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Abstract

Carpooling, i.e., the act where two or more travelers share the same car for a common
trip, is one of the possibilities brought forward to reduce traffic and its externalities, but
experience shows that it is difficult to boost the adoption of carpooling to significant
levels. In our study, we analyze the potential impact of carpooling as a collective
phenomenon emerging from people’s mobility, by network analytics. Based on big
mobility data from travelers in a given territory, we construct the network of potential
carpooling, where nodes correspond to the users and links to possible shared trips,
and analyze the structural and topological properties of this network, such as network
communities and node ranking, to the purpose of highlighting the subpopulations with
higher chances to create a carpooling community, and the propensity of users to be
either drivers or passengers in a shared car. Our study is anchored to reality thanks to
a large mobility dataset, consisting of the complete one-month-long GPS trajectories
of approx. 10% circulating cars in Tuscany. We also analyze the aggregated outcome
of carpooling by means of empirical simulations, showing how an assignment policy
exploiting the network analytic concepts of communities and node rankings minimizes
the number of single occupancy vehicles observed after carpooling.

Keywords: Carpooling; Complex Networks; Rank Analysis; Community Discovery;
Big Data Analytics; Mobility Data Mining

1. Introduction

There is no need to advocate why traffic and its consequences on the environment,
our health and quality of life, and the economy is a major problem for our societies.
Carpooling, i.e., the act where two or more travellers share the same car for a common
trip, is an old idea brought forward, among many others, to reduce traffic and its ex-
ternalities. If a large proportion of travellers, especially daily commuters, would adopt
carpooling, a substantial traffic reduction could indeed take place. However, experi-
ences from many projects internationally, as we discuss in Section 2, have shown that
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it is extremely difficult to boost the adoption of carpooling to levels that significantly
diminish traffic as a whole. There are many reasons why this happens: psychological,
organizational, technological. As a matter of fact, we do not know much yet about
the real carpooling potential that emerges from people’s mobility—a very preliminary
step towards designing the right mechanisms and incentives for a successful carpooling
system. Nevertheless, we now have access to the data to observe individual mobility
at microscopic level and for large populations of travellers, such as the digitised tra-
jectories of vehicular travels recorded by GPS-enabled on-board devices. These forms
of big data has been used in [1] to discover the mobility profiles of individual trav-
ellers, and to understand when two individuals have compatible matching needs, so
that they can share part of their travels. In the present work we pursue this approach
further, to the purpose of understanding the potential impact of carpooling as a collec-
tive phenomenon, by adopting a network analytics approach. Based on mobility data
from a community of travellers in a given territory, we construct the network of po-
tential carpooling for that community, where nodes correspond to the users and each
link between user u and user v corresponds to the fact that u can take a lift from v,
because there is a trip in v’s profile that can serve u (u can be a passenger of driver v).
By analysing the structural and topological properties of this network, we can gain a
deeper insight of the potential impact of carpooling. We adapt network analysis tools
such as community discovery and node ranking to the purpose of highlighting the sub-
populations of travellers that have higher chances to create a carpooling community,
and who are the users that show a higher propensity to be either a driver or a passenger
in a shared car. Also, we can reason about the propensity of geographical units or cities
to carpooling, as well as on the impact on externalities such as CO2 emissions and
costs that can be potentially reduced. Our study is anchored to reality thanks to a large
mobility dataset, consisting of the complete one-month-long GPS trajectories of more
than 150,000 cars observed in Tuscany, the region of central Italy with Florence and
Pisa, during the month of May 2011. The population of observed cars is approximately
around 10% of all circulating cars. Our analytic observations are therefore referred to
real (anonymous) users and real cities, like Florence and Pisa. Remarkably, our method
explores the potential of carpooling in systematic travels, e.g., home-work commuting,
as opposed to ride sharing in occasional trips, which is the approach of several popular
apps (see Section 2). Addressing the issue of sharing systematic trips is clearly more
challenging and can have a larger impact on traffic reduction. The ultimate contribu-
tion of our study is to analyse the potential aggregated outcome of carpooling in the
analysed networks, using several empirical simulations, in terms of expected number
of single occupancy vehicles (SOV) that we observe as a result of carpooling matches
that take place. We investigate several possible scenarios, and show how a carpooling
assignment that exploits the mentioned network analytic concepts of communities and
node rankings is the one with the best theoretical performance, because it reduces sig-
nificantly the expected number of SOV’s observed after carpooling. Although much
further work is needed to validate in the real world that mining carpooling networks
can boost the adoption of ride sharing among communities of commuters, our study
is a first in-depth analysis of the potential impact of the approach, which sheds a new,
quantitative view on a mechanism that, like all complex social processes, can only
be explained in terms of a dynamic network of interacting actors exhibiting an often
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surprising aggregated behaviour.
The rest of this paper is organized as follows. Section 2 contains a detailed overview

of related works, addressing carpooling from many different perspectives. The techni-
cal background for our study is briefly sketched in Section 3. Section 4 describes the
Never Drive Alone approach, from the construction of the carpooling network to the
assignment method, through the analysis of communities and the ranking measures.
Section 5, after illustrating the large mobility dataset used in this study, provides a
qualitative and quantitative assessment of the results obtained. Finally, in Section 6,
we discuss possible future developments.

2. Related Work

The carpooling phenomenon is a subject widely studied in the literature. It has
been analyzed form various, very different points of view. Carpooling is the second
most popular way of commuting, and maybe one of the least understood – a fact that
probably explains the need for such a large corpus of studies in literature.

Carpooling received wide attention in the theoretical literature, mainly regarding
high occupancy vehicle lanes (HOV) [2, 3, 4, 5, 6, 7] . [2, 4] develops models to cal-
culate the benefits gained for eliminating traffic congestion by adding HOV lanes, or
by converting general purpose lanes into HOV. [5] shows that there is no increase in
ridesharing related with the introduction of new HOV lanes, despite the carpooling rate
among commuters increases in some periods. Others, like [3] and [6], consider tolls
related with HOV and how these can influence their use. [7] is a study about carpool-
ing related with the economy world that examines carpooling and driver responses to
fuel price changes. It shows that traffic flows in mainline lanes decrease when fuel
prices increase, and this effect is stronger when the presence of a HOV lane provides a
substitute to driving alone.

Another approach widely followed in the literature for analyzing carpooling is the
agent based model (ABM) [8, 9, 10, 11, 12, 13]. A multi-ABM in conjuction with the
Dikstra’s algorithm is used in [8] to efficiently answer real time users’ queries. In [14]
an ABM is designed to optimize transports by the ride sharing of people who usually
cover the same route. The information obtained from this simulator are used to study
the functioning of the clearing services and the business models. In [10] the authors
face the problem by using a multi-ABM to investigate opportunities among simulated
commuters and by providing an online matching for those living and working in close
areas. [11, 15, 13] present a conceptual design of an ABM for the carpooling appli-
cation to simulate the interactions of autonomous agents and to analyze the effects of
changes in factors related to the infrastructure, behavior and cost. They use agent pro-
file and social networks to initiate the ABM, then employ a route matching algorithm
and a utility function to trigger the negotiation process between agents. In [12] the
authors define an ABM for the individual mobility behavior during carpooling, the cri-
teria and the function to constitute the carpooling community and a protocol for the
negotiation of the details of the carpooling trips.

Many carpooling works are related with the study and analysis of mobility data
to understand the carpooling phenomena [16, 17, 18, 19, 20, 21, 22, 23]. In [16], for
example, the authors deeply describe the characteristics of carpoolers, distinguishing
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among different types of carpooler, and identifying the key differences between a car-
pooler, a single occupant vehicle (SOV), and a transit commuter. They also describe
how and why commuters carpool. In [17], it is introduced a methodology for extract-
ing mobility profiles of individuals, and a study criteria to match common routes in
order to develop a carpooling service. Something similar is illustrated in [23], which
tries to understand mobility patterns, home and work locations, and social ties between
users to develop an algorithm for matching users with similar mobility pattern. [18]
proposes a study club model to overtake psycological barriers associated with riding
with strangers, to find compatible matches for traditional groups of users and also to
find a ride in alternative groups. Using a multilevel regression model and a question-
naire which explains the share of carpooling employees at a workplace, [19, 20] predict
the share of carpooling at large workplaces locations, organization and carpooling pro-
motion. In [22] the authors analyze a rail company which provides electric cars to
commuters from the home to station trip and then employs the same cars for other
works like postal service, medical health care etc. Finally in [24] the authors develop
an application for car sharing recommendation by exploiting a topic clustering algo-
rithm applied to labeled trajectories.

