

r € nifs (¢ A)

Second we prove that mfs (¢ A)) C mfs (¢ {mfs A)). We start from the fact
that ¢ A C ¢ {infs A) which is easy to prove. Then we can derive:

e AC e (mfs A)
= { mifs is monotonic w.r.t. S}
mfs (e AYC mfs (¢ (mfs A))

Lemma 5.2.3 Pairwise
For all non-empty sets A and B in P P (M x M*)

c{AUB)=U({a.b):(c A) x{ec B).c ({a,b}))

Remark that ¢ (AU B) is cqual to ¢ (¢ AU ¢ B) because of rule 3 of prop-
erties of closure ou page 33, With this we can restate the lemma as:

For ail nou-empty sets A awd B in PP (M x M*)
NXec(cAUe By =3ab):(c Ay x{cB). X €c ({a,b}))
Proof

The proof is in two part~ e part for each implication, which together es-

tablish equivalence (=1

i} Part = is provin . ulution to the length of the proof of
Nec(cAUe B) -4 consists of three parts as a consequence
of the definition of « - S

Take X € ¢ (c AL & - als to the following three cases:

a) XEcAU N
B) A(NLN) e 1 it V=X UK
C) 3((,\’1,.‘\’2} S R B H}i . .\’1 g X g Xz)

aj
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XecAUceB
{Set theory }
YecdvXNeehR
= { Definitiou of ¢}
(XYec({X,bhAabeeB)v
(Nee({ae, \PHAwe A
= {(f.:.\’/\be(fBorue(rA/\bz.\'}
(e b): e Axe B. X €ce({a,b}))
{ Definition of U }
NeUlla,by: (e A)x (e BYy. e ({u,b}))
b) (N, No}ie (e AUC B)Y L X = XU X))
The proofs that X, (\}) in c¢(cAUc B) is shorter than
X € c{c AU B).so by induetion hypotlesis we get that:

I e dxe B.X € ({ag, )
(e by) e Axe B Xy € e {{ay, b,}))
and we have to prove that 3({(a,b):c A x ¢ B. XU Xy € ¢ ({a,b})).

From lemma 5.4.3, which says Y € ¢ ({a,}) = (« C Y Vb C Y), and
lemma 5.4.4 we see that we Liave the following subcases:

Il

Hi

b.1) XNi=aqUyp Ay Ch
Ne=aUpm Ay, Ch,

b?.) .\’1 = )rlf]_ U !)1 /\ Af] g H]
4\’2 - ‘?2 U !)2 A !ﬁz g )

b3) ‘\rl - Afl U [)1 A r':fl C i)

Xo=ayUpp Ay, 24,

b4) .\’[ =m U n Ay _:
Xo=kyUbynt, -
Proof of subcase h.1):
We consider the case tliat
Xi=aqUp Ay Sy
Xo=wUmy Ay Ch,

Let’s take « = a; U ay and &/ = 4, U 4,. then we have to show the following
things:
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o Uay € A

mE AN €c4d
= { Definition of ¢}
aqUuy €A

] {)1 U !iz e B
Similar to previons case.

e U, E ¢ ({rr, Uy, by U {}2})
We show this by showing that there exist elements L and R in

¢ {({oy Uy, by Uby}) such that LS X3 U X; TR,
For L we have:

AL ({arUay, b Ub}). LCX; X))

&= {Take L=, Uay € ¢ ({ayUag, by Uby}}
iy U [£5) g 4‘\’1 U 4\’2
= {X| = Uy and

Xy=mUn}
ag Uy S g Uy Uay Uy,
= { Set theory }

{rie
For i we have:

AR ({ay Uy, by Uby}). XiUX; C R)

& { Take R = a; U a; U by U by, which is in closure }
U, CoyUaUbUb

= { Definition of Xy and X3 }
o e Uy, © g Uap U by U by

e LnZhand mCh)

frite
Proof of subcase b2y
We consider the case 1l

.\’[ = A-’l ) !Jl FAN f‘l ’
,\,2 = Jr»'-g U [}g A I'._,

2
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This case is similar to the case b.1).
Proof of subcase 1.3):
We consider the case that

Xi=hUb Ak Cu
No=w U A g C by

Let’s take « = a, U ly and b = b, U . Now we have to show that
NuXys o ({mUb, b U
And this requires that we prove the following things:
e o, Uk € A
431 e ¢ rl A fly & .‘1
= { Definition of ¢, nuion-closure }
ap Uy € c A

