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ABSTRACT 
 

New high-throughput scientific instruments, telescopes, satellites, accelerators, supercomputers, sensor networks, 

and running simulations are generating massive amounts of data. In order to be able to exploit these huge volumes 

of data, a new type of e-infrastructure, the Global Research Data Infrastructure (GRDI), must be developed for 

harnessing the accumulating data and knowledge produced by the communities of research. This paper identifies 

the main challenges faced by the future GRDIs, defines a conceptual framework for GRDIs based on the ecosystem 

metaphor, describes a core set of functionality that these GRDIs must provide, and gives a set of recommendations 

for building the future GRDIs. 
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1 INTRODUCTION  

 
New high-throughput scientific instruments, telescopes, satellites, accelerators, supercomputers, sensor networks, 
and running simulations are generating massive amounts of data. Often referred to as a data deluge, massive datasets 
are revolutionizing the way research is carried out, which results in the emergence of a new fourth paradigm of 
science based on data-intensive computing (Hey, Tansley, & Tolle, 2009). This new data-dominated science will 
lead to a new data-centric way of thinking, organizing, and carrying out research activities that could lead to a 
rethinking of new approaches to solve problems that were previously considered extremely hard or, in some cases, 
even impossible to solve and also lead to serendipitous discoveries. 
 
The new availability of huge amounts of data, along with advanced tools of exploratory data analysis, data 
mining/machine learning, and data visualization, will also produce an important change in the scientific method. 
One view put forward is that the traditional scientific method driven by hypotheses, essentially a deductive method, 
will be complemented by a data-driven method, essentially an inductive one. 
 
In order to be able to exploit these huge volumes of datasets, new techniques and technologies are needed. A new 
type of e-infrastructure, the research data infrastructure, must be developed for harnessing the accumulating data and 
knowledge produced by the communities of research, optimizing the data movement across scientific disciplines, 
enabling large increases in multi- and inter- disciplinary science while reducing duplication of effort and resources, 
and integrating research data with published literature.  
 
2 RESEARCH DATA INFRASTRUCTURES  

 
Research data infrastructures can be defined as managed networked environments for digital data consisting of 
services and tools that support: the whole research cycle, the movement of scientific data across scientific disciplines, 
the creation of open linked data spaces by connecting datasets from diverse disciplines, the management of scientific 
workflows, the interoperation between scientific data and literature, and an integrated science policy framework.  
 
Research data infrastructures are not systems in the traditional sense of the term; they are networks that enable 
locally controlled and maintained digital data and library systems to interoperate more or less seamlessly. Genuine 
research data infrastructures should be ubiquitous, reliable, and widely shared resources operating on national and 
transnational scales. 
 

Data Science Journal, Volume 12, 13 September 2013

71



A research data infrastructure should include organizational practices, technical infrastructure, and social forms that 
collectively provide for the smooth operation of collaborative scientific work across multiple geographic locations. 
All three should be objects of design and engineering; a data infrastructure will fail if any one item is ignored 
(Edwards, Jackson, Bowker, & Knobel, 2007).  
 
Another school of thought considers (data) infrastructure as a fundamentally relational concept. It becomes 
infrastructure in relation to organized (research) practices (Jewett & Kling, 1991). The relational property of (data) 
infrastructure talks about that which is between – between communities and data/publications collections mediated 
by services and tools. According to this school of thought, the exact sense of the term data infrastructure and its 
“betweenness” are both theoretical and empirical questions. 
 
Research data infrastructures should be science-and engineering-driven and when coupled with high performance 
computational systems increase the overall capacity and scope of scientific research. Science is a global undertaking, 
and research data are both national and global assets. Therefore, there is a need for global research data 
infrastructures (GRDIs) able to interconnect the components of a distributed worldwide science ecosystem by 
overcoming language, policy, methodology, and social barriers. Advances in technology should enable the 
development of global research data infrastructures that reduce geographic, temporal, social, and national barriers in 
order to discover, access, and use the data. 
 
3 DATA-INTENSIVE MULTIDISCIPLINARY RESEARCH 

 
The next generation of GRDIs faces two main challenges: to effectively and efficiently support 
 

 data-intensive science and 
 multidisciplinary science. 

 
By data-intensive science we mean any scientific research activity whose progress is heavily dependent on careful 
thought about how to use data. It is characterized by: 
 

 increasing volumes and sources of data,  
 complexity of data and data queries,  
 complexity of data processing,  
 high dynamicity of data,  
 high demand for data, 
 complexity of the interaction between researchers and data, and  
 importance of data for a large range of end-user tasks. 

 
By multidisciplinary approach to research problems we mean drawing appropriately from multiple disciplines in 
order to redefine a research problem outside of normal boundaries and reach solutions based on a new understanding 
of complex situations. There are several barriers to the multidisciplinary scientific approach of a behavioural and 
technological nature. Among the major technological barriers, we identify those that must be overcome when 
moving data, information, and knowledge between disciplines. There is the risk of interpreting representations in 
different ways caused by the loss of the interpretative context. This can lead to a phenomenon called “ontological 

drift” as the intended meaning becomes distorted as the data moves across semantic boundaries (semantic distortion) 
(Bannon & Bodker, 1997). 
 
Therefore, GRDIs must face two scale challenges: 
 

 large scale in data volume and 
 wide-scale in data contextual diversity.  
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4 THE RESEARCH DATA INFRASTRUCTURE LANDSCAPE 

 
The current research data infrastructure landscape is characterized by efforts aiming to: 
 
 develop a number of discipline-specific research data infrastructures 

In Europe several discipline-specific data infrastructures are underway: in the field of environmental sciences a 
number of projects supported by the “European Strategy Forum on Research Infrastructures (ESFRI)” are 

funded by the European Commission: European Multidisciplinary Seafloor Observatory (EMSO) (www.emso-
eu.org), European Plate Observation System (EPOS) (www.epos-eu.org), European Contribution to a Global 
Ocean Observing System (ARGO) (www.argo.net), Integrated Carbon Observation System (ICOS) (www.icos-
infrastructure.eu), e-Science and Technology Infrastructure for Biodiversity Data and Ecosystem Research 
(LifeWatch) (www.lifewatch.eu). In the marine field some important projects are underway: Data Infrastructure 
for Ecosystem Approach to Management of Marine Living Resources (iMARINE) (www.i-marine.eu), Ocean 
Data Interoperability Platform (ODIP) (www.odip.eu), Global Ocean Observing System (GOOS) (www.ioc-
goos.org), Ocean Biogeographic Information System (OBIS) (www.obisproject.com), and Geo-Seas (www.geo-
seas.eu). In the cultural heritage field an important project, Common Language Resources and Technology 
Infrastructure (CLARIN) (www.clarin.eu), aimed at making language resources available to humanities and 
social sciences research communities was funded by the European Commission. In the Earth sciences very 
relevant is the Global Earth Observation System of Systems (GEOSS) project (www.opengeospatial.org). 
Another important EU funded project is the European Data Infrastructure (EUDAT) (www.eudat.eu) aimed at 
developing a collaborative data infrastructure.  
 