In other studies [25, 26, 27, 21], the authors try to find simulated or theoretical
matches among users asking for a ride in a carpooling scenario and evaluate it in terms
of simulated users’ feedbacks. [25] develops and implements the concept of real car-
pooling by allowing a large base of member passengers and drivers that declared their
route to be matched against each other automatically and instantly using mobile phone
calls. In [27], the problem is faced as an optimization task reduced to the chairman
assignment problem [28]. [29] considers simulated straight-line trajectories observ-
ing only origin and destination of trips and classifies users as eligible or ineligible for
carpooling by minimizing the time of the trip. In [26] a user network is built that
represents planned periodic trips, where the edges are labelled with the probability of
negotiation success for carpooling. The probability values are calculated by a learning
mechanism using the registered person features, the trip characteristics, and the nego-
tiation feedback. The algorithm provides advice by maximizing the expected value for
negotiation success. The differences between the approach proposed in [26] and ours
is that we provide matches between couples of users in a pro-active way, suggested
from data and not advertised from people. Moreover, [26] uses the network structure
to model the negotiation feedback process, while we use complex networks to model
the possible interactions between users and to suggest possible assignments by taking
into account real trajectories and systematic movements. [21] develops a methodol-
ogy that finds feature points in trajectories and organize them in a trie data structure to
speed up and refine geographical queries for carpooling purposes.

Furthermore, there are a few approaches that cannot be clearly assigned to any of
the classes discussed above. The work in [30] estimates the energy consumption in
terms of fuel related with the impact of casual carpooling. In [31] instead, the authors
propose a carpooling based on taxicab, that is, they analyze the reduction of circulating
taxi in presence of ride sharing. Moreover, the carpooling problem is investigated also
in completely different fields, for instance from the psychological viewpoint [32], and
the economical one [33].

Finally, it is worth to note that there are many web sites already operative through-
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out the world. All of them allow the user to register, search a ride and offer a ride.
Anyway, they present several differences. Drivebook, Roadsharing and Blablacar1 are
some of the most famous ones because they are international, offering intra- and inter-
country services. Indeed, they treat mainly long trips. Drivebook is characterized
by the feature of being linked with various social networks to improve the confidence
among users, while Roadsharing focus on commuters. The most popular services in the
area where our case studies are located (Italy) include Autostradecarpooling, Avacar,
Bring-me, Viaggiainsieme, and Autoincomune2. Autostradecarpooling, Avacar, and
Bring-me are created to find and offer rides for occasional long trips to save money
along toll roads and motorways. Viaggiainsieme promotes bike sharing besides routes
for commuters. Finally, Autoincomune is mainly oriented towards local mobility, and
organizes trips for commuters across neighbouring municipalities and also inside the
same district.

3. Background

In this section we introduce some important concepts that will be useful to follow
the rest of the paper. In particular, here we summarize the basics for extracting mo-
bility routines from raw GPS traces, which will be used later to build the network of
carpooling opportunities among users; also, we provide some basic definitions related
to network analysis, which will be the starting point for computing ad hoc measures
for our carpooling networks.

3.1. Mobility Profiles
Given a set of users, their mobility can be described by the set of trips performed

in the period of analysis. Each trip, then, is defined by a trajectory, i.e. a sequence of
spatio-temporal points:

Definition 1 (Trajectory). A trajectory T is a sequence of spatio-temporal points T =
〈(x1, y1, t1), . . . , (xn, yn, tn)〉, where xi and yi (1 ≤ i ≤ n) are the coordinates of the
i-th point and ti is its corresponding timestamp, with: ∀1 ≤ i < n.ti < ti+1.

The set of all the trajectories travelled by a user u makes her individual history:

Definition 2 (Individual History). Given a user u, we define the individual history of
the user as the set of trajectories travelled by her and denoted by Hu = {T1, . . . , Tk}.

Using the above definitions and following the profiling procedure proposed in [17],
we can retrieve the systematic movements of a certain user u. The method consists
in clustering the trajectories of the user by means of an ad hoc distance function that
defines the concept of trajectory similarity to be adopted. In particular, two trajectories
closer than a given threshold will be considered similar and contribute to the same
mobility behaviour:

1 http://www.drivebook.com/, http://www.roadsharing.com/, http://www.blablacar.com/
2 http://www.autostradecarpooling.it, http://www.avacar.it/carpooling/home.aspx, http://www.bring-

me.it/, http://www.viaggiainsieme.it/, http://www.autoincomune.it/
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Figure 1: The user’s individual history (left: black lines), the clusters identified by the grouping function
(center: C1, C2, C3) and the extracted individual routines (right: r1, r2) forming her individual mobility
profile.

Definition 3 (Trajectory Similarity). Given two trajectories T and T ′, a trajectory
distance function Dist and a distance threshold ε, we say that T is similar to T ′ iff
Dist(T, T ′) ≤ ε.

The result of the process is a partitioning of the original dataset of user’s trajec-
tories, from which we filter out the clusters with few trajectories (statistically non
significant behaviors) and the trajectories that are noise (specifically detected by the
clustering algorithm). Finally, for each valid cluster remained, we extract a represen-
tative trajectory, which is called a routine. The set of all routines of a user is called her
mobility profile. More formally:

Definition 4 (Routine, Mobility Profile). Let Hu be the individual history of a user
u, ms a minimum size threshold, Dist a distance function and ε a distance threshold.
Given a partitioning function Profile(Hu,ms,Dist, ε) =M = {M1, . . . ,Mk}, with
Hu ⊆

⋃k
i=1Mi and ∀1 ≤ i < j ≤ k.Mi ∩Mj = ∅, for each 1 ≤ i ≤ k we define a

routine ri as the medoid trajectory of groupMi. The set of routines extracted fromM
is called mobility profile and is denoted by Pu = {r1 . . . rk}. The residual trajectories,
i.e. Hu \

⋃k
i=1Mi, represent occasional trips and do not contribute to any routine in

the user mobility profile.

Following [17], function Dist will compare trajectories based on their path and on
the time of the day they took place. The mobility profile of a user describes an abstrac-
tion in space and time of her systematic movements: real movements are represented
by a set of trajectories describing the generic path followed, and the representative hour
of the day it takes place, not instantiated in a specific time and date. Moreover, the ex-
ceptional movements are completely ignored due to the fact they will be not part of
the profile. Fig. 1 depicts a sample instantiation of the mobility profile extraction pro-
cess, from the user’s trajectories (left) to the clustering represented by function Profile
(center) and finally to the resulting routines that form her mobility profile.

3.2. Complex Network

In this work we will make use of three main concepts belonging to the complex
networks field: (i) node degree, (ii) link analysis, (iii) community discovery. Given
a directed graph G and one of its nodes i, we define the incoming degree of i as the
number kini of links that point to i, and its outgoing degree as the number kouti of links
that start from i and point to other nodes.
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In network science, link analysis is a data-analysis technique used to evaluate re-
lationships, i.e. connections, between nodes. In particular we used Hyperlink-Induced
Topic Search (HITS), also known as hubs and authorities, a link analysis algorithm that
rates Web pages, developed in [34]. The algorithm assigns two scores to each page:
its authority score, which estimates the value of the content of the page, and its hub
score, which estimates the value of its links to other pages. Authority and hub values
are defined in terms of one another in a mutual recursion: authority values are com-
puted as the sum of the hub values that point to that page; hub values are the sum of
the authority values of the pages it points to. These hub and authority scores are values
that enable us to rank nodes according to some criteria. We define HITS as a ranking
function:

Definition 5 (Ranking Measure). Given a direct graph G = 〈N,E〉, we define the
ranking function ranking(G) as the algorithm HITS, taking as input G and returning
two score vectors h and a, respectively for hub and authority.