= {h S a = 0y C Uk C oy U ay, convex closure }
{t:; J }';.‘! E (' /‘1

L] blLJ"fZE(B

,};G('B/\[)zei'ﬁ

=> { Definition of ¢}
/)1 U ’)2 e ¢ B
= {42 C by and Definition of ¢}

WUy ee D

o J((L,R):c ({mUb,hhuy)) LCXiUXC R).
Take L = a, U Iy

LT XU N,

= { Definition of L.\, and X}
apUky ShUb a0y,

= { Set theorv}

true

Tal\'e R = (ly UJ ja'] U |',J] lJ "
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YUX, C R
s { Definition of R, X| and Xz}
Ub UaUyp CaUhuhUp
= { Set theory }

triue
So indeed XN = X, UNX, € ¢ ({ay Uy, by Uip}).

Proof of subcase h.d):
We consider the case that

Il

.\r; iy Ui A Y1 (_: bl
N,=kUubnalk Cu
This proof is similar to case h.3).
This ends case h).
c) (N, Xy (e (e Aue B))E . X1 CXC X
From lemma 5.4.3 we devive the same four subcases as in case b) and in
the following we give a proof for eacli of these subcases.
Subcase c.l)
Ni=aUpnApnSh
Xy =wUm Ay Ch
Define the intersection of X with ay so b = X N ¢;. We assumed that
X, € X C Xyand we prove that X € ¢ ({ay U ka, by }) by showing the follow-
ng things: '

c.la qpUky € ¢ A
c.lb hech
ele WX X QN 2V, L ie({m Uk, b)) . LCX CR))

Proof of case c.1.a)

e AN, -]
= {Set thicen )
ay U ooy € |
= { &y € u, ol delinition of ¢}

g U by € ¢
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Proof of case c.[.h)
Trivial.

Proof of case c.1.c)

NCYXCX,
{ Definition of Xy aud X, }
mUn CXCwmuy
= {n Cwmuup}
i SN CayUy,
= { S by}
ity SN Caydiy
= (NN, =1y}
aphy, C©X Qouy Uy
{ Set theory }
iUk CXN SV Nw)Ula\ X)Ul,
{ Set theory }
ap Uk ©TX C(XN N ay)U by
{ X May =k as hefore defined }
Uk, CX Ca Uk, U,
= {m Ukyand ¢, Uk, Ub, are in ¢ ({m Uk, b21)}
Nece{{mUbhy b}

Il

I

Subcase ¢.2)
‘-\’1 = A.’l L [)] A r{'.'l g 1
‘\,'2 = k.g U {)2 A A.‘z g )

This proof is similar to sulw.aw . 1)

Subcase c.3)
Ni=hUbAk Cu
Xe=wpUuy Ay C 0,
Define the intersection of X" witl 40 VN ¥; = 2, and the intersection of

Xowith az XNy =4y \We avamed X, C X € X; and we prove that
X€c({mUhk,biuz}) Weio this by showing that:
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XX uAXieco(cAUe B)AX;€¢(cAUc B)
= { Defiuition of ¢}
Nee(edUe D)

This ends thie proof of the pairwise lemma.

Lemma 5.2.8 tree is injective
For ali p and ¢ in SPA,,

~

tree (funfp]) = tree (fun[q)Y= fun[p] = fun|q]

-Proof

e fun [ » ]

= { Definition of free }
Id:DFT . d =tree YN E fun|p]
= { Definition of free }

Fd:DFT . d=tee [YNfE fun[p] Ad E t;;e funp]
{f.;;f‘ Jun [p} = e fun [q] }
Ad:DFT . d=tree [)Af & fun{p] AdE t‘;‘;F fun [ q]
= { Definition of f::f }
d:DFT . d=tee [YAfE fun[p] A
Ag. funq] 4 d =teey)
= { tree is iujearive, lenuma 5.4.5

fe funlq]

Similatlyif fe / [ ]

Lemma 5.2.6
For all py and ppy 0 S0

dec (PITAT [in] =0 DITAT [ m])

(dec PIFAT [ 1)) =oer Udee PIFAT [ 1))
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Proof

The proof is in two parts. First the direction <= is proven, then the direction
=,

1) Direction <. We prove:

(dec PFAT [ m]) +per (dec PFAT [ p2])
C
dec (PAAT [ ] +gar PHAT [ p))

So

4 € ((dec PAT [ ) +orr (dec PFAT [ )
{ Defiuition of +ppr }
d &€ dec (dy+gar dy)
{ Definition of dec }
Vm: Lgar d. Sgar d 7 ¢ Agar (di+gar da) ™)
{ Definition of Ag,r}
Vim: Lyyr d . (n=c= Surdece Agar dy & @ Agar dy 2) A
(me( Lpar )\ (re) =
Sgar d m € mfs (¢ ( Agar dv 71U Agar dy ™))
{m€ Lyar d =~ Agar dy m=0A Agar a7 =10)}
V(im: Lgar d (m=z= Spir dec€ Agar dyie @ Apgar dy €)

]

ili

Il

A
(
(Agar b7 0N Aypird, 7 =0A

Sﬂ'AT dme Aﬁ_”* ) = Are Lﬁ-_”- r[;)

\' .

(Agar v m=0A Ay d, 7 £0

ANSgar dm € Apar d. = =€ Ly dy)

V

(Agar i m £ DA Avyy do5£0

ANSgar dm e mfs (e { Ayar i 71U Agar dy 7)) A
T Lygar O Lyar dy))

)
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= { Cases & to d below and definition of dec }

d € dec (PIJAT [ 1) +gar PHAT [ p2])

(Case a)
T =& = Sﬁ_.yr dz e Aﬂ,4T (fl £ @ -Ajj'AT (12 £ =
Spar d ¢ € Apar (Aitgar Ad) €
Proof:
T=3I= .‘)'ﬂ_.',T i =z & Aﬁ_.[r "Il z @ A‘g,g'r (fz £
= { Logic }
Syar £ € Agar dy = @) Apgar 4y €
= {d; € dec {PFAT [ p;}) and
d; & dec (PIAT [ 1)) = Spar d; e = Spar (PHAT [ p;]) €}
Spar d € € (1 Sgar (PJAT [pi]) €) @ (¢ Spar (PFAT [ p2]) €)
= { Definition of +par}
Sgar d £ € Agar (PJAT [ pi} +gar PFAT [ pa]) €

Case b) If Agar &y 7 # @ and Agar dy 7 =0 then
Spar d 7€ Agyr iy 7 AT € Lygar dy =
SJJAT fd 7w € infs (o | AHAT LTy, Aﬁ',ﬂ‘ Aq 7r))
Proof:
Sgar drme AnrdimAne Lygar dy
= { Logic }
.‘)'b".QT I'f m E ,-l.li'i ﬂ;"l T
= {dy e DI'L}

SHAT drTeic ~ T
= {dye e i vl ] and
dy€dec (1P | = Sgar dh m € Agar (PFAT [p]) 7}
Sgar d == 4 AT [p])
= {de Dl
Sgar d m e vt o Agar {(PFAT [ po]) 7))
= { Mouoton v of ¢ and mfs }

Sgar dm e i ve i Ayar (PFAT [Pl]) U Agar (PFAT [ P'Z]) T))
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Case ¢) If Agyp dy 7 =0 and Agar dy m # D then

55_47" d we Aﬁ'..r}" dymAmTeE Lﬂ’AT d, =
51@'_47‘ o S H{f':'i ((‘ ( -Aﬁ’AT .*—11 U .«4\[7'_41‘ Ag TI'))

Proof: Similar to proof of case h).

Case d) If Apyr dim # 0 and Agar dy # # 0 then

Sfj’AT d e mfs (¢ ( -A}_HT dy 7 U -AB'AT s Tr))/\ T™E Lﬁ'AT d N LﬂAT dy =
SHAT dre mfs (e | Aﬁ'_.{'}" ATy .Aﬁ,qr Ay TT))

Proof;_

Agar hr FDN Agar dir £ DA

Sgar dm € mfs (¢ (Agar dimr U Agar dym)) A7 € Lgar i 0 Lgar d,
= { Logics }

Sgar d m € mfs (¢ ( Agur AU Agar dym))
= {d and oy in DFT)

Sgar d m € mfs (¢ { Spar o, 7, Sgar da m})
= {d € dec (PAT [p])}

Sgar d m & mfs (¢ { Syar Ay 7, Spar dz T} A

Sgar dy m € Agar (PUAT [ pi]) 7 A Sgar dyw € Agar (PFAT [ pa])

