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Abstract. Topology is a classical branch of mathematics, born essen-
tially from Euler’s studies in the XVII century, which deals with the
abstract notion of shape and geometry. Last decades were characterised
by a renewed interest in topology and topology-based tools, due to the
birth of computational topology and Topological Data Analysis (TDA).
A large and novel family of methods and algorithms computing topo-
logical features and descriptors (e.g. persistent homology) have proved
to be effective tools for the analysis of graphs, 3d objects, 2D images,
and even heterogeneous datasets. This survey is intended to be a concise
but complete compendium that, offering the essential basic references,
allows you to orient yourself among the recent advances in TDA and its
applications, with an eye to those related to machine learning and deep
learning.
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1 Introduction

Topology is a branch of mathematics dealing with shape and geometry. Complex-
ity and size of current collections of natural or synthetic dataset (2D, 3D, and
multidimensional) is rapidly increasing. Hence, the ability to look at the shape
of data and to discover patterns in any dimension is gaining great importance.
Recently, successful applications of computational topology [27] to data analysis
boosted a renewed interest in that field, and Topological Data Analisys (TDA)
[10] has earned a prominent place in contemporary research, as a rich family
of algorithms and methods from computational topology (e.g. Morse theory or
persistent homology) to analyse and visualize data.

Focusing on image analysis, in low dimensions (typically 2 or 3), techniques
from TDA are used to extract and classify geometric features, e.g. level sets or
integral lines in [50]. For what regards Persistent Homology (PH), in [60] the
authors describe how to define the Morse complex of a two or three-dimensional
grayscale digital image, which is simpler than the cubical complex originally used
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to represent the image and to compute persistent homology. Also, [46] show that
persistence diagrams built from functions defined on objects are compact and
informative descriptors and, for example, can be used for retrieval of images
and shapes. Also, the topological representation of data could provide tools for
hierarchical image segmentation, as in [68].

Looking at higher dimensions, e.g. to multidimensional datasets, techniques
from TDA have been adapted to develop novel algorithms of data cluster-
ing: in 2008 Carlsson, with Singh and Sexton, contributed to founding Ayasdi
(www.ayasdi.com), maybe the first machine intelligence platform with a TDA
core able to compute groupings and similarity across large and high dimensional
data sets, and to generate network maps visually supporting analysts in un-
derstanding data clusters (for example showing high dimensional patterns and
trends) and which variables are relevant.

Several works have shown that TDA can be beneficial in a diverse range of
problems, even very distant from each other, such as: studying the manifold of
natural image patches [9]; analyzing activity patterns of the visual cortex [61];
in the classification of 3D surface meshes [57, 46]; complex networks [56, 41];
clustering [20, 55]; recognition of 2D object shapes [64]; protein folding [7, 67,
42]; viral evolution [18].

In this survey, we focus specifically on persistent homology (PH), because
we found this technique the most interesting with respect to the interplay with
machine and deep learning.

Outline The following section is devoted to providing the reader basic notions
and a historical overview of the main results in the theory of persistence in com-
putational topology, starting from early works by P. Frosini, V. Robins and H.
Edelsbrunner, which established independently the very first definitions and the-
orems. Section 3 deals with the computability of the most used PH descriptors,
together with a summary of the software developed to compute PH. Section 4
explains the versatility of such methods, applied in several domains: one of the
main factors of the recent interest around PH. Section 5 gives the reader a tour in
the most promising applications of TDA in machine and deep learning, showing
the great potential of embedding topological tools in the learning pipeline along
with implementations of topological layers. These recent efforts have given rise
to the novel field of Topological Machine Learning. The last section concludes
the paper, and it is devoted to emerging studies focused on the interplay of topo-
logical data analysis and deep learning theory: e.g. concerning how to exploit
tools from topological analysis to enhance explainability and interpretability of
artificial intelligence methods.

2 Persistence homology: history and basic notions

Algebraic topology is a branch of mathematics using tools from abstract algebra
to study and characterise topological spaces (see [38] for an introductory text-
book). The basic aim is to find algebraic invariant able to classify topological
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spaces up to homeomorphism. Persistent Homology bridges algebraic topology
with the Morse theory core idea: exploring topological attributes of an object
in an evolutionary context. The concept of persistence was introduced indepen-
dently in 1990 by P. Frosini, M. Ferri and collaborators in Bologna (Italy), by
V. Robins in 2000 in her PhD thesis devoted to multi-scale topology applied
to fractals and dynamics, and by the group of Edelsbrunner at Duke (North
Carolina).

2.1 Basics

In order to understand the core idea of PH, it is necessary to be familiar with the
basics of algebraic topology. A simplicial complex is the standard algebraic object
used to represent shapes of any dimension; simplices are its building blocks.