Finally, community discovery is the problem of identifying communities hidden
within the structure of a complex network [35]. A community is a set of entities that,
in the network sense, are closer to the other entities of the community than with those
outside it. Thus, communities are groups of entities that share some common properties
and/or play similar roles. In literature, several popular community discovery algorithms
exist [36, 37, 38]. Among them, in this work we choose to adopt Infohiermap for its
ability to deal with direct graphs and for the efficient ranking random surf approach it
implements.

Definition 6 (Community Discovery). Given a direct graph G = 〈N,E〉, we define
the function communities(G) as the algorithm Infohiermap, taking as input G and
returning a set of communities C = {C1 . . . Cn}, where Ci ⊆ N is a set of nodes.

4. Never Drive Alone

In this section we describe an approach for realizing a carpooling service, based
on the identification of pairs of users that could share their vehicle for one or more
of their systematic trips. The method builds on and develops several of the concepts
summarized in the previous section.

In the following we propose a procedure for suggesting carpooling assignments –
i.e. offering to some users to become a driver for other users, who will become their
passengers – among systematic users. The output of such procedure also provides the
means for studying the potential of carpooling on the area of analysis. The procedure is
composed by two main tasks. The first one regards the construction of the carpooling
network, the calculus of the ranking scores and the extraction of the communities. The
second one concerns the actual assignment of drivers and passengers among the users
that form the carpooling network, exploiting the ranking score and the community
information computed before.
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4.1. Carpooling Network Construction
We talk about carpooling interaction when a user can get or offer a ride to another

one. The idea is to use complex networks to model the potential carpooling interac-
tions, to use the ranking measures to evaluate how much a user is suitable for being a
driver or a passenger, and to use community detection to characterize groups of users
that are highly related in terms of carpooling.

The starting point of this analysis is the set of routines which constitutes the user
mobility profiles. Since mobility profiles represent users’ systematic behaviors, by
comparing them it is possible to understand if a user can be served by another one. The
system can keep reasonably up-to-date routines and profiles by executing the profiling
process regularly, for instance every week, over the most recent mobility data.

A basic operation we need to perform is testing whether a routine is contained in
another. If a routine r1 is contained in a routine r2 then the user that systematically
follows r1 could leave her car at home and travel with the user that systematically
follows r2. The relation of routine containment is defined as follows:

Definition 7 (Routine Containment). Given two routines r1 = {(x(1)1 , y
(1)
1 , t

(1)
1 ), . . . ,

(x
(1)
n , y

(1)
n , t

(1)
n )} and r2 = {(x(2)1 , y

(2)
1 , t

(2)
1 ), . . . , (x

(2)
m , y

(2)
m , t

(2)
m )}, a spatial toler-

ance spattol and a temporal tolerance temptol, we say that r1 is contained in r2, i.e.
contained(r1, r2, spattol, temptol), if ∃ i, j.1 ≤ i < j ≤ m such that:

||(x(1)1 , y
(1)
1 )− (x

(2)
i , y

(2)
i )||+ ||(x(1)n , y(1)n )− (x

(2)
j , y

(2)
j )|| ≤ spattol ∧

|t(1)1 − t
(2)
i |+ |t

(1)
n − t

(2)
j | ≤ temptol

where:

• spattol is the maximum total distance that the user which is served could walk to
reach the pick-up point, and to reach her final destination from the get-off point;

• temptol is the maximum total amount of time that the user which is served is
allowed to waste, as delay or anticipation w.r.t. her original trip, considering the
departure and the arrival time.

It is important to note that the contained relation is not symmetric, since one routine
might include another without having the vice versa holding. This can happen when
the routines compared have different lengths, in which case the origin of the user which
serves the other can be very far from the origin of the one who is served, and similarly
for the destination point. Fig.2 provides a visual depiction of the containment relation
over a simple example. This formulation basically assumes that the users served (i.e.
the candidate passengers) are willing to walk and change their time schedule in ex-
change of the ride they get, while the users which serve (i.e. the candidate drivers) do
not change their routine.

Using the routine containment relation it is possible to build a carpooling network
G = 〈N,E〉. Given a set of profiles P = {P1, . . . Pn}, for each pair of different users
u and v, we check the routine containment between every routine rui ∈ Pu and every
routine rvj ∈ Pv . If contained(rui , r

v
j , spattol, temptol) holds, then u, v ∈ N and

{(u, v, rui , rvj )} ∈ E.
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Figure 2: Example of routines containment: r1 is contained in r2 because the starting and ending points of
r1 (circular points) are spatially and temporally close enough to some points of r2 (squared points).

Definition 8 (Carpooling Network). A carpooling network G = 〈N,E〉 is a multi-
dimensional graph where N represents the set of all users taking part in at least a
carpooling interaction, E is the set of all labeled edges (u, v, rui , r

v
j ), where rui is a

routine of u ∈ N , rvj is a routine of v ∈ N , and rui is contained in rvj .

Note that the carpooling network guarantees that the trajectories considered are
routines, and therefore they are repeated systematically ensuring that a ride is most
likely available or needed on that route. In Figure 3 (left) we have a representation
of the carpooling network. Given a carpooling network G = 〈N,E〉 we define the
possible passengers and possible drivers as follows:

Definition 9 (Possible Passengers). Given a carpooling network G = (N,E), a user
u ∈ N is a possible passenger if she has at least an outgoing link, that is koutu > 0.

Definition 10 (Possible Drivers). Given a carpooling network G = (N,E), a user
u ∈ N is a possible driver if she has at least an in-going link, that is kinu > 0.

We denote with PPG the set of all possible passengers and with PDG the set of all
possible drivers in G. Note that it is possible (and actually rather frequent) that PPG ∩
PDG 6= ∅, thus some user can act both as possible passenger and possible driver.

Finally, it is worth to highlight that a carpooling network is in fact a multidimen-
sional network: users u and v can share for example two routines; the going trip and
the return trip because they take place at different times and also on different roads.
However, in order to use some common network analytic tools we have to transform
the carpooling network in a mono-dimensional network (see Figure 3 (right)).

Definition 11 (Carpooling User Network). Given a carpooling networkG = 〈N,E〉,
we define a carpooling user network as a direct mono-dimensional graphG′ = 〈N,E′〉
obtained by collapsing all multi-dimensional edges between the same pair of users, i.e.
E′ = {(u, v)|(u, v, ru1 , rv1) ∈ E}.

Since G′ is a direct network, then an arc (u, v) is directed from u to v, consequently v
is said to be a successor of u.
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Figure 3: Carpooling Network (left), Carpooling User Network (right).

4.2. Greedy Carpooling Assignment Suggestion

Using the carpooling network, we are now able to extract potential assignments.
The carpooling assignment method proposed in this section follows a simple heuristic
and a greedy idea. The method takes as input a carpooling user graph G, i.e. multi-
dimensional edges are not considered, assuming that each pair of users can share only
one routine: the general case will be described later as extension of the solution de-
scribed here. The idea is that this first procedure is applied to a relatively short time
window within the day, where it is basically certain that each user will have at most
one active routine, e.g. in a typical situation a time window covering the period from 8
a.m. to 8:15 a.m. might contain the home-to-work routine of a commuter, but not the
symmetric one, which will likely appear in another time slot in the afternoon. In Sec-
tion 4.4 we will describe the overall algorithm that iteratively applies the present one on
different time slots. The output of the method is a classification of the users taking part
in the carpooling network. In particular, the set D contains the drivers that host some
passengers in their car, P contains the passengers that are hosted by some drivers, and
S contains the single-occupant-vehicles (SOV) that drive alone. The three classes form
a partitioning of the users, i.e. N = D ∪ P ∪ SOV and |N | = |D|+ |P |+ |SOV |.