It is worthwhile to mention two important US infrastructural projects funded by NSF: Data Observation 
Network for Earth (DataONE) (http://www.dataone.org/), which aims at developing a distributed framework 
and sustainable cyber-infrastructure that meets the needs of science for open access to Earth observational data, 
and EarthCube (http://earthcube.ning.com), which aims to develop a community-guided cyber-infrastructure to 
integrate information and data across the geosciences. Another relevant initiative is the creation of the World 
Data System (WDS) (www.icsu-wds.org) by the International Council for Science (ICSU) for the purpose of 
enabling universal and equitable access to quality-assured scientific data, data services, products, and 
information. In the agricultural sciences, it is worthwhile to mention the International Information System for 
the Agricultural Sciences and Technology (AGRIS) (http://agris.fao.org/) supported by the Food and 
Agriculture Organization (FAO) of the United Nations. 

 
 produce white papers, roadmaps reports, and high level policy reports 

Several policy reports, white papers, and roadmaps reports have been produced by the European Commission, 
Scientific organizations (ESFRI, e-IRG, PARADE, KE), funding agencies (NSF, ANDS) and projects 
(GRDI2020). Of particular importance, the report produced by a High Level Expert Group, “Riding the Wave”, 
(http://cordis.europa.eu/fp7/ict/e-infrastructure/docs/hlg-sdi-report.pdf) and supported by the European 
Commission calls for a collaborative data infrastructure that will enable scientists to use, re-use, and exploit 
research data to the maximum benefit of science and society. The ESFRI roadmaps (2008, 2010) 
(http://ec.europa.eu/research/infrastructures/index_en.cfm?pg=esfri-roadmap), as well as the e-IRG white papers 
(2009, 2011) (http://www.osiris-online.eu/RI%20Reports/e-irg_white_paper_2009_final.pdf) and 
(https://www.egi.eu/news-and-media/newsletters/Inspired_Summer_2011/e-IRG_White_Paper_2011.html) set 
out strategies for building interoperable e-infrastructures including data infrastructure components.  
 
The white paper “Strategy for a European Data Infrastructure” produced by the Partnership for Accessing Data 

in Europe (PARADE) (http://www.csc.fi/english/pages/parade) suggests a strategy for data related services and 
outlines a persistent, multidisciplinary European data infrastructure based on the needs of user communities. The 
Report “A Surfboard for Riding the Wave” produced by the Knowledge Exchange (KE) presents a four country 

(UK, Denmark, Germany, Netherlands) action program on research data (www.knowledge-exchange.info). 
Similar reports have been produced in US, the Blue Ribbon Task Force Report, on sustainable data 
infrastructures (http://brtf.sdsc.edu/biblio/BRTF_Final_Report.pdf). Finally, some projects (GRDI2020) have 
produced Roadmap Reports on global research data infrastructures (www.grdi2020.eu). 
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 make the scientific data infrastructures interoperable 

A global effort aiming at facilitating research data sharing, use, and re-use is undertaken by the Research Data 
Alliance (RDA) (http://rd-alliance.org). To achieve its objectives, RDA addresses a wide range of issues 
including definition of new data standards and harmonization policies regarding existing standards, development 
of mediation techniques to solve interoperability problems, definition of new approaches to data discoverability 
as well as new data policy frameworks to support data openness. 
 

 rationalize the development processes of data infrastructures 
Finally, some projects, for example ENVRI (www.envri.eu), funded by the European Commission, aim to draw 
up guidelines for the common needs of projects addressing a scientific sector and implement harmonized 
solutions. 
 

 develop new (meta) data modeling techniques, advanced data tools, and new data management systems 

for scientific applications 
An intensive research activity is being undertaken by the international research community for the purpose of 
developing new techniques for modeling research data and metadata, new approaches to data discoverability, 
integration and correlation, and more advanced data tools for mining, visualizing, and analyzing research data. 
Efforts are also devoted to building data management systems for scientific applications.  

 
The combined effect of all these relevant and important contributions as well as the experience gained in authoring 
the GRDI2020 Roadmap Report (www.grdi2020.eu) have inspired this work. We have observed, however, that a 
shared definition of a research data infrastructure is still missing. Currently, many different system implementations 
from the functional and architectural point of view are all termed as “research data infrastructure”. We have, thus, 

identified the need for a conceptual framework in order to be able to characterize the functionality of the next 
generation of global research data infrastructures more precisely and comprehensively.  
 
 
5 A CONCEPTUAL FRAMEWORK FOR A GLOBAL RESEARCH DATA 

INFRASTRUCTURE  

 
Infrastructures have a supporting or enabling function. This is opposed to being especially designed to support one 
way of working within a specific scientific discipline. In order to be able to characterize this supporting or enabling 
function of a research data infrastructure, we need to define a conceptual organizational model for scientific research 
and identify the organizational units of this model and the interactions between them. 
 
We have adopted the ecosystem metaphor to model the way the scientific disciplines are organized and to 
conceptualize all the “research relationships” between the components of a digital science ecosystem. The biological 
ecosystem model has been used in the past for analyzing the technological evolution, the technology ecosystem 
(Adomavicius, Bockstedt, Gupta, & Kauffman, 2006), for studying business relationships and strategic decision 
making, the business ecosystem (Iansiti & Levien, 2002), for analyzing industrial relationships, industrial ecology 
(Iansiti & Levien, 2004), etc. The research in digital ecosystems aims at exploiting the properties of natural 
ecosystems in artificial systems. The traditional notion of an ecosystem in biological sciences describes a habitat for 
a variety of different species that co-exist, influence each other, and are affected by a variety of external forces. 
Within the ecosystem, the evolution of one species affects and is affected by the evolution of other species. 
 
We think that a model of a digital ecosystem of scientific research would bring about a better understanding of its 
dynamic nature. We believe that the ecological metaphor for understanding the complex network of data-intensive 
multidisciplinary-interdisciplinary research relationships is appropriate as it is reminiscent of the interdependence 
between species in biological ecosystems. It emphasizes that advances and transformations in scientific disciplines 
are as much a result of the broader research environment as of simple technological progress. By adopting the model 
of a digital ecosystem of scientific research, the main challenge we face is the identification of the key properties of 
natural ecosystems and how these properties map to properties in digital science ecosystems. We have identified a 
list of properties including: cooperation and competition, landscape connectivity, self-adaptability, stability and 
diversity (www.digital-ecosystems.org/book/papers/t1.0.pdf), (arxiv.org/ftp/arxiv/papers/0910/0910.0646.pdf). 
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Cooperation and competition: Research activity is strongly dependent on finding the right balance between 
cooperation and competition. In particular, whereas competition works well in many research contexts, cooperation 
can amplify the positive effects of formalization and codification of knowledge within scientific disciplines. This 
means that a digital science ecosystem should be an environment where knowledge is constantly created and shared, 
flowing freely and dynamically where it is needed.  
 
Landscape connectivity: By connectivity we mean processes that affect “communication” within a population. 

Sites in a landscape are connected if there are patterns or processes that link them in some way. Fragmentation can 
have several consequences. From a digital science ecosystem perspective, connectivity can mediate global and local 
research strategies. In a well connected science landscape, selection favours the globally superior, and pursuit of 
different research directions is discouraged, potentially leading to premature convergence. When the science 
landscape is fragmented, research communities may diverge, solving the same problems in different ways. 
 
Adaptability: Natural ecosystems are often described as complex adaptive systems (for example, brains, individuals, 
economies, etc.). Digital science ecosystems are embedded in environments (technological, economic, social), upon 
which they are dependent. Change in the environment might require change in the science ecosystems. They must 
have the potential for dynamic adaptive self-organization. Constructing a digital science ecosystem requires a 
balance between freedom of the system to self-organize and constraint of the system to generate meaningful and 
useful solutions demanded by the communities of research. 
 