Definition 1. A k-simplex is the k-dimensional convex hull of k + 1 vertices.
The convex hull of any nonempty subset of the k + 1 vertices is called a face of
the simplex

A simplicial complex K is a set built from 0-dimensional simplices (0-simplices
or points), 1-dimensional simplices (line segments), 2-simplices (triangles), 3-
simplices (tetrahedra) and so on. The dimension of K is defined as the largest
dimension of any simplex in it. Actually, to be a simplicial complex, K should
satisfy the following conditions.

Definition 2. A simplicial complex K is a set of simplices such that:

– every face of a simplex is also a simplex of K;
– the intersection of any two simplices σ1 and σ2 in K is either a face of both
σ1 and σ2, or the empty set.

Fig. 1. a. An example of a simplex for each dimension from 0 to 3. b. An example of
a 3-dimensional simplicial complex.

These conditions allow defining the boundary operator, which is fundamental to
define the homology, an algebraic object computable (via linear algebra) for K
that accounts for the number of connected components, holes, voids, etc. The
boundary of a k-simplex ∂(σj) is the formal sum of the (k−1)-dimensional faces
of σj . For example, the boundary of a triangle {a, b, c} of vertices a, b and c is
given by the sum of the edges {b, c}+ {a, c}+ {a, b}. More formally,

∂({v0, . . . , vk}) =

k∑
i=0

(−1)i{v0, . . . , v̂i, . . . , vk}
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It’s straightforward that a boundary has no boundary: ∂ ◦ ∂ = ∂2 = 0. Let
K be a k-simplicial complex, and F a field; in PH the most used F is the
two-element field F2 = Z/2Z. Let {σ1, . . . , σn} be the set of p-simplices of K,
where p ∈ {0, 1, . . . , k}. Cp(K) denotes the vector space generated over F by
the p-dimensional simplices of K; hence, Cp(K) is made of all p-chains, which
are the formal sums over the p-simplex c =

∑n
j=1 ajσj where aj ∈ F and σj

is a p-simplex in K. Hence, the boundary operator defined above is a linear
operator between chain vector spaces: ∂p : Cp(K) → Cp−1(K); also, now we
define p-cycles Zp(K) and k-boundaries Bp(K)

Zp(K) := Ker(∂ : Cp → Cp−1) and Bp(K) := Im(∂ : Cp+1 → Cp).

And it yields that: Bp(K) ⊂ Zp(K) ⊂ Cp(K). Finally, the p-th homology
group Hp(K) is defined as the quotient space Zp/Bp: two cycles c1 and c2 are
homologous if they are in the same homology class: ∃ b ∈ Bp(K) such that
c2− c1 = b. In algebraic topology, the homology group of a complex is one of the
most studied and used. Also, the homology group is linked to the Betti numbers
βp, very important topological invariants: βp(K) = dim(Hp(K)). The p-th Betti
number, informally, counts the number of p-dimensional holes on a topological
surface; for example, a two-dimensional torus has β0 = 1 (it is connected), β1 = 2
(it shows two independent loops on its surface), and β2 = 1 (only one cavity).
Back to the case of a simplicial complex K, the 0-dim Betti number is the number
of connected components and 2-dim Betti number is the number of voids of K.

The homology group and the Betti numbers are able to encode the global
topological properties of a shape, represented by a simplicial complex.

Persistence needs a core ingredient: filtrations. A filtration of a simplicial
complex K is a sequence of nested sub-complexes:

∅ = K0 ⊂ K1 ⊂ . . . ⊂ Km = K

In a few words, think of a filtration as a way to build the given complex iteratively
by adding simplices, starting from vertices, step by step. Of course, given a
complex, there are many ways to define a filtration. Depending on the data,
different filtered simplicial complexes are considered, and the definition of most
of them is based on the distance induced by the metric of the ambient space of
data. At each filtration step tj consider the simplicial complex Kj , sub-complex
of K, and compute the rank of each p-th homology group (i.e. βp) for each
p ∈ {0, 1, . . . , k}: the variation of the β0 (or β1) will account for the birth or
death of connected components (or loops). Increasing p, the variation of Betti
numbers will account for p-dimensional topological features, whose evolution is
able to encode precious information about the global structure of the growing
complex looking at the lifespan (death - birth) of each topological feature.

2.2 History

Frosini, Ferri and collaborators [30, 32, 31, 66] in a family of papers published in
between 1990 and 1993, introduced the size functions, which are equivalent to the
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0-dimensional persistent homology. The size functions are defined as functions
from the real plane to the natural numbers which describe the shape of the
objects (seen as sub-manifolds of a Euclidean space). Also, different techniques
of computation of size functions are provided, together with the definition of
a deformation distance between manifolds measuring the difference in shape of
two manifolds, and applications to shape analysis.