= { Lemma pairwise 523}

Spar d m € mfs (¢ ( Agir (PUAT [ pi]) 7 U Agar (PFAT [ pal) 7))
= { Definition of +,,r }

Sgar d € mfs (¢ ( Auyr (PYAT | pl +gar PFAT [ p)) 7))
= { Definition of ¢ }

dedec (PFAT [ ] = 0 10T [ p])

ii) Direction =,
Now we prove that:

dec (PFAT [p] +y0s 1 14 0]
-

dec (PAT [ ]} +uvr oo PIAT [ p])

{n.’ . 3((.‘.'1 D idee (Pﬂfl T [ ,'ft]). .'."_, e (PﬂAT [}72]) . d € dec ((ll-l-ﬂrAT (fg))}
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We first elaborate some preparations for the proof.

For the £ case:

VS Agar (PIAT [p]) ¢ @ Agar (PFAT [ p]) 2))
A Agar (PIAT [nl) 20 Ky Agar (PFAT [pa]) <
Se (¢ A e Ay

From lemma 5.2.4 we know that:

Vim: (M x M ¥\ ee.

Agar (PFAT [p) 7 #0A Agar (PFAT [pa]) 7 # 0

=

V(S mnfs (¢ ( Agar (PHAT [‘[)1]) m Agar (PfIAT [ PZ]) T .
3([\'1 : -A‘[‘fs\T (/”/ff”n ['[)1]) m, [\"2: Aﬁ'AT (PﬁcAT [ ])2]) .

S e mfs (e {Ky, Ky

Given 7 under the above conditions, w.l.g. we can choose particu-
lar A, and Ky and we call them AT and K. Define 4; as follows for

d € dec (PFAT [ ] +yar PHAT [ pa]).  Lgar dy is the smallest subset of
Ligir d 0 Lyar PIJAT [ ]} such that:

L [-_f,".-lT ”Il

o 1€ Ly i A Apyr (PIFAT [ pa])m = OA
(.5} € Spar d 7= 7 < (m,s) € Lgar dy

o T Lygar di A Apar (PFAT { paim # 0A
(m,s) € KN = 7 < (m,s) € Lgar d

Notice that for all 7€ Ly ¢ we have Agar (PFAT [p1]) 7 # @ since
TE LﬁAT (PHAT [ m]). A also 7 € Lgar d so that Sgar d 7 is defined.
Lgar dy is prefix closcd Iy construction. Moreover, dy € dec (PFAT [ p]),

Le. V(71 Lgar di . Soop 7 € Agar (PFAT [p]) 7).

true
= {Defivition b Sy}
Yir: Ly S dor={{m,s). 7 <(m,s) € Lgar di})
{ Precdicare valonlns }
Y(t: Lyyp v Soor dit={(m,s). 7 <{m,s) € Lgar d} A
( Agar (P o]y 7 =0V Agar (PFAT [ pd]) 7 #0))
{ Pre<licate calonlns
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V(r: Lgar di . ( Sgar dir = {(m,s). 7 < (m,s) € Lgar di} A
Agar (PIAT [ pa]) 7= 0)
vV
( Sgar dir ={lin,s) . 7 < (m,s) & Lgar dh} A
Agar (PHAT [ pa]) 7 #0))
= { Two cases ii.a and ii.h below }

Sgar ht € Agar (PFAT [ m]) =
Case ii.a)

Sgar b T ={(m,s) . v <{m,s) € Lgur i} A Agar (PFAT [pa]) 7 = 0
= { Definition of o }

Sgar dh v=S d v A Agar (PFAT [p]) 7= 0
= {d € dec (PFAT [ ] +gar PFAT [ pa)) }

Spar v 7 € Agar (PFAT [p]) 7

Case ii.b)

Sgar v T = {(m,s). T < (m,s) € Lgar di} A
Agar (PHAT [ p) 7 #9
= { Definition of d, }
Sgar dy 7= R]
= (K7€ Agir (PJAT [n]) 7}
Sgar dy T € Agar (PJAT [m]) ~

Let us now define dy similarly;
Lgar dy is the smallest subset of Lgar A0 Lygqr (PHAT [ pg]) such that:

e cE Lﬁ’AT tly

7€ Lygar da N Agur (PIIAT [ p]) 7 = 0A
(m,s)€ Spar dm =7~ (ms)¢ Lgar dp

e TE Lﬂ'AT dy A -AﬂAT (AT [ ,.'J;]) T -,4— oA
(m,s) € [\".‘a’r =T <{w.~ & Lgir dy