Stability and diversity: A key question is how the stability and diversity properties of the natural ecosystems map 
to properties of the digital ecosystems. Stability is a trade-off; we want the system to respond to external changes 
with rapid adaptation but not to be so responsive that sudden state changes prevent control. Sustained diversity is a 
key requirement for dynamic adaptation. In a digital science ecosystem, diversity must be balanced against adaptive 
efficiency because maintaining large numbers of poorly-adapted solutions is costly.  
 
5.1 Defining the digital science ecosystem 

 
We introduce a complex organizational science model, based on the ecosystem approach, which is composed of a 
number of organizational units: discipline-specific data centers, discipline-specific data archives, research digital 
libraries, and communities of research. 
 
Discipline-specific data centers 

They should be designed to ensure the stewardship and provision of quality-assessed data and data services to the 
international science community and other stakeholders. Each discipline-specific data center will have 
responsibilities for curation of datasets and the applications that provide access to them and employ technical 
support staff that understand the data and manage the growth, quality, and inherent value of the datasets. 
 
Discipline-specific data archives 

They should be designed to ensure the long-term preservation of research data and methods that are no longer 
actively used. Data preservation is an active area of computer science research, and its importance will continue to 
grow as data archives become larger and more numerous. 
 
Research digital libraries 

A research digital library is a collection of electronic documents. The mission of research libraries is to acquire 
scientific documents, organize them, and make them available.  
 
Communities of research 
Science is conducted in a dynamic, evolving landscape of communities of research organized around disciplines, 
methodologies, model systems, project types, research topics, technologies, theories, etc. 
 
Discipline-specific data centers, data archives, and research digital libraries support complementary phases of the 
research and publication process conducted by the communities of research. In fact, data centers function as a 
central service where researchers can both deposit data they have created and also find data they can reuse within 
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their own work. Data centers do not deal with data publishing aspects and suffer from a major lack of best practices 
and technologies in order to support a rigorous scientific communication workflow. Data archives support the phase 
of data long term preservation. On the other hand, research digital libraries are framed too narrowly, typically 
serving as repositories for the final result of the research and publication process. 
 
So far, there is no communication among these three components of the science ecosystem; in particular, a 
dichotomy has been created between data centers/data archives and research libraries. This situation conflicts also 
with the needs of modern science, which requires an integrated support to the whole data research and publication 
life cycle. In fact, scientific communities and their funding bodies are talking about the need for scientists to publish 
their raw data sets, experimental details, analytical methods, and visualizations in addition to the traditional 
scholarly publications. In order to satisfy this requirement, all these three components must be interoperable, and the 
existing dichotomy between them must be bridged. 
 
5.2     Science ecosystem concepts 

 
Our organizational model of the science world, based on the ecosystem approach, includes three fundamental 
concepts that define the way a science ecosystem can be partitioned and the way its organizational units/components 
support the research and publication process through their interactions. In addition, they specify the means by which 
their holdings are made discoverable, interoperable, and usable. 
 
Science ecosystem views 

A specific ecosystem view can be defined by identifying a community of research, a set of data collections 
distributed in one or more data centers/data archives, a set of scientific publications archived in one or more research 
libraries, and a set of data services and data tools registered in the ecosystem, necessary for the research activity 
undertaken by this community. A view creates a partition of the science ecosystem within which a specific 
community of research can conduct its research activities. The partitions created by the views can be, partially, 
overlapping, meaning that different communities of research can, partially, share collections of data, publications, 
and data tools. 
 
Science ecosystem channels 

The research and publication process is, essentially, composed of the following phases 
(http://www.jisc.ac.uk/publications/reports/2003/esciencefinalreport.aspx): (i) production by the scientists of 
primary raw data; (ii) analysis of these data to create secondary and results data; (iii) evaluation and refinement of 
these data to be reported as tertiary information for publication; (iv) feeding of the data to the publication archives 
through the traditional publishing process with the mediation of the peer review mechanisms; (v) determination of 
whether to destroy the data produced or to transfer them to an archive for a long term preservation. The transition 
from one phase of the research and publication process to the next one implies the movement of data in their 
evolving forms (raw, primary, etc.) from one organizational unit to another. 
 
We define ecosystem channels as the conceptual conduits through which the data flow from one organizational unit 
to another during a transition from one phase to another. We classify these ecosystem channels according to the 
phase of the research and publication process they are supporting. For example, a channel through which data flow 
from a data center to a data archive enables data preservation as it allows the flow of the data that have been deemed 
to need long term preservation from a short storage to a long-term one. A channel through which data flow from a 
data center to a research library enables the modern scientific communication as it allows the integration of 
published ideas with the underlying data. A channel through which data flow from a domain-specific data center to a 
different domain-specific data center enables multidisciplinary-interdisciplinary research. 
 
Science ecosystem support services 

Today, scientific knowledge is network-centric, meaning that it is created by linking, correlating, integrating, 
aggregating, etc. information units composed of text, datasets, images, videos, sound recordings, mathematical 
models, workflows, presentational materials, and software packages, distributed among the different components of 
a science ecosystem and connected by semantic relationships and interwoven in a complex variety of ways. In turn, 
datasets, images, etc., in order to be interpretable, require linkage to some metadata information (contextual and 
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provenance information). Thus, scientific knowledge will become a network of information units. The creation of 
such a network-centric scientific knowledge must be supported by appropriate services. 
We define ecosystem support services as networked enabled entities that provide some capability. They must make 
the holdings of the single components of a science ecosystem discoverable and enable the researchers to correlate, 
aggregate, and integrate them. 
 
5.3      A vision for a global research data infrastructure 

 
We envision a Global Research Data Infrastructure (GRDI) as: 
 

 an enabler of an open, extensible, and evolvable digital science ecosystem; 
 a facilitator of research data, information, knowledge, and data tools discovery; 
 an enhancer of problem-solving processes. 

 

A GRDI must support the creation, operation, and maintenance of the main science ecosystem concepts, i.e., views, 
channels, and support services. 
 
5.3.1 Ecosystem views 

 
Ecosystem views can be materialized through: 
 

 Science Gateways: a science gateway is a community-specific set of tools, applications, data, and         
publication collections that are integrated together and accessed via a portal or a suite of applications. 

 Virtual Research Environments: a virtual research environment (VRE) is a virtual working 
environment, created on demand, in which communities of research can effectively and efficiently 
conduct their research activities. It can be viewed as a framework within which data tools and services 
can be plugged. A VRE is always associated with a community of research. 

 
5.3.2 Ecosystem channels 

 
The implementation of ecosystem channels should be based on technologies supporting the identification of the 
ecosystem resources (data, publications, tools, services, methods, etc.), their discovery, and transportation from one 
organizational unit of the science ecosystem to another. In addition, establishing a channel between two different 
discipline-specific organizational units of a science ecosystem implies the overcoming of the heterogeneity problems 
(syntactic, semantic, and pragmatic) encountered when ecosystem resources are moved between these kinds of 
organizational units. The ecosystem channels reduce the science fragmentation due to disparate data, reduce 
geographic fragmentation of datasets, and accelerate the rate at which data and information can be made available 
and used to advance science. 
 