The procedure uses a sorting function f to order the possible passengers according
to some criteria c′. It takes the first possible passenger u from the sorted list, and it
orders her possible drivers (i.e. the out-linked nodes in the network) using f according
to another criteria c′′. Then, it takes the first driver v that still has free places in her car,
and assigns u to v. The procedure is repeated until every user is assigned, or there are
no free places left. The greedy assignment method is illustrated in Algorithm 1 where
the function successors(u) returns the set of successors of u.

We remark that the algorithm is intended to be applied iteratively on successive
time windows, therefore it takes as input also the output sets obtained from previous
iterations, in order to consider in the matching process all users that are not already
and completely assigned. For example, if a driver has already used all her free places
for an active routine, then she cannot take other passengers, and therefore she is not
considered in the matching at the present iteration. On the other hand, a user that was
classified as SOV for an active routine can still be considered both as possible passenger
and possible driver.

The main purpose of this procedure is to reduce the number |S| of systematic cars in
which the driver is driving alone and, in second instance, the total number of systematic
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cars in circulation given by |D| + |S|, thus increasing the number of systematic cars
that are not needed anymore – corresponding to the number of users that turned into
passengers, |P |. The most important component is represented by |S|, since SOVs
do not play an active role in carpooling although they could potentially share at least
one routine with another user – a basic prerequisite for being part of the network. The
algorithm is parametric with respect to the sorting criteria used. As baseline sorting
criteria we adopted a random sorting, that is, the nodes are ordered in a random way.
Other, more sophisticated criteria are discussed in Section 4.5.

Although the algorithm has a quadratic complexity, in practical cases it is essen-
tially linear in the number of nodes analyzed, O(|N |). This happens because if a node
has already been marked as driver or passenger, then it cannot be re-analyzed. Also
the presence of a inner loop does not lead to quadratic complexity because this would
mean that every possible driver could offer a lift to all (or a large part of) possible pas-
sengers, which is highly improbable. Moreover, we have to consider the cost of the
sorting functions f , which is Θ(NlogN) in the worst case. The cost of the innermost
sorting function could be at worst Θ(N2logN) but, as above, this would happen if
every node links to all the others. In practice, the innermost sorting function f func-
tion cost is O(koutu logkoutu ) each time it is repeated, i.e. O(Nkoutu logkoutu ). Since the
average koutu is very low in this kind of networks, we have that O(koutu logkoutu ) can be
approximated to a constant c. Thus, the dominant cost remains Θ(NlogN).

The problem analyzed is NP-complete [39], and an optimal approach to solve it is
exponential in the number of edges. Indeed, the approach followed to get an optimal
solution must take into account the fact that every assignment might inhibit any of the
others, then virtually all combinations must be tried in order to find the best one. Fi-
nally, we note that, in spite of its resemblance with bipartite matching, our formulation
of the carpooling problem cannot be solved just using a maximal matching over the bi-
partite graph among possible drivers and possible passengers, because the intersection
between possible drivers and possible passengers is not empty. Thus, in order to reduce
it to the bipartite case we should evaluate the matching over all its possible bipartite
projections, i.e. by assigning all users to one fixed role, trying all possible combi-
nations. That is computationally equivalent to the exhaustive, brute force approach
mentioned above.

4.3. Ranking Criteria and Problem Partitioning
In order to find the best assignments among the users taking part in the carpooling

scenario, it is useful to discover the best passengers and the best drivers among the
candidate ones. We say that a user is a “good passenger” if she can accept a lift from
many “good drivers”, and mutually, a user is a “good driver” if she can offer a ride to
many “good passengers”. Thus, we analyze the carpooling network to rank a user as a
“good passenger” or as a “good driver”. The idea to reach this goal is to consider the
carpooling user graph and the apply the HITS algorithm [34]. Indeed, the HITS task of
extracting hub and authority scores to estimate the value of a web page can be directly
mapped to the carpooling scenario for measuring how much a user is suitable for being
a good passenger or a good driver. In the context of carpooling networks, we define the
hub score as passengerness, i.e. the attitude of u for being a good passenger, and the
authority score as driverness, i.e. the attitude of u for being a good driver.
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ALGORITHM 1: calculateGeedyAssignment(G′, f,m, c′, c′′, D, P, S)

Input : G′ = 〈N,E〉 - carpooling user network, c′, c′′ - sorting criteria, f - sorting
function, m - max number of free places, D - set of sets of possible driver
containing the assigned passengers (e.g. Dv is the set of passengers assigned to
driver v), P - set of sets of possible passengers containing the assigned driver
(e.g. if v ∈ Pu it means that passenger u is assigned to driver v, |Pu| ≤ 1
always) S - set of single occupant vehicle

Output: D,P, S

for u ∈ f(N, c′) do
if Du 6⊆ D ∧ Pu 6⊆ P then

for v ∈ f(successors(u), c′′) do
if |Dv| ≤ m then

Dv ← Dv ∪ {u};
Pu ← {v};
break;

end
end

end
end
for u ∈ N do

if Du 6⊆ D ∧ Pu 6⊆ P then
S ← S ∪ {u};

end
end
return D,P, S;

Definition 12 (Passengerness and Driverness). Given the carpooling user network
G = 〈N,E〉 and its adjacency matrix A, for each user u ∈ N , we define passen-
gerness pu and driverness du respectively as the hub and authority scores of u in G.
Formally, vectors p and d are eigenvectors such that p = AAT p and d = ATAd.

Even though the passengerness and the driverness are indicators of how much a
user can be a good driver or a good passenger, they do not provide information about
which groups of users could have more interest to travel together, or which geographi-
cal areas could be more suitable for the carpooling service. Consequently, we extracted
groups of users sharing common routines to discover how they are characterized from
a geographical point of view, and with respect to their passengerness and driverness.

Definition 13 (Carpooling Community). Given a carpooling user networkG′ = 〈N,
E′〉 we define a carpooling community C ⊆ N as a group of users who share more
routines with the users inside the community rather than with the users outside the
community.

In order to extract the carpooling communities and to perform the carpooling sug-
gestions without discarding the temporal knowledge we introduce carpooling temporal
networks:
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Figure 4: Carpooling Temporal Network.

Definition 14 (Carpooling Temporal Network). Given a multi-dimensional carpool-
ing network G = 〈N,E〉, a time stamp ts and a temporal duration dur, we define a
carpooling temporal network as a direct graph G′ = 〈N ′, E′〉 such that E′ = {euv ∈
E | isActive(euv, ts, dur)} and N ′ ⊆ N is the set of all nodes comparing in E′. The
isActive operator is defined as

isActive(euv, ts, dur) ≡ (ts ≤ tri1 < ts+ dur) ∧ (ts ≤ trin < ts+ dur)

Where tri1 is the time stamp of the first point of ri and l = trin is the time stamp of the
last point of ri.

An edge euv is active if the contained routine is not finished in a certain time window.
Note that a carpooling temporal network is a mono-dimensional direct graph if the
used time window is short enough (i.e., dur is relatively small) and there are not two
users u and v that systematically follow two different pairs of matching routines in
the same time window – usually a rather extreme phenomena for reasonable values of
dur. A carpooling network can be seen as a particular carpooling temporal network
where every edge is active. Finally, we highlight that a carpooling temporal network is
different from a carpooling user network, since the second considers every carpooling
interaction.

4.4. Never Drive Alone Method

Using the measures and concepts defined up to now, we describe in the follow-
ing the Never Drive Alone (NDA) method which tries to minimize the number of
SOVs. NDA performs the following steps: (i) extracts the systematic movements; (ii)
builds the carpooling network; (iii) calculates the passengerness and driverness rank-
ing scores; (iv) extracts the carpooling communities; (v) makes the assignments and
classify the users as drivers, passengers or SOVs. The detailed procedure is described
in Algorithms 2 and 3. The main difference between these two versions is that the
second one uses the community information, while the first one does not.