Edelsbrunner et al. in 2002 [28] formalize the notion of persistence within
the framework of a filtration, which is the history of a growing complex. They
introduced the classification of a topological event occurring during growth as
either a feature or noise, depending on its lifespan within the filtration. The
algorithm provided in this paper for computation yields only for sub-complexes
of spheres and only with coefficients in F2.

Zomorodian and Carlsson in 2005 [69] show that the persistent homology of
a filtered d-dimensional simplicial complex is simply the standard homology of a
particular graded module over arbitrary field coefficients. In the same paper, au-
thors provide an algorithm for computing individual persistent homology groups
over an arbitrary principal ideal domain in any dimension. They also introduced
barcodes, a combinatorial invariant; a complete introduction to persistence ho-
mology and its application from the perspective of barcodes is provided by Ghrist
in [35].

From now on, the research community becomes more and more interested
not only in the theoretical advances in persistence, but also in how to imple-
ment the persistence algorithms, in order to exploit the existence of computable
topological descriptors in shape analysis, and, more generally, in data analysis.
In 2010 Plex, the first software for computing persistence is released (see also
Section 3.1).

2.3 Persistence diagrams

The first descriptors derived from PH are persistence diagrams. Such descriptors
provide a (visual) summary of births and deaths of topological events. E.g. they
track when a loop appears and disappears while the complex is growing (i.e.while
the filtration parameter increases). From another viewpoint, they can be seen as
a parametrized version of the Betti numbers.

More in detail, a persistence diagram is a collection of points in R2: any
topological feature has a birth b and a death d, and is represented in diagrams as a
point of coordinates (b, d). Two persistence diagrams may be compared efficiently
using proper distances such as the p-Wasserstein distance, or the bottleneck
distance which is the limit over p of the p-Wasserstein distance with p going to
infinity. The Bottleneck (or matching) distance dB between two subsets X and
Y of a metric space (M,d) is:

dB(X,Y ) := inf
φ

sup
x∈X

d(x, φ(x))

where φ runs over all bijections between X and Y .
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Bottleneck distance is used to compare persistence diagrams and to derive
their stability. Indeed, despite the way these descriptors are built, they show
robustness with respect to noise, as stated in the stability theorem [21, 6]: per-
sistence diagrams are stable with respect to perturbations of the data, and such
a stability yields also for multidimensional persistent homology, as shown in [16].

Fig. 2. Diagrams and barcodes are equivalent representations of topological persis-
tence, and the correspondence is visually proved in this picture. (credits: Matthew L.
Wright, 2014 http://www.mrwright.org)

An alternative way to represent topological persistence is given by barcodes,
which are equivalent to diagrams, and their equivalence is shown in Figure 2.
Topological features, in barcodes, are represented as line segments of length
(d − b) where b is its birth, and d is its death; hence, a barcode is a collection
of horizontal bars in a plane: the horizontal axis corresponds to the filtration
parameter growing the complex, while the vertical axis represents an (arbitrary)
ordering of homology generators. Barcodes have been introduced in [69] along
with an algorithm to compute them, via linear algebra on the boundary matrix.
The runtime of that algorithm is O(n3), where n is the number of simplices.

In Figure 3 the first row shows a growing complex associated to a set of points
sampled on a torus. The filtration is defined using the Euclidean metric (Rips
complex). In the second row, there are its barcodes of dimension 0, 1, and 2.
The length of each bar is the lifespan of the corresponding generator: long bars
are interpreted as relevant features, while short bars as noise. Equivalently in
diagrams, as can be seen from Figure 2, dots near the diagonal represent noise.

Unfortunately, persistence diagrams and barcodes exhibit a complex struc-
ture, and are difficult to integrate into today’s machine learning workflows. This
is why the community currently works to define novel topological descriptors de-
rived from the topological ones, or defining novel differentiation rules applicable
to known topological descriptors.

In the following section, a list of the most successful PH-based descriptors is
provided and discussed, together with the current algorithms and software used
(and developed) by the research community to compute them.
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Fig. 3. The rank of the homology groups of dimension 0, 1, and 2 associated with a
sequence of nested sub-complexes. Look at the longest feature in H0: it represents that
along the sequence only one connected component survives. This figure is by R. Ghrist
[35].

3 PH-based descriptors and implementations

After persistence diagrams, other PH-based descriptors were defined, imple-
mented, and used: persistence silhouette, persistence landscape, and persistence
images.