5.3.2.1 Interoperability 

 
Data/information/knowledge, when moving between disciplines, have to cross a number of “knowledge boundaries”. 

A first boundary (syntactic boundary) is constituted by the different syntax of the languages used by the 
communities/disciplines in order to interact among them. A second boundary (semantic boundary) can arise even if 
a common syntax or language is present due to the fact that interpretations are often different. A third boundary 
(pragmatic boundary) arises when a community/discipline is trying to influence or transform the knowledge created 
by another community/discipline.  
 
A useful means of representing, learning about, and transforming knowledge to resolve the consequences that exist 
at a given boundary is the “boundary object” (Star, 1989). A boundary object, in order to overcome a 
syntactic/semantic/pragmatic boundary, should establish a shared syntax, a shared means for representing and 
specifying differences, and a shared means for representing and specifying dependencies. We envision that one of 
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the most important features of the future “disciplinary data infrastructures” will be the definition and efficient 
implementation of a set of boundary objects (metadata models, data languages, taxonomies, ontologies, etc.) defined 
by the members of the disciplines being supported. 
 
Defining boundary objects between different scientific disciplines is much more problematic. We envision that in 
order to enable multidisciplinary research, new methods and techniques must be developed which implement “a 

mediation function” between boundary objects of different disciplines. By mediation function we mean a function 

able to map a boundary object defined by a discipline into a semantically equivalent boundary object of another 
discipline. The ultimate aim should be the definition and implementation of an “integrated mediation framework” 

capable of providing the means to handle and resolve all kinds of heterogeneities and inconsistencies that might 
hamper the effective usage of the resources of a global research data infrastructure (Stollberg, Cimpian, Mocan, & 
Fensel, 2006). We envision that one of the most important features of the future research data infrastructures will be 
the mediation software. 
 
5.3.3 Ecosystem support services 
 
The ecosystem support services should enable global collaboration in key areas of science and transform the 
quantitative increase in the availability of research data into a qualitative improvement in research practices and 
methods. They must make the holdings of the components of a digital science ecosystem discoverable, aggregable, 
and linkable. A core set of ecosystem support services are briefly described here below. 
 
5.3.3.1 Data registration environment 

 

By data registration environment we mean an environment enabling researchers to make data citable as unique 
pieces of work and not only as a part of a publication. Once accepted for deposit, data should be assigned a “Digital 

Object Identifier” (DOI) for registration. A DOI (Paskin, 2004) is a unique name (not a location) within a science 
ecosystem that provides a system for persistent and actionable identification of data. Identifiers should be assigned 
at the level of granularity appropriate for an envisaged functional use. The data registration environment should be 
composed of a number of capabilities, including a specified numbering syntax, a resolution service, a model, and an 
implementation mechanism determined by policies and procedures for the governance and application of DOIs. 
 
5.3.3.2 Data citation environment 

 

Data citation refers to the practice of providing a reference to data in the same way as researchers routinely provide 
a bibliographic reference to printed resources. Unfortunately, no universal standards exist for citing quantitative data. 
A data citation environment should include, at a minimum, five components (Altman, & King, 2007): the author of 
the dataset, the date the data set was published, the data set title, a unique global identifier system (LSID, DOI, URN, 
etc.), and a universal numeric fingerprint (UNF). The UNF is a short, fixed-length string of numbers and characters 
that summarize all the content in the data set such that a change in any part of the data would produce a completely 
different UNF. The need for introducing the fifth component is justified by the fact that unique global identifiers do 
not guarantee that the data does not change in any meaningful way when the data storage formats change. Together, 
the global unique identifier and UNF ensure permanence, verifiability, and accessibility even in the situations where 
the data are confidential, restricted, or proprietary. It is worthwhile to mention The DataCite 
(http://www.datacite.org/) international consortium, which addresses the challenges of making data citable in a 
harmonized, interoperable and persistent way. 
 
5.3.3.3 Data findability environment 

 

In today’s network-centric data era one big challenge faced by researchers is pinpointing the location of relevant 
data. By data findability environment we mean an environment enabling researchers to quickly and accurately find 
data that support specific research requirements. Currently, there is a conceptual shift from search to findability as 
the traditional search paradigm is characterized by a lack of context, where the search is conducted in an 
independent way from professional profiles, context, provenance, and work goals. In the context of a digital science 
ecosystem, searching for data/information/knowledge is better served by findability. A data findability environment 
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should be supported by search and query capabilities that exploit semantic data models, semantically rich metadata 
descriptions contained in data categorization/classification schemes, data dictionaries/data inventories, and metadata 
registries as well as professional profiles, work goals, context, and provenance. 
 
5.3.3.4 Data tool/service findability environment 

 

Acceptance of the open science principle entails open access not only to research data but also to data tools/services 
that enable researchers to effectively conduct their research activities. By data tool/service findability environment 
we mean an environment enabling automatic location of data tools/services that fulfill a research goal. It must 
support the description of a published data tool/service. The description should be given at three different levels 
(Keller, Lara, Lausen, Polleres, & Fensel, 2005): at the first level only the static characteristics of the tool/service are 
described, i.e., only what the tool/service can provide but no longer under which circumstances a concrete 
tool/service can actually be provided; at the second level the dynamic characteristics of the tool/service are 
described, i.e., what input information is required for providing a concrete service and what conditions it must fulfill 
(pre-conditions) and what conditions the object delivered fulfills (post-conditions); and at the third level the 
deployment capabilities of the hosting operational environment are described. In addition, the description of the 
researchers’ needs must be supported. Several modeling approaches to the description of data tool/service and user 
needs can be adopted. They include: keyword-based representation models, controlled vocabularies, ontologies, and 
full-fledged logic. The data tool/service findability environment should also support a data tool/service location 
process. In addition, as data tool/service findability is based on matching abstract goal and service descriptions, this 
environment should also provide a mediation support; such mediation support should establish a mapping between 
the controlled vocabularies/ontologies used to describe goals and services.  
 
5.3.3.5 Data federation 

 

Data federation is an umbrella term for a wide range of decentralized data practices. It covers data integration, data 
harmonization, and data linking. 
 
5.3.3.5.1  Data integration environment 

 

Data integration is the process of combining data residing at different sources and providing the user with a unified 
view of these data. Data integration has two broad goals (Bleiholder, & Naumann, 2008): increasing the 
completeness and the conciseness of data that are available to users and applications. An increase in completeness is 
achieved by adding more data sources to the system. An increase in conciseness is achieved by removing redundant 
data, by fusing duplicate entries, and merging common attributes into one. The data integration systems are 
characterized by an architecture based on a global schema and a set of sources. The sources contain the real data 
while the global schema provides a reconciled, integrated, and virtual view of the underlying sources. 
  
Data integration is a three-step process: data transformation, duplicate detection, and data fusion. 
 
Data Transformation is concerned with the transformation of the data present in the sources into a common 
representation (renaming, restructuring). Data from the data sources must be transformed to conform to the global 
schema of an integrated information system. Modelling the relation between the sources and the global schema is 
therefore a crucial aspect. Two basic approaches have been proposed for this purpose (Lenzerini, 2002). The first 
approach, called global-as-view (or schema integration), requires the global schema to be expressed in terms of the 
data sources. The second approach, called local-as-view (or schema mapping), requires the global schema to be 
specified independently from the sources, and the relationships between the global schema and the sources are 
established by defining every source as a view over the global schema. 
 