Given a time window defined by the parameters ts and dur discussed in the pre-
vious section, function removeFinishedInteractions removes from D′, P ′, S′ the as-
signments that will not be active in the next time window because they end in the
current one. In this way, a driver can offer a lift to more then m (max number of free
places) users because if she systematically travels a long routine, she might drop-off
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ALGORITHM 2: NeverDriveAlone(M, dur, f,m)

Input :M - dataset of user movements, ts - start of time window, dur - temporal
duration, f - sorting function, m - max number of free places,

Output: D - set of drivers, P - set of passengers, S - set of SOVs

D ← ∅; P ← ∅; S ← ∅;
P ← ∅; /* set of profiles */

for Mu ∈M do
Pru ← Profile(Mu);
P ← P ∪ Pru;

end
G← buildCarpoolingNetwork(P, contained(∗));
G′ ← extractCarpoolingUserNetwork(G);
kout, kin ← getDegrees(G′); /* calculates out-degree and in-degree values */

p, d← HITS(G′);/* calculates passangerness and driverness ranking scores */

c′ ← createSortingCriteria (kout, p);/* creates the first sorting criteria */

c′′ ← createSortingCriteria (kin, d); /* creates the second sorting criteria */

D′ ← ∅; P ′ ← ∅; S′ ← ∅;
for selected ts do

Gts,ts+dur ← extractCarpoolingTemporalNetwork(G, ts, dur);
D′, P ′, S′ ← calculateGeedyAssignment(Gts,ts+dur, f,m, c′, c′′, D′, P ′, S′);
D,P, S ← updateAssignments(D,P, S,D′, P ′, D′);
D′, P ′, S′ ← removeFinishedInteractions(Gts,ts+dur, D′, P ′, S′, ts, dur);

end
return D,P, S;

a passenger and later take another one, also multiple times. The returned sets classify
the user according to their role in the carpooling scenario. That is, a user will be in S
if and only if she is left out from every carpooling interaction in every time window.
If a user can physically act either as a driver or as a passenger then she is counted as
a driver because for at least a systematic trip she offered a ride and thus used her car.
This happens for example when a user offers a ride to someone in the morning, then
returns to the starting point and finally in the afternoon takes a lift to go somewhere
else.

When the procedure is performed taking into account the carpooling communities
(see Algorithm 3), for each time stamp considered the communities are extracted and
analyzed in a certain order which can depend on the size of the community. The pur-
pose is to reduce the focus assignment problem on sets of users that are similar in the
carpooling sense, that is, we give to the edges of nodes belonging to different commu-
nities a lower importance, because they are expected to offer a ride or get a lift with
lower probability – typically because different communities often correspond to differ-
ent geographical areas. On the contrary, users in the same communities are similar each
other, thus their links are evaluated with an high importance in suggesting assignments.
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ALGORITHM 3: NeverDriveAloneCommunities(M, dur, f,m)

Input :M - dataset of user movements, ts - start of time window, dur - temporal
duration, f - sorting function, m - max number of free places,

Output: D - set of drivers, P - set of passengers, S - set of SOVs

D ← ∅; P ← ∅; S ← ∅;
P ← ∅; /* set of profiles */

for Mu ∈M do
Pru ← Profile(Mu);
P ← P ∪ Pru;

end
G← buildCarpoolingNetwork(P, contained(∗));
G′ ← extractCarpoolingUserNetwork(G);
kout, kin ← getDegrees(G′); /* calculates out-degree and in-degree values */

p, d← HITS(G′);/* calculates passangerness and driverness ranking scores */

C ← extractCommunities(G′); /* extracts the users’ communities */

c′ ← createSortingCriteria (kout, p);/* creates the first sorting criteria */

c′′ ← createSortingCriteria (kin, d); /* creates the second sorting criteria */

D′ ← ∅; P ′ ← ∅; S′ ← ∅;
for selected ts do

Gts,ts+dur ← extractCarpoolingTemporalNetwork(G, ts, dur);
for C ∈ C do

Gts,ts+dur
C ← extractSubGraph(Gts,ts+dur, C);

D′, P ′, S′ ←
calculateGeedyAssignment(Gts,ts+dur

C , f,m, c′, c′′, D′, P ′, S′);
end
D,P, S ← updateAssignments(D,P, S,D′, P ′, D′);
D′, P ′, S′ ← removeFinishedInteractions(Gts,ts+dur, D′, P ′, S′, ts, dur);

end
return D,P, S;

4.5. Sorting and matching strategies
Both Algorithms 2 and 3 rely on the greedy procedure reported in Algorithm 1. It is

worth to underline that this procedure is based on the knowledge extracted form data.
Indeed, the structure of the greedy assignment exploits the fact that the carpooling
networks show a power low distribution of the nodes’ degree (see the detailed study
provided in Section 5.2). By using smart sorting criteria, our purpose is to lead the
algorithm to consider first the least “promising” passengers (i.e. the most difficult ones
to match), and then by ordering their drivers, to assign the worst passengers with their
least promising drivers. This way, passengers with less possibilities to be matched
are assigned first, while passengers which have more opportunities are assigned to the
remaining drivers. We can instantiate this reasoning both using the in/out degrees and
using the passengerness/driverness ranking criteria.

In this work we consider the following criteria, in order of complexity:

• (r) random criteria (c′ = {random order}, c′′ = {random order}): users are
sorted randomly both if they are drivers or passengers;
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• (g1) degree criteria (c′ = {kout ascending order}, c′′ = {kin ascending order}):
users are sorted according to the carpooling user network out-degree kout and
in-degree kin, that is, the nodes are sorted by increasing kout and than, their
neighbors are ordered by increasing kin;

• (g2) degree - ranking scores criteria (c′ = {(kout, p) order}, c′′ = {(kin, d) order}):
users are sorted according to passengerness p and driverness d in addition to
kout and kin, that is, the nodes are sorted in a lexicographical order by increas-
ing (kout, p) and then, their neighbors are sorted in a lexicographical order by
increasing (kin, d).

In principle, the methodology can be applied also switching passengers with drivers,
i.e. by enumerating drivers first, and then matching each of them with her possible pas-
sengers. Yet, preliminary experiments proved that this order is largely less successful
than the original one presented above. Therefore, in the rest of the paper we will con-
sider only the passengers-first approach.

Another information that can be exploited to guide NDA is the community mem-
bership. Therefore, we consider two further variants of the method: a basic one, which
is agnostic of the communities; and a community-driven one, where the matches be-
tween intra-community individuals have priority over all the others:

• (w) plain version, Algorithm 2, considering every edge in the whole network
with the same importance;

• (c) prioritized version, Algorithm 3, that suggests an assignment to the users
inside the same community and then, if that fails, among users of different com-
munities.

Finally, we adopted two strategies for considering the temporal dimension. The
mobility profiles and the contained function for comparing any pair of profiles make the
carpooling network basically a summary of a typical day made of systematic routines
and their mutual inclusion relations. We can decompose this day in a series of time slots
with a predefined duration (dur), obtaining a series of carpooling temporal networks.
The way the sequence of time slots is produced is a parameter of the general method.
Here we consider two main variants:

• (discrete) time slots, they start at discrete time instants, for instance one every 5
minutes starting from midnight. This produces a sliding window of length dur
that moves of step 5 minutes;

• (continuous) the time slots, they start in correspondence of the last successful
carpooling interaction, i.e. the time of the last matched routines becomes the
next starting time.

In Section 5.3 we will evaluate experimentally each combination of the three pa-
rameters discussed here (sorting criterion, usage of comunities, choice of time slots).
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Figure 5: (Left) A sample of trajectories in Pisa province. (Right) The mobility profiles extracted.

5. Impact on Real Mobility

In this section we illustrate the results obtained from the analysis of the knowledge
extracted from carpooling network. First of all we report a short study related to the
real mobility dataset used. Then, we describe the proportion of the amount of traffic
reducible by adopting the carpooling network connected with the network construction.
Furthermore, we analyze the topology of the carpooling networks, the ranking scores
resulting from HITS, and we show that carpooling communities are characterized by
these values. Finally, we evaluate the performances of the assignment method and we
report the outcomes by showing how the ranking measures and the communities help
in improving the solution.