The main proof follows:

d € dec (PFAT [ ] +p10 PHAT [ p))
= {T e LﬂAT il = "'( AI‘HT (PHAT[[),]) T = @) for ¢ « {1,2}}
V(T: Lﬁ’AT d .
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(Agar (PHAT [ ) 7 £ 0N Agar (PFAT [pa]) 7 =0AT #£)V
( Agar (PUAT [pi]) 7=0A Agar (PJAT [pd]) 7 # @ AT #e)V
( Agar (PIAT []) 7 £ 0N Agar (PFAT [ pa]) 7 #0))

= { Three cases ii.1, ii.2, ii.3a, i1.3b below }

3(dy, dy . Sqar d 7€ Agar {ditgar d2) )
{ Definition of dec'}

d & dec {dy+gar )

ill

Case 1.1}
Agar (PHAT [ p]) 7 # 0N Agar (PHAT [p]) T=0AT #¢
=
-SCIT.-IT dre A,{[-%T ("lr]-i'ﬁ_ﬂ“ (I{z) T

Proof

Agsr (PIAT [l = #0A Agar (PGAT [pi]) 7 = 0
= { Take d) as described above }
Sgar v 7= Sgar d TA
Agar (PFAT [n]) 7 # 0N Agur (PFAT [p) 7 =10
= { Definition of Agar for Agar (PFAT [ p]) 7}
SEAT = SpardTAT ﬁ Lﬁ'AT (PﬂAT [pz])
= { Take d, as deseribed above }
Sgar dy 7= Syar d TATE Lyar d;
= { Definiition of  Agar }
Sgar dy 7= Sopd A Agar iy 7 = @
= {mfs (e ¢ Ayp i 7U Agar da 7)) = Agar dyT=1 Spur dy T
and definition ot Ay}

Sgap d 7= 4 enrd)T
Case 11.2)
Agar (PIAL 1= =08 Agar (PFAT () T #0 AT £

Proof

Simitlar to the prool ol pevious case.

Case 1.3a) 7= ¢
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Agar (PFAT [ ) 7 £ 0N Agar (PFAT [p]) 7 £ 0
=
Sgar d 2 € Agyr (di+par dy) €

Proof

Agar (PFAT [m]) 7 £ 0N Agar (PIFAT [po]) 7 £ 0
= {d € dec (PFAT [ p1] +gar PFAT [ p3]) by hypothesis,

definition of Ayar aud +447 }

Sgar d 2 € Agar (FFAT [ pi]) ¢ @ Agar (PFAT [ pa])
= { Definition of @ and choose K¢ and

- A as shown above }

Sgar d 2 € mfs (K] URT)
= { Take d; as above }

Sgar d 2 € mfs ( Sgar dy cU Sgar dy €)
= { Definition of Ay}

Spar d 2 € mfs { Agar dv ¢ w Agar dy £)
= { Definition of 4,7 and @}

Spar d 2 € Agar (di+gar ) =

Case i1.3b) 7 # ¢

Agar (PFAT [p]) T #O0A Agar (PFAT [po]) 7 # 0
=
Sgar d 7€ Agar (di+gir d) T

Proof

Agar (PFAT [ ]y r 20 % Ayar (PFAT [pa]) T # 0
= {d &dec (PITAT [ 1] + 517 PHAT [ p2]) by hypothesis,

definition of AHA T and - }
Sgar A 7€ Agar (1 V[ o] +gar PHAT [p]) 7
= { Definition of +,,,}

Spar d v € mfs (¢ Anir (PTAT [pm]) U Agar (PFAT [pzl) 7))
= { Lemma 5.2.4 there exist A7 € Agar (PFAT [ p3]) }
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Spar d T €mfs (¢ ({KN],K]})
= { Take d, as defined above }

Sgar d 7€ mfs (¢ ({ Sgar di T, Sgar d2 T}))
= {d;, ave in DIFT }

Spar d 7€ wifs (e ( Agar 7Y Agar dy 7))
= { Definition of Agar }

Spar d 7€ Agar (ditpar do) 7
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actions( ﬁp 5)

Figure 5.17: Illnstiation to proof of Lemma 5.3.11
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