Data Detection regards the identification of multiple, possibly inconsistent representations of the same real-world 
objects. The result of the duplicate detection step is the assignment of an object-ID to each representation. Two 
representations with the same object-ID indicate duplicates.  
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Data Fusion combines and fuses the duplicate representations into a single representation while inconsistencies in 
the data are resolved. Several data fusion strategies have been defined. They include: Conflict-ignoring, conflict 

avoiding, and conflict-resolution strategies. 
 
 
5.3.3.5.2  Data harmonization environment 
 
Data harmonization is the process of comparing similar conceptual and logical data models to determine the 
common data elements, similar data elements, and dissimilar data elements, in order to produce a resulting unified 
data model that can be used consistently across organizational units and data warehouses. A data harmonization 
environment should support a number of harmonization tools able to: import data models into the tool from various 
representation formats; linguistically and semantically analyze the components of multiple data models to determine 
equivalence, similarity, and dissimilarity; construct multi-modal views of the data models to assist in comparison 
analysis; harmonize and visualize models with multiple users simultaneously and to jointly create the resultant data 
model; and extract common data elements across models to produce a new resultant skeleton model that can be 
further refined by a manual process. 
 
5.3.3.5.3  Data linking environment 
 
In the context of a science ecosystem, linking data becomes an imperative as it allows researchers to benefit from 
the use of multiple datasets created by different communities of research including the connection of publications 
with the subject data. Linking data refers to the capability, supported by a research data infrastructure, of publishing 
data on a scientific data space in such a way that they are machine-readable, their meaning is explicitly defined, they 
are linked to other external data sets, and they can in turn be linked to and from external data sets. A data 
infrastructure supporting a data space does not act as a data integration system as this requires semantic integration 
before any service can be provided; instead it follows a co-existence approach, i.e., to provide base functionality 
over all data sets, regardless of how integrated they are (Franklin, Halevy, & Maier, 2005). 
 
A research data infrastructure should offer the possibility for researchers to start browsing in one data set and then 
navigating along links into related data sets, or it can support data search engines that crawl the data space by 
following links between data sets and provide expressive query capabilities over aggregated data. To achieve this, 
the data infrastructure must support the creation of typed links between data from different sources. Data providers 
willing to add their data to a scientific data space that allows data to be discovered and used by various applications 
must publish them according to some principles.  
 
A set of best practices for publishing structured data on the Web referred to as “Linked Data” was introduced by 

Tim Berners-Lee (Bizer, Heath, & Berners-Lee, 2009) and has become known as the linked data principles. These 
principles are the following: 

 Use URIs as names for things, 
 Use HTTP URIs so that people can look up those names, 
 When someone looks up a URI, provide useful information, using recommended standards (RDF, 

SPARQL), and 
 Include links to other URIs so that they can discover more things. 

 
The linked data principles enable the implementation of generic applications that operate over the complete data 
space because the resulting web of linked data is based on standards for the identification of entities, retrieval of 
entity descriptions, and parsing of descriptions in RDF as a common data model. Linked data is not just a vision - 
the linked data principles are applied in various domains including e-science, libraries, and scholar communication.  
 
A wide range of generic linked data tools, such as linked data browsers and linked data search engines already have 
been developed. What is still missing is the closer integration of linked data features into the scientific work 
environments that are used within the different scientific disciplines. From a system perspective, a data 
infrastructure, in order to support a linking data capability, should provide:  

 a registry service whose purpose is to manage a collection of identifiers and make it actionable and 
interoperable, where that collection can include identifiers from many other controlled collections; 
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 a name resolution system, which resolves the data identifiers into the information necessary to locate and 
access them; and 

 automated or semi-automated generation of links. 
 
5.3.4 Social and organizational dimensions of a research data infrastructure 

 
A digital science ecosystem model must also consider the fact that external environmental forces influence research 
advances. Specifically, three major types of external environmental forces should be considered: social and 
governmental forces, economic forces, and technical forces. A robust global research data infrastructure must 
consist not only of a technical infrastructure but also a set of organizational practices and social forms that work 
together to support the full range of individual and collaborative scientific work across diverse geographic locations. 
By considering data infrastructure as just a technical system to be designed, the importance of social, institutional, 
organizational, legal, cultural, and other non-technical problems is marginalized, and the outcome is almost always 
flawed or less useful than originally anticipated (Edwards, Jackson, Bowker, & Knobel, 2007). 
 
In the social sciences, one of the biggest worries is data privacy. The tension between individuals’ interest in 

protecting their privacy and companies’/organizations’ interest in exploiting personal information could be resolved 
by giving people more control. In the information realm, loss of privacy is usually associated with failure in 
controlling the access to data, the flow of data, or the purposes for which data are employed. Data infrastructures 
should support efficient privacy schemes in order to protect sensitive datasets, designing algorithms that satisfy a 
given privacy definition while producing useful outputs and control anti-social behaviors. 
 
New research data infrastructures are encountering and often provoking a series of tensions. This occurs when 
established practices, organizational norms, and individual and institutional expectations adjust in a positive or 
negative fashion in reaction to the new possibilities and challenges posed by infrastructure. A second class of 
tensions can be identified in instances where changing infrastructures bump up against the constraints of political 
economy: intellectual property rights regimes, public/private investment models, ancillary policy objectives, etc. 
(Edwards, Jackson, Bowker, & Knobel, 2007). Similar tensions arise in determining relationships between national 
policy objectives and the transnational pull of science. Put simply, where large-scale policy interests (in national 
economic competitiveness, security interests, global scientific leadership, etc.) stop at the borders of the nation-state, 
the practice of science spills into the world at large, connecting researchers and communities from multiple 
institutional and political locales. Tensions should be thought of as both barriers and resources to infrastructural 
development and should be engaged constructively. 
 
 
6 TECHNOLOGICAL CHALLENGES 

 
There are several technological challenges that must be tackled in order to be able to develop the future GRDIs. 
They include research data modeling and management as well as system challenges.  
 
6.1 Data modeling challenges 
 
There is a need for radically new approaches to research data modelling. In fact, the current data models (relational 
models) and management systems (relational database management systems) were developed by the database 
research community for business/commercial data applications. Research data have completely different 
characteristics from business/commercial data, and thus the current database technology is inadequate to handle 
them efficiently and effectively. 
 
There is a need for data models and query languages that: 

 more closely match the data representation needs of the several scientific disciplines; 
 describe discipline-specific aspects (metadata models); 
 represent and query data provenance information; 
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 represent and query  data contextual information; 
 represent  and manage data uncertainty; and 
 represent and query data quality information. 
 

While most scientific users can use relational tables and have been forced to do so by current systems, we can find 
only a few users for whom tables are a natural data model that closely matches their data. Conventional tabular 
(relational) database systems are adequate for analysing objects (galaxies, spectra, proteins, events, etc.), but the 
support for time-sequence, spatial, text and other data types is awkward. For some scientific disciplines (astronomy, 
oceanography, fusion, and remote sensing) an array data model is more appropriate. Database systems have not 
traditionally supported science’s core data type: the N-dimensional array. Simulating arrays on top of tables is 
difficult and results in poor performance. Some other disciplines, i.e., biology and genomics, consider graphs and 
sequences more appropriate for their needs. Lastly, solid modelling applications want a mesh data model. The net 
result is that “one size will not fit all”, and science users will need a mix of specialized database management 
systems (Stonebraker, Becla, DeWitt, Lim, Maier, Ratzesberger, et al., 2009). 
 