5.1. Mobility Dataset and User’s Profiles

As a proxy of human mobility, we used real GPS traces collected for insurance
purposes by Octo Telematics S.p.A [40]. This dataset contains 9.8 million car travels
performed by about 159, 000 vehicles active in a geographical area focused on Tuscany
in a period from 1st May to 31st May 2011. Fig. 5 depicts a sample of the considered
traejctories. Since the mobility dataset is geographically and temporally various, it was
split following temporal and geographical principles.

In real world, different events may change how people move on the territory. Such
events can be unpredictable or rare, like natural disasters, but most of them are not.
The most regular and predictable event is the transition between working days and
non-working days. During Saturday and Sunday, people usually leave their working
mobility routines for different paths. Following this concept, we filtered out weekend
trajectories maintaining only the trajectories from Monday to Friday.

Every geographical area has its own type of mobility with different characteristics
depending on the surface, the topology and the number of inhabitants. In order to
consider this fact, we split the dataset in provinces by considering for each province
all the trajectories that pass through it. In particular, in this work we are reporting the
results obtained for Pisa and Florence provinces. We selected these two cities because
their mobility is quite different both in terms of number of participants and in terms of
traffic flows.

Since the starting point to discover carpooling interactions are the users individual
routines, we performed some tests to retrieve the best parameters to extract reliable
mobility profiles. The clustering algorithm used to extract the routines is a variant of
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Figure 6: Profile test parameters eps (left), min size (center), time threshold (right)

OPTICS, a density-based clustering algorithm [41], which thus constitutes our group-
ing function used in Definition 4. In OPTICS, we employed the same distance function
used in in [17] for the clustering step. To tune the parameters, we have studied Optics
settings on a subset of 1, 000 users in Pisa dataset. In particular, we observed the fol-
lowing parameters. ε varying in range [0.1, 0.3] with step 0.01, Fig. 6 (left). The bigger
ε is, the more different trajectories are allowed to be clustered together. In other terms,
it expresses the similarity allowed between trajectories. Then we studied the parameter
min size varied in range [4, 12], Fig. 6 (center). It is the minimum number of trajec-
tories that must be in a cluster to be considered valid. Finally, we observed the time
threshold time varying in {900, 1800, 2700, 3600} seconds, see Fig. 6 (right). It is the
max starting time difference between two trajectories and it is used by the clustering
function to decide if two trajectories are synchronized. The aspects we consider to tune
the values are: (i) the dataset coverage, (ii) the profile distribution per user, and (iii) the
profile stability. From this empirical study we decided to use middle values because
the plots obtained do not lead to a clear setting. Anyway, in each one can be found that
after the middle values the curves change more rapidly than after it. For example, the
time curve grows or decrease less rapidly before 1800 than after it. We choose ε equal
to 0.2 (more or less it expresses 80% of similarity). From a temporal point of view,
for our mobility dataset, a reliable value is 8 since a routine is a trajectory repeated
a sufficient number of time during 20 working day. In summary, the setting used to
perform the mobility profile extraction is ε = 0.2, minsize = 8, time = 30 min.

Mobility profiles model the systematicity of each user. In Fig. 5 (right) is depicted
an example of profile extracted in Pisa province. Fig.7 (left) shows the number of
routines per users in Pisa province with almost every user having one or two routines,
which, should correspond to the commute to and from work. Indeed, the average num-
ber of routines per profile is 2.14, this is probably due to the home-work-home pattern.
In Fig. 7 (right) is shown the temporal distribution of the trajectories and routines.
Here, we can see how the profile set has a working-like trend, highlighting the three
peeks during the early morning 5 - 6, lunchtime 11 - 12, and late afternoon 17 - 18.
This confirms the assumption that mobility profiles are reliable to model systematic
movement and thus can be exploited to retrieve shared routines among users.

5.2. Carpooling Network Analysis

In the following we analyze the characteristics of the carpooling network and we
study the features used for suggesting the carpooling assignments. The power of this
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kind of network relies on the fact that it models and contains ant the same time both
mobility data and topological information. Consequently, first of all we focus on the
knowledge gained from the graphs and we try to make a rough estimation of the amount
of traffic reducible. Then we study the topological properties of the complex network
and what can unveil ranking measures and communities.

5.2.1. Network Construction Analysis
Since the carpooling network is generated by the application of the function contained,

the result depends on the value used for the parameters spattol and temptol. Hence,
in order to find good values for these parameters and to obtain a sound network made
of reliable carpooling interactions, we performed a “carpooling network construction”
test on a sample of 1, 000 mobility profile. Fig.8 shows how the containment is af-
fected, in percentage, in terms of routines and mobility profiles that have at least one
match. It is worth to notice that by allowing a walking distance (spattol) of 3 km and a
wasting time (temptol) of 30 minutes, about 60% of the profiled users have at least one
match, which decreases to 10% if the walking distance becomes 500 meters. Similarly,
by allowing a walking distance of 1 km and a wasting time of 60 minutes, 30% of the
profiled users have at least one match, which decreases to 10% if the wasting time be-
comes 15 minutes. This is a clue that by enlarging the walking distance we obtain more
matches than by enlarging the wasting time. Thus we built the carpooling networks for
Pisa and Florence using a maximum walking distance of 1 km and a maximum wasting
time of 30 minutes.

By observing the users appearing in the carpooling networks (among those which
have a mobility profile), we have found that the there is an high percentage of carpool-
ers (possible drivers and possible passengers). This indicates that many of them will
exploit the opportunity of sharing their car the systematic traffic could significantly
decrease. We can classify them as:

• only passengers are the users that can only get rides from other carpoolers, that
is kin = 0 and kout > 0.

• only drivers are the users that can only offer rides to other carpoolers, that is
kout = 0 and kin > 0;
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• passengers and Ddivers are the users that can act both as passenger or as drivers:
kout > 0 and kin > 0;

• not carpoolers are the users that do have systematic movements but do can not
share any routines with other users: kout = 0 and kin = 0.

With respect to the definitions introduced in Section 4.1 users which are only passenger
belong to PP , those which are only driver belong to PD and the users which are
passenger and driver belong to both PP and PD. Fig. 9 depicts the pie chart with
the normalized percentage of different type of users in the carpooling user networks
of Pisa and Florence. We can observe how the carpooling potentiality appear different
between the two cities. In particular, Florence seems to be more adapt then Pisa due to
the larger number of passengers.

By analyzing the carpooling networks of these provinces, is possible to have a
rough evaluation of the impact that a carpooling service would have in the reduction
of systematic traffic in terms of number of travels and number of cars. For example,
in Pisa we extracted about 7, 400 mobility routines. Supposing that every routine sup-
ports eight trajectories, that is each routine is representative of at least eight trajectories
(minsize = 8), then the systematic mobility would be made of about 59, 200 trajecto-
ries. Knowing that the routines contained in other routines, are about 1, 720, then the
systematic mobility would be decreased of about 23% in terms of trajectories if any-
one would accept the passage for all their trajectories. We stress the fact that since the
routines are repeated periodically, it is guaranteed a ride is available, or needed, every
day at a certain time on that route.

We finally observe the spatio-temporal features of the routines. Fig. 10 (left) shows
the routines length distributions for the categories we described above for the Pisa
dataset. We notice that users who are only passenger have mainly routines with a length
between 0 and 10 km, while people who are only driver have longer routines between
5 and 25 km. This fact, in conjunction with Fig. 10 (right) which shows the duration
distribution, confirms in part the hypothesis that, on average, users traveling for longer
distances are more likely to offer lifts, whilst users traveling shorter distances are more
likely to accept lifts.
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Figure 9: Carpoolers classification pie chart for Pisa and Florence.
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5.2.2. Topological Features Analysis
The following analysis is focused on the topological features of the carpooling

user networks: the degree (in-degree kin and out-degree kout), and the ranking scores
(driverness d and the passengerness p). The ranking scores are calculated running the
HITS algorithm on the carpooling user networks (with a tolerance threshold of 1.0e-
8). Fig. 11 shows both the degrees and the ranking scores distribution for Pisa and
Florence. The values are normalized between zero and one in order to be comparable
and the plot is in semi-log x in order to readable. Both the distributions are long tailed.
This means that there are few users with high values and many users with low values.
As highlighted in the previous Section there are some users, that is nodes that being
only passenger or only driver have kin or kout equal to zero. We can notice that in
Pisa province, besides the degree, many users also have a null score d and p. This is a
remarkable difference between the degree and the ranking scores in the Pisa carpooling
user network. In practice, despite the high correlation between kout and p, and kin and
d, we can not state that a user that has the possibility to offer a ride to many passengers
must be necessarily a good driver and vice-versa. On the other hand, the carpooling
user network of Florence is more dense and have higher correlations with respect to
degree and ranking scores.