6.1.1 Metadata modeling  
 
Metadata are the descriptive information about data that explain the measured attributes, their names, units, 
precision, accuracy, data layout, and ideally a great deal more. Most importantly, metadata include the data lineage 
that describes how the data were measured, acquired, or computed. The metadata are as valuable as the data 
themselves (Gray, Liu, Szalay, Nieto-Santisteban, DeWitt, & Heber, 2005). If the data are to be analysed by generic 
tools, the tools need to “understand” the data. The tool will want to know the metadata. If scientists are to read data 
collected by others, then the data must be carefully documented and must be published in forms that allow easy 
access and automated manipulation. In the next generation of data infrastructures, there will be powerful tools to 
make it easy to capture, organize, analyse, visualize, and publish data. The tools will do data mining and machine 
learning on the data and will make it easy to script workflows and analyse the data. Good metadata for the inputs are 
essential to make these tools automatic. Preserving and augmenting these metadata as part of the processing (data 
lineage) will be a key benefit for next generation tools. 
 
All the derived data that the scientist produces must also be carefully documented and published in forms that allow 
easy access. Ideally, much of these metadata would be automatically generated and managed as part of the workflow, 
reducing the scientist’s intellectual burden. The use of purpose-oriented descriptive data models is of paramount 
importance to achieve data usability. The type of descriptive information to be provided by the data producer 
depends very much on the requirements imposed by the data consumer tasks. For example, if the consumer entity 
wants to perform a data analysis task on the imported information, then the quality of the information is of 
paramount importance; without such information the task of data analysis cannot be performed. Consequently, if a 
researcher is willing to export/publish the data produced, its possible uses by the potential users must be carefully 
taken into account, and it must be endowed with appropriate descriptive information. Appropriate purpose-oriented 
metadata models to represent the descriptive information must be chosen and used. 
 
6.1.2 Data provenance modeling 
  
In its most general form, provenance (also sometimes called lineage) captures where data came from and how they 
have been updated over time. Provenance can serve a number of important functions (Ikeda, & Widom, 2010): 
Explanation: Users may be particularly interested in or wary of specific portions of a derived data set. Provenance 
supports “drilling down” to examine the sources and the evolution of data elements of interest, enabling a deeper 
understanding of the data. 
Verification: Derived data may appear suspect due to possible bugs in data processing and manipulation, due to 
stale data, or even due to maliciousness. Provenance enables auditing on how data were produced, either to verify 
their correctness or to identify the erroneous or out-dated source data or processing nodes that are responsible for 
erroneous or out-dated data. 
Recomputation / Repeatability: Having found out-dated or incorrect source data or buggy processing nodes, users 
may want to correct the errors and propagate the corrections forward to all “downstream” data that are affected. 
Provenance helps to re-compute only those data elements that are affected by the corrections. 
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There has been a large body of very interesting work in lineage and provenance over the past two decades. 
Nevertheless, there are still many limitations and open areas. Specifically, the primary focus is on modelling and 

capturing provenance: How is provenance information represented? How is it generated? There has been 
considerably less work on querying provenance: What can we do with provenance information once we’ve captured 

it? In the long-term, the development of a standard open representation and query model is necessary. It is 
worthwhile to mention the “Open Provenance Model” (Moreau, Freire, Futrelle, McGrath, Myers, & Paulson, 2008), 
a community-driven model for provenance that allows provenance to be exchanged between systems. 
 
6.1.3 Data context modeling  
 
Context is a poorly used source of information in our computing environments. As a result, we have an 
impoverished understanding of what context is and how it can be used. Contextual information is any information 
that can be used to characterize the situation of a digital information object. In essence, this information documents 
the relationship of the data to their environment. Context is the set of all contextual information that can be used to 
characterize the situation of a digital information object. Several context modelling approaches exist and are 
classified by the scheme of data structures that are used to exchange contextual information in the respective system 
(Strang, & Linnhoff-Poppien, 2004): key-value models, mark-up scheme models, object oriented models, logic 
based models, and ontology based models. Future research data infrastructures should be context-aware, i.e., they 
should use context to provide relevant information and/or services to the user, where relevancy depends on the 
user’s task. 
 
6.1.4 Data uncertainty modeling 
  
As models of the real world, scientific databases are often permeated with forms of uncertainty, including 
imprecision, incompleteness, vagueness, inconsistency, and ambiguity. Uncertainty is the quantitative estimation of 
error presenting data; all measurements contain some uncertainty generated through systematic error and/or random 
error. Acknowledging the uncertainty of data is an important component of reporting the results of scientific 
investigation (http://visionlearning.com/en/library/Process-of-Science/49/Uncertainty-Error-and-Confidence/157). 
Essentially, all scientific data are imprecise, and without exception science researchers have requested a database 
management system that supports uncertain data elements. Of course, current commercial products do not support 
uncertainty. There is, among science users, a universal consensus on requirements in this area. Some of them request 
a simple model of uncertainty while others request a more sophisticated model. There has been a significant amount 
of work in areas variously known as “uncertain, probabilistic, fuzzy, approximate, incomplete, and imprecise” data 

management. Undoubtedly, the development of suitable database theory to deal with uncertain database information 
remains a challenge that has yet to be met.  
 
6.1.5 Data quality modeling  
 
Quality of data is a complex concept, the definition of which is not straightforward. There is no common or agreed 
definition or measure for data quality apart from such general notions as fitness for use. The consequences of poor 
data quality are often experienced in every scientific discipline but without making the necessary connections to its 
causes (Batini & Scannapieco, 2006). Awareness of the importance of improving the quality of data is increasing in 
all scientific fields. In order to fully understand the concept, researchers have traditionally identified a number of 
specific quality dimensions. A dimension or characteristic captures a specific facet of quality. The more commonly 
referenced dimensions include accuracy, completeness, and consistency. An important aspect of data is how often 
they vary in time - stable data and time-variable data. In order to capture aspects concerning temporal variability of 
data, different data quality dimensions need to be introduced. The principal time-related dimensions are currency, 

timeliness, and volatility. 

 

Data quality dimensions are not independent of each other, but correlations exist among them. If one dimension is 
considered more important than the others for a specific application, then the choice of favouring it may imply 
negative consequences for the others. Establishing trade-offs among dimensions is an interesting problem. The core 
set of data quality dimensions introduced here is shared by most proposals for data quality dimensions in research 
literature. However, for specific categories of data and for specific scientific disciplines, it may be appropriate to 
have more specific sets of dimensions. As an example, for geographic information systems specific, standard sets of 
data quality dimensions are under investigation (ISO, 2005). 
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6.2 Research data management challenges 
 
In the area of research data management, data inputs in the order of multiple petabytes are expected in the near 
future. The current database technology is not suitable to fulfill the demanding requirements of research data 
management. The database technology has evolved having in mind a business paradigm. The users of current 
science databases have several problems with the current relational database technology (Becla & Lim, 2008): (i) 
research data very rarely naturally fit into a relational table-based model; (ii) the most frequently performed 
operations are not supported, and complex analytics such as time series analysis are impossible to express in SQL; 
(iii) provenance information is not supported; (iv) uncertainty management is not supported; and (v) there is 
insufficient scalability as none of the existing DBMSs offers multi-petabyte level scalability. 
 
Some directions of research in database technology are indicated in (Kersten, Idreos, Manegold, & Liarou, 2011): (i) 
array support: DBMSs should support multi-dimensional arrays as first-class citizens next to relational tables; (ii) 
one-minute database kernels: they should be able to identify and avoid performance degradation by answering 
queries only partially within strict time bounds; (iii) multi-scale query processing: in order to be able to quickly 
explore large datasets, it is necessary to partition the database according to scientific interest and resource 
availability; (iv) post-processing result sets: the often huge results returned should not be thrown at the user directly 
but passed through an analytical processing pipeline to condense the information for human consumption; (v) query 
morphing: given the imprecision of the queries, the system should aid in hinting at proximity results using data 
distributions looked upon during query evaluation; (vi) queries as answers: the database system should be able to 
provide starting points and guidance for data exploration instead of returning results for a random or badly 
formulated query, and it should return query suggestions for more effective exploration; and (vii) the system should 
support transparent data ingestion from and seamless integration of scientific file repositories. 
 
It is worthwhile to mention the efforts towards the development of a scientific database management system, SciDB. 
This is an open-source DBMS oriented towards the data management needs of scientists. It mixes statistical and 
linear algebra operations with data management ones, using a natural nested multi-dimensional array data model. 
SciDB is used by the large synoptic survey telescope (LSST). Another important effort towards the development of 
a scientific DBMS is the MonetDB. It is an open source column-oriented database management system. It was 
designed to provide high performance on complex queries against large databases, e.g., combining tables with 
hundreds of columns and multi-million rows.  
 
6.3 Infrastructural management challenges 
 
A research data infrastructure, in order to be able to efficiently and effectively play its role as has been described in 
Section 4, must also tackle some management challenges, which include ontology, workflow, and policy 
management. 
 
6.3.1 Ontology management 
 
Ontologies/taxonomies constitute a key technology enabling a wide range of science ecosystem services. In fact, 
ontologies provide the semantic underpinning enabling intelligent search, access, integration, sharing, and use of 
research data. The services to be provided by a research data infrastructure require extensive use of ontologies and 
also include data/information discovery, data service/tool discovery, data classification, data exchangeability and 
interoperability, dealing with inconsistent information, etc. In addition, in several communities of research, 
ontologies are considered to be the ideal formal tool to provide a shared conceptualization of the domain of interest. 
Ontologies were initially developed by the artificial intelligence community to facilitate knowledge sharing and 
reuse. An ontology consists of a set of concepts, axioms, and relationships that describe a domain of interest. 
Currently, ontologies are produced in large numbers and exhibit great complexity. Therefore, ontology management 
is a needed capability of a global research data infrastructure in order to be able to effectively support the semantic 
science ecosystem services. 
 
There are three main components of an ontology management capability: ontology model, ontology metadata, and 
reasoning engine (Bloehdorn, Haase, Huang, Sure, Voelker, van Hermalen, et al., 2009). The ontology model 
maintains a set of references to the ontologies, their respective contents, and corresponding instance data sources. 
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The ontology metadata store maintains metadata information about the ontologies themselves. The reasoning engine 
operates on top of the ontology model, giving the set of axioms an interpretation and thus deducing new facts from 
the given primitives. 
 
In a science ecosystem, individual data sources, service functionalities, etc. are often described based on different, 
heterogeneous ontologies. To enable interoperability across these sources, it is necessary to specify how the resource 
residing at a particular node corresponds to a resource residing at another node. This is formally done using the 
notion of mapping. Although in the area of ontology languages the Web Ontology Language (OWL) has become a 
de facto standard for representing and using ontologies, there is no agreement yet on the nature and the right 
formalism for defining mappings between ontologies. 
 
In the context of a science ecosystem, ontologies are not standalone artifacts. They relate to each other in ways that 
might affect their meaning, and are inherently distributed in a network of interlinked semantic resources, taking into 
account in particular their dynamics, modularity, and contextual dependencies. It is important to investigate the 
entire development and evolution lifecycle of networked ontologies that enable complex, semantic applications. For 
each science ecosystem, we envision the need for building a top-level ontology, domain-independent, supplemented 
by several domain ontologies, one for each community of research belonging to the same science ecosystem. The 
top-level ontology would confine itself to the specification of such high level general (domain-independent) 
categories as: time, space, inherence, instantiation, identity, measure, quantity, functional dependence, process, 
event, attribute, boundary, and so on. The top-level ontology would be designed to serve as a common neutral 
backbone (Smith, 2003). It would be supplemented by the work of ontologists working on more specialized domains, 
e.g., the domain ontologies. Such ontologies should extend or specify the top-level ontology with axioms and 
definitions to the objects in some given domain. Each community of research should develop its own domain 
ontology. A research data infrastructure should have the capability of managing and maintaining the alignment of 
the top-level and domain ontologies of the science ecosystem. 
 
6.3.2 Scientific workflow management 
 
Today, research collaborations are becoming more and more geographically dispersed and often exploit 
heterogeneous tools, compare data from different sources, and use machines distributed across several institutions 
throughout the world. Therefore, the task of running and coordinating a scientific application across several 
administrative domains remains extremely complex. Scientific workflow is a key component in a research data 
infrastructure as it orchestrates e-science services so that they co-operate to implement efficiently a scientific 
application. A workflow is a precise description of a scientific procedure – a multi-step process to coordinate 
multiple tasks, acting like a sophisticated script. Each task represents the execution of a computational process, such 
as running a program, submitting a query to a database, submitting a job to a compute cloud or grid, or invoking a 
service over the Web to use a remote resource. Data output from one task is consumed by subsequent tasks 
according to a predefined graph topology that “orchestrates” the flow of data. 
 
Workflow systems generally have three components: an execution platform, a visual design suite, and a 
development kit (Goble & De Roure, 2009). The platform executes the workflow on behalf of applications and 
handles common crosscutting concerns. The design suite provides a visual scripting application for authoring and 
sharing workflows and preparing the components that are to be incorporated as executable steps. The development 
kit enables developers to extend the capabilities of the system and enables workflows to be embedded into 
applications, Web portals, or databases. Scientific workflows liberate scientists from the drudgery of routine data 
processing so they can concentrate on scientific discovery. They shoulder the burden of routine tasks, they represent 
the computational protocols needed to undertake data-centric science, and they open up the use of processes and 
data resources to a much wider group of scientists and scientific application developers. 
 
Workflows offer techniques to support the new paradigm of data-centric science. In fact, as first class citizens in 
data-centric science, they can be generated and transformed dynamically to meet the requirements at hand. In a 
landscape of data in considerable flux, workflows provide robustness, accountability, and full auditing. Workflows 
enable data-centric science to be a collaborative endeavor on multiple levels. They enable scientists to collaborate 
over shared data and shared services, and they grant non-developers access to sophisticated code and applications 
without the need to install and operate them. Consequently, scientists can use the best applications, not just the ones 
with which they are familiar. Multidisciplinary workflows promote even broader collaboration. In this sense, a 
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workflow system is a framework for reusing a community’s tools and datasets that represent the original codes and 

overcomes diverse coding styles. Although the impact of workflow tools on data-centric science is potentially 
profound, many challenges exist over and above the engineering issues inherent in large-scale distributed software.  
There are a confusing number of workflow platforms with various capabilities and purposes and little compliance 
with standards. 
 