While considering the degree the mobility behavior of the carpooling of the two
cities seems similar, by observing the ranking scores we can distinguish different kinds
of possible carpoolers. In Pisa the driverness d falls immediately with a steep slope
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Figure 11: Degree and ranking scores distribution: (left) Pisa, (right) Florence

within the first one hundred users, while in Florence d decreases with a less steep slope
within the first one hundred users, and it do not reach zero before about eight hundred
users. A similar consideration can be done by looking at p. Moreover, in Pisa there
are few drivers with a high d. This is an index that only few of them can serve good
passengers. On the other hand in Florence there are more good drivers indicating that
the shared trajectories are followed by a more relevant number of good passenger.

Furthermore, we enhance that the degree is on average very low, between 3 and
8. This is probably due to the strict parameters adopted for building the carpooling
networks and to have reliable interactions. At any rate, the carpooling users networks
are very sparse and this is an advantage for the task of suggesting assignment: for each
user there are only few choices.

Finally, in both dataset, the standard deviations of kin, kout, d and p are larger
than their mean. This is a sign that the users are quite heterogeneous: it does not
happen that every user share a similar number of trajectories. This is probably due to
the not negligible variety of systematic mobility among profiled users. The Kendall’s
Tau correlation coefficient applied to p and d shows that the rank between drivers and
passengers is completely different (0.134): there is not any relationship between being
a good driver and being a good passenger.

In Fig. 12 are shown the routines of the top ten drivers and passengers in Pisa
province, that is the routines of the users with the highest d and p. These routines
mainly lie between Cascina and Pontedera two cites which are close to Pisa. This
result indicates that these routes are followed by many people, probably commuters.

5.2.3. Communities Analysis
The HITS algorithm returns an indicator of how much a user can be a good driver or

a good passenger. However, these ranking scores do not help in grouping similar users,
that is, users that with an high probability would like to share their travels. For this
purpose we used carpooling communities. We recall that a carpooling community is a
group of users who share more routines with the users inside the community rather than
with the users outside the community. Among various communities algorithm tested
(Infohiermap [42], Louvain [36]) we finally selected Demon [38] because it showed the
best performances in terms of time and quality of the result. Fig. 13 shows a sample of
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carpooling communities in Pisa province. It is interesting to notice that the carpooling
communities are well defined and geo-localized. Every community acts on a specified
area that contains the systematic movements of its users. This means that a user acting
in north Pisa is for sure not interested in what does a user usually moving between
Cascina and Pontedera.

The topology of the sub-networks made by the communities recall the topology of
the original carpooling user networks. That is, every community, from a topological
point of view, behaves as the original network. The average size of the communities
is 30 − 40 nodes and the average degree inside a community is around 4 with a low
standard deviation (1.32 on average). Hence the carpoolers inside a community travel
along similar routes included in one another and have a similar systematic mobility.

By observing the driverness and passengerness distributions among the commu-
nities comes out that the carpooling communities can be classified in two category.
Figure 14 shows the box-plot of p and d for Pisa and Florence province. We can see
that some of the box-plots are clearly visible, whilst others are so little that seem invisi-
ble or are just made by outliers. This happen because some carpooling communities are
made of nodes which have on average a high ranking scores, while other communities
are made of nodes which have on average low ranking scores or scores close to zero.
In other words, these box-plots tell us that some communities are made of nodes with
considerable ranking scores, whereas other communities are made of less considerable
ranking scores with respect to the overall carpooling user network. Therefore we can
suppose a distinction between these two type of communities.

We decided to study what happens to the ranking scores d and p of the nodes
of the communities if the HITS algorithm is performed locally to the node of every
community. Basically we ran HITS inside each sub-network made by the nodes and
the edges present in the carpooling community. In this way we obtained some ranking
scores called local driverness and a local passengerness to distinguish them to the
global values.

By analyzing the Kendall’s tau correlation between the global and local ranking
scores for each community we have found that, in the Pisa dataset, there are about
30 communities with a correlation close to one, while the other communities (about
20 of them) have a correlation spread between zero and 0.4. Hence, there is a set of

Figure 12: Top ten drivers (black) and passengers (blue) in Pisa province.
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carpooling communities made by nodes which have ranking scores that are not influ-
enced by the nodes outside the community. On the other hand, the nodes of the other
communities with are influenced by inter-community links. This tells us that the first
set of carpooling communities, the ones with an high Kendall’s tau correlation, are
autonomous. They are somehow stable and could rely on finding possible assignment
without considering inter-community links. On the contrary, the other communities,
are not-autonomous. They can be influenced by inter-community links and one of their
user could find her potential best match with a user belonging to another community.

In Fig. 15 is reported a real example of a not-autonomous community (left) and an
autonomous community (right). The ranking scores are calculated both globally (first
column) and locally (second column). The bigger is a node the higher is her driverness,
the more blue is a node the higher is its passengerness. Note how, according to what
was exposed above, almost nothing changes for the autonomous community, whereas
two completely different sub-networks are plotted for non-autonomous community.
This is a visual sign of the fact that autonomous community are independent with
respect to the whole network. They can “survive” in a carpooling scenario even if they
are left alone in finding the carpooling assignments because their users are able to serve
each other independently from what happens out from the community. On the contrary,
a non-autonomous community do not have this properties and its users are influenced
in a not negligible way by the others community’s users.

5.3. Carpooling Suggestions Performances

In this section we describe the results obtained by performing the Never Drive
Alone procedure on Pisa and Florence datasets. The assignment performance evalua-
tion is done by measuring the number of resulting SOV and the number of systematic
car travelling.

5.3.1. Never Drive Alone Performances
The NDA procedure described in this paper has been tested considering all the

variants discussed in Section 4.5. Moreover, the vehicle capacity of each user has been
fixed to m = 4, i.e. each vehicle can host four passengers in addition to the driver,

Figure 13: Geographical view of some carpooling communities in Pisa province.
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Figure 14: Carpooling ranking scores box-plot for Pisa (left) and Florence (right).

which fits quite closely the local standards of the area under study. Also, the time slot
duration for the creation of temporal networks out of the full carpooling network was
fixed to dur = 1 hour , meaning that trips longer than one hour might be prevented
from being matched to others even if the contain relation holds – an extremely unlikely
event in our dataset, since 1-hour routines are very rare.

Figure 16 shows the percentage of passengers P ∗, drivers with passengers on-
board D∗ and SOVs S∗ for Pisa and Florence for each one combination of the criteria
adopted. In addition, it shows the corresponding number of (systematic) cars on the
road.

First of all, we can see that, in every case more than one third of the users become
passengers, in most cases around half of them become drivers (with passengers), and
only a small percentage remains a single-occupant vehicle.

We notice also that, while there are significant differences of performances among
the algorithm variants considered, the simplest (random) variant already reaches very
good results, with a SOV around 12%. Such results suggest that the networks con-
sidered do not lead many alternative assignment opportunities, therefore limiting the
potential improvements yielded by smarter assignment criteria. This is probably due
to the fact that the parameters used to build the carpooling networks, and thus to find
the matching between routines, are rather strict. More tolerant settings are expected to
yield even better results.

The plots show that the knowledge extracted from the mobility data and refined
with network analysis progressively lead to improvement regarding the minimization
of the number of SOVs. Indeed we observe that the sorting criterion (g2), gets better
results than the sorting criterion (g1), which in turns outperforms (r).