6.3.3 Policy management 
 
The need for using semantic policies in science ecosystem environments is widely recognized. In fact, the 
interactions among the different components of a science ecosystem should be governed by formal semantic policies. 
It is important to adopt a broad notion of policy, encompassing not only access control policies but also trust, quality 
of service, and others. Policies are means to dynamically regulate the behavior of system components without 
changing code and without requiring the consent or cooperation of the components being governed (Damianou, 
Dulay, Lupu, & Sloman, 2001). Policies that constrain the behavior of system components are becoming an 
increasingly popular approach to the dynamic adjustability of applications in academia and industry. Policies are 
pervasive in distributed and networked environments, for example in Web and Grid applications. They play crucial 
roles in enhancing security, privacy, and usability of distributed services. 
 
Multiple approaches for policy specification have been proposed that range from formal policy languages that can 
be processed and interpreted easily and directly by a computer to rule-based policy notation using if-then-else 
format and to the representation of policies as entries in a table consisting of multiple attributes (Bonatti & 
Olmedilla, 2007). There are also ongoing standardization efforts toward common policy information models and 
frameworks. Policy language provides a framework for specifying both authorization policies and obligation 
policies. It is worthwhile to mention some significant policy specification tools, such as KAoS, Ponder, and Rei. All 
the different kinds of policies should eventually be integrated into a single coherent framework so that (i) this policy 
framework can be implemented and maintained by a research data infrastructure and (ii) the policies themselves can 
be harmonized and synchronized. 
 
7  RECOMMENDATIONS  

 
Future research data infrastructures must enable science ecosystems. 

Several discipline-specific digital data libraries, digital data archives, and digital research libraries are under 
development or will be developed in the near future. These systems must be able to interwork and constitute 
disciplinary and/or multidisciplinary ecosystems. The next generation of global research data infrastructures must 
enable the creation of efficient and effective science ecosystems. 
 

Science social and organizational aspects should be taken in due consideration when designing global 

research data infrastructures as well as potential tensions which could be faced or provoked by them. 
A viable vision of research data infrastructure must take into account social and organizational dimensions that 
accompany the collective building of any complex and extensive resource. A robust global research data 
infrastructure must consist not only of a technical infrastructure but also a set of organizational practices and social 
forms that work together to support the full range of individual and collaborative scientific work across diverse 
geographic locations. A data infrastructure will fail or quickly become encumbered if any one of these critical 
aspects is ignored. New research data infrastructures are encountering and often provoking a series of tensions. 
Tensions should be thought of as both barriers and resources to infrastructural development and should be engaged 
constructively. 
 

Global research data infrastructures must be based on scientifically sound foundations. 

It is widely recognized that current database technology is not adequate to support data-intensive multidisciplinary 
research. Existing research data infrastructures suffer from the following main limitations: 

 not based on scientifically sound foundations, 
 application-specific software of limited long term value coupled with the absence of a consistent 

computer science perspective, and 
 discipline-specific. 
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Science re-builds rather than re-uses software and has not yet come up with a set of common requirements. It is time 
to develop the theoretical foundations of research data infrastructures. They will allow the development of generic 
data infrastructure technology and incorporate it into industrial-strength systems. 
 
Formal models and query languages for data, metadata, provenance, context, uncertainty, and quality must 

be defined and implemented. 
Radically new approaches to scientific data modeling are required. In fact, the data models (relational models) 
developed by the database research community are appropriate for business/commercial data applications. Scientific 
data has completely different characteristics from business/commercial data, and therefore current database 
technology is inadequate to handle it efficiently and effectively. Data models and query languages that more closely 
match the data representation needs of the several scientific disciplines, describe discipline-specific aspects 
(metadata models), represent and query data provenance information, represent and query data contextual 
information, represent and manage data uncertainty, and represent and query data quality information are necessary. 
Formally defined data models and data languages will allow the development of automatized data tools and services 
(i.e., mediation software, curation, etc.) as well as generic software. 

 

New advanced data tools (data analysis, massive data mining, data visualization) must be developed. 

Current data management tools as well as data tools are completely inadequate for most science disciplines (Gray, 
2009). It is essential to build better tools and services in order to make scientists more productive, tools helping them 
to capture, curate, analyze, and visualize their data, in essence tools and services that support the whole research 
cycle. Advanced tools and services are needed so as to enable scientists to follow new paths, try new techniques, 
build new models, and test them in new ways that facilitate innovative multidisciplinary/interdisciplinary activities. 
 
New advanced infrastructural services (data findability, data tool findability, data federation 

(integration/aggregation/correlation/harmonization/linking) as well as infrastructural management services 

(workflow management, ontology/taxonomy management, policy management, etc.) must be developed. 

The ultimate aim of a global research data infrastructure is to enable global collaboration in key areas of science. 
Therefore, the infrastructural services must achieve the conditions needed to facilitate effective collaboration among 
geographically and institutionally separated communities of research. To this end a global research data 
infrastructure must provide advanced support services that make the components of a science ecosystem 
interoperable and their holdings discoverable and usable. 
 
Future research data infrastructures must support open linked data spaces. 

A research data infrastructure must lower the barrier to publishing and accessing data leading, therefore, to the 
creation of open scientific data spaces by connecting data sets from diverse domains, disciplines, regions, and 
nations. Researchers should be able to navigate along links into related data sets. 
 
Future research data infrastructures must support interoperation between science data and literature.  

In the future all scientific literature and data will be on-line. Scientific data must be unified with literature to create a 
world in which the data and the literature interoperate with each other. Such a capability will increase the 
“information velocity” of the sciences and will improve the scientific productivity of researchers. Future research 

data infrastructures must make this happen by supporting the interoperation between data centers and research 
libraries.  
 
The principles of open science and open data in order to be widely accepted must be realized within an 

integrated science policy framework to be implemented and enforced by global research data infrastructures.  

There is an emerging consensus among the members of the academic research community that “e-science” practices 

should be congruent with “open science”. The open science principle entails not only open access to data but also to 

scientific analyses, methods, etc. This principle has not only a technological dimension but also policy and legal 
dimensions. Policies and laws must deal with legal jurisdictional boundaries and they must be integrated into a 
shared science policy framework. 
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A new international research community must be created. 

The building of scientifically sound research data infrastructures can only be achieved if supported by an active new 
international research community capable of tackling all the scientific and technological challenges that such an 
enterprise implies. This community would embrace two main components: 

 researchers who use data-intensive methods and tools (biologists, astronomers, etc.) and  
 researchers who create or enable these models and methods (computer scientists, mathematicians, 

engineers, etc.). 
So far, these two components have operated in isolation and have only come together sporadically. We firmly 
believe that the development of the new data-intensive multidisciplinary science must spring from a synergetic 
action between these two components. We firmly believe that without the creation and active involvement of such a 
research community it is illusory to think about the development of the data-intensive multidisciplinary science. 

 
New professional profiles must be created. 

In order to be able to exploit the huge volumes of data available and the expected new data and network 
technologies, new professional profiles must be created: data scientist, data-intensive distributed computation 
engineer, data curator, data archivist, and data librarian. These professionals must be capable of operating in the fast 
moving world of network and data technologies. Education and training activities to enable them to use and manage 
the data and the infrastructures must be defined and put in action. 
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