Moreover, Figure 17 also depicts how the strategy considering the community in-
formation (c) slightly reduces the number of SOVs with respect to the strategy that con-
siders the whole network (w). This signal suggests that the carpooling service might be
organized in a local way, i.e. it might be convenient to focus the proactive suggestions
mainly among users within the same community, basically disregarding the others.

Also the temporal information contributes with useful suggestions: considering
dynamically each change in the carpooling interactions (d) to compute the assignments
procures a little advantage with respect to the one obtained using fixed time slots (s). At
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(a) Not Autonomus - Global Scores (b) Not Autonomus - Local Scores

(c) Autonomus - Global Scores (d) Autonomus - Local Scores

Figure 15: Network visualization of Pisa communities for not autonomous and autonomous community, and,
global and local ranking scores. The bigger is a node the higher is her driverness, the darker is a node the
higher is its passengerness.

any rate, the calculus with (d) is computationally more expensive, especially in periods
when carpooling interactions are frequent (morning, midday, evening).

So far, our considerations were focused on the minimization of the number of
SOVs. Anyway, if we want primarily to minimize the number of systematic cars trav-
eling, and only secondarily the number of SOVs, we discover that the best approach
still uses the (g2) criteria, yet this time considering the whole network (w) and static
(discrete) time slots.

Finally, Figure 16 also shows that, despite Florence having more good drivers and
passengers than Pisa (see the carpooling user network analysis in Section 5.2), for both
carpooling networks we reach comparable results in terms of suggestions.

5.3.2. Random Assignments Performances
In order to better verify that the provided solution is consistently better than those

found by a random exploration of choices, we report in Figure 18 the results obtained
by running 100,000 times NDA with random sorting criteria (r) on the Pisa carpooling
network, considering the whole network without assignment priorities (left (w)) and
prioritizing the assignments between nodes in the same community (right (c)). What
we obtain in both cases is a normal distribution. Regarding (w) the mean value of
SOVs, obtained nearly five thousand times, is 12.44 and the standard deviation is 1.48.
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Pisa Florence

Figure 16: Assignment results for all strategies and critera adopted: Pisa (left) and Florence (right).
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Figure 17: Assignment results for the two edge strategies (w) and (c) and for the three sorting criteria adopted
on the Pisa dataset.
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Figure 18: SOVs percentage distribution (PDF and CDF) of random assignment tests ran 100,000 times for
discrete time strategies. Left: case not considering communities; right: communities are considered.

On the other hand, considering (c), the mean value is 12.28, a bit lower than the pre-
vious, but obtained no more than three thousand times and a half, and with a larger
standard deviation of 1.97. The solution provided by NDA considering both carpool-
ing ranking measures and community knowledge provides a SOVs percentage slightly
smaller than 4.63%, which is largely better than anyone found by the 100,000 random
runs. Indeed, according to the distributions shown in the figure the expected probabil-
ity of finding a SOVs percentage lower than that is around 6.56 · 10−8, therefore very
close to zero.

5.3.3. Evaluating the Economic and Environmental Impact of Carpooling
In order to evaluate the practical importance of the carpooling matching discussed

in the previous section, we consider here the best configuration setting for the system
and study its results from several viewpoints. The first one is simply the impact of
the carpooling in terms of reduction of cars on road. Table 1 summarizes the number
of routines observed in the two showcases with details on the number of routines that
might potentially be served by other drivers (# can ride), those that might give a lift
to other passengers (# can drive) and their union (# linked). Finally, the number of
matches that were actually found by the algorithm, also in terms of percentage over the
maximum theoretical outcome, i.e. the number of potential passengers. As we can see,
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NDA is able to assign most part of the potential passengers in both cities (around 77%
of them), also corresponding to a relevant percentage of total routines (cars on road)
saved, namely 18% in Pisa and 26% in Florence).

City # routines # linked # can ride # can drive # saved trips
Pisa 7, 383 3, 049 1, 717 1, 995 1, 331 (77.52%)

Florence 9, 801 5, 712 3, 305 4, 140 2, 546 (77.03%)

Table 1: Number of routines extracted in the two cities, the routines that are linked to others in the carpooling
network, those that might be served by others, those that might serve at least another one, and number of
matches found by Never Drive Alone (also in percentage w.r.t. potential passengers).

Tables 2 reports the economic and environmental impact that the traffic reductions
obtained with carpooling can have. Estimates of such impact are computed consid-
ering the most common car sold in the period of data collection, an average gasoline
consumption of 0.0595l/km, a gasoline cost in the observation period of 1.54869 e
per liter, and a CO2 emission of 133 g per km3. Considering that the estimates re-
ported in the table are relative to a single city and a single (typical) day, the reduction
values are very significant, especially towards the environment.

City km min fuel(l) e CO2(kg)
Pisa 10, 868.36 24, 174.58 646.67 1, 001.49 1, 445.49

Florence 16, 748.99 43, 300.28 996.56 1, 543.37 2, 227.62

Table 2: Estimates of total potential savings in a normal day obtained by using the proactive carpooling
proposed in this work. Savings are expressed in terms of total kilometers driven, time spent driving, fuel
consumed, its cost and CO2 emissions.

Finally, we show in Figure 19 the spatial distribution of pick-up (top row) and
drop-off (bottom row) points of the solution found by NDA on Pisa (left) and Florence
(right). We can see that in the case of Pisa, carpooling mainly (yet not exclusively)
involves several smaller cities distributed along an important road towards East, con-
necting Pisa with the other major cities of the region. For Florence it is interesting to
notice that a major hotspot, even larger than Florence itself, is located in a nearby city,
Empoli, characterized by a huge flow of commuters towards Florence an the surround-
ing industrial areas. In general, carpooling is much more concentrated around a few
dense areas than what happens for Pisa. In both cases the drop-off points appear to be
more concentrated around the main attractors, while pick-up points are slightly more
dispersed.

6. Conclusion and Future Work

In this paper we have proposed a novel approach for analyzing the potentiality of
a carpooling service and for suggesting an assignment among systematic car drivers

3http://www.patentati.it/blog/articoli-auto/classifica-auto-2011.html,
http://dgerm.sviluppoeconomico.gov.it/dgerm/prezzimedi.asp?anno=2011,
http://www.ilsole24ore.com/speciali/emissioni
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Pisa Florence

Figure 19: Spatial distribution of pick-up and drop-off points of NDA solution. Left column: Pisa province;
right column: Florence province. First row: pick-up points; second row: drop-off points.

in order to have them not to drive alone. Many useful observations for a carpooling
service resulted from our study. We showed how ranking measures and communities
performed on mobility networks can be used to characterize different aspects of human
mobility. By exploiting them, we proposed an approach for boosting carpooling using
network analysis. Moreover, we have seen that the ranking values distributions charac-
terize in a different way different geographical areas. Furthermore, we have found that
carpooling communities can be characterized in different ways: autonomous commu-
nities, that, being independent from the rest of the car drivers, are made by many good
carpoolers offering and taking lifts to many users; non-autonomous communities, that
being influenced by extra community car drivers, cannot be managed on their own. A
suggestion from this last point is that if a carpooling service would be proposed, then it
would be better to start from autonomous communities rather than for communities less
independent ones. Thus, the better candidates for a carpooling service are car drivers
appearing in autonomous communities because in these communities it is easy to re-
duce the systematic mobility. Finally, we saw how the potential carpooling network
can be used to suggest assignments among systematic car drivers and how ranking
measures considered on communities lead to valuable reductions of the cars employed
in systematic mobility. In particular, we have shown how the conjunctive application
of these features lead to valuable performances in terms of assignments and reduction
of SOVs.

Our task is obviously a starting point with respect to the proposal of a real carpool-
ing service. For example, it could be considered in the matching phase that a passenger
is willing to wait or to walk a bit more for a long travel then for a short one. More-
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over, instead of considering matches only between systematic movements, it could be
interesting to consider the number of non-systematic movements that can be saved.
Thanks to the proposed approach, the knowledge about systematic behavior, and the
measures regarding carpooling, could really help our everyday life in reducing traffic,
saving money and producing less pollution.
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