The birth of them was motivated by the need for stronger properties of
stability and for easy and fast algorithms to compute and compare them, in
order to increase their usage and efficacy in data analysis.

In 2015 Bubenik [8] developed the notion of a persistence landscape, a stable
functional representation of a persistence diagram that lies in a Banach space
(Hilbert, for p = 2), where statistical learning methods can be directly applied.
The persistence landscape is a collection of continuous, piecewise linear functions
λp : N × R → N that summarizes a persistence diagram. For 1 ≤ p ≤ ∞ the p-
landscape distance between two landscapes λ1 and λ2 is defined as ‖λ1−λ2‖p; the
∞-landscape distance is stable with respect to the bottleneck distance, and the
p-landscape distance is continuous with respect to the p-Wasserstein distance on
persistence diagrams. Statistical properties of landscapes and similar descriptors
(average landscape, silhouette) are investigated in [19], resulting in establishing
useful stability properties.
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In [1] barcodes are mapped to the so-called persistence surfaces. This is done
by computing a weighted sum of normalized (isotropic) Gaussians, evaluated
at each point in the diagram. Upon discretization of this persistence surface,
one obtains the persistence image, stable and computable, that can then be
concatenated in a vector and fed to a support vector machine.

3.1 Implementations

In this subsection, we present the most relevant implementations of PH. The goal
is to provide effective tools for the computation of barcodes as well as methods
for their analysis and comparison. A reference paper for the comparative analysis
is represented by the work [54], in which a benchmark of the selected open-source
implementations is carried out on 12 reference public-available datasets. In ad-
dition, other software tools not described in the paper [54] are briefly surveyed
here for the sake of completeness.

Javaplex [2] implements persistent homology and related techniques from
computational and applied topology, in a library designed for ease of use, ease
of access from Matlab and java-based applications. The Computational Topol-
ogy workgroup at Stanford University has mainly developed JavaPlex, which
is grounded on previous similar packages from the same group. Among them,
Plex is the first known software providing computation of PH, as well as the
first proposing the use of zigzag persistence [11].

Dionysus [51], and its new version Dionysus 2, are C++ libraries for the
computation of persistent homology. Dionysus has been the first software pack-
age to implement the dual algorithm [23], but it is also known since it contains
advanced tools for the construction of vineyards (i.e. continuous families of per-
sistence diagrams) [22], for the determination of homology generators and for
the computation of Wasserstein and bottleneck distances.

Another interesting C++ software package is Perseus [53] which computes
the persistent homology leveraging Morse-theoretic reduction. Since the stan-
dard algorithm for computing persistence intervals relies on Smith normal form
and is therefore of super-cubical complexity in the total number of cells, reduc-
ing the number of cells might result in relevant savings both in memory and
time. Perseus achieves a drastic reduction of the number of cells in the original
filtration in linear time via discrete Morse theory without altering its persistent
homology [49]. In addition, being based on general discrete Morse theory, this
preprocessing step does not rely on peculiarities of a particular type of complex
structure, but it can be applied straightforwardly to simplicial complexes, cubic
complexes and Vietoris-Rips complexes to name a few.

More recently, PHAT [5] (and its spin-off DIPHA [4] devoted to distributed
calculus) proposed a C++ implementation focused on the efficient and fast com-
putation of PH based on matrix reduction. The authors aimed at a generic de-
sign that decouples algorithms from data structures; several different reduction
strategies as well as data types to store and manipulate the boundary matrix
are provided. GUDHI [47] is a C++ library with a Python interface implement-
ing an efficient data structure for general simplicial complexes (simplex tree)
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as well as the possibility to compute simultaneously persistence diagrams with
coefficients over multiple finite fields Fp.

The R package TDA [29] provides an R interface for the efficient algorithms
of the C++ libraries GUDHI, Dionysus and PHAT, including the PH of Rips
filtrations and of sublevel sets of arbitrary functions evaluated over a grid of
points.

SIMBA [24] implements a new algorithm, leveraging on a batch collapse
strategy as well as a new sparse Rips-like filtration, that enables the approxi-
mation the persistent homology of Rips filtrations with quality guarantees. A
software, developed in C++, is made available upon request and, in practical
application, is an order of magnitude faster than existing methods.

The Topology ToolKit (TTK) [48] is an open-source library for TDA
which implements, in a generic and efficient way, a substantial collection of ref-
erence algorithms, including those for the computation of persistence diagrams.
The main merit of TTK is having made such algorithms accessible to a wider
community by proving a library integrated with state-of-the-art libraries for
scientific visualization (VTK) and image analysis (ITK) and with a graphical
front-end, i.e. Paraview.

4 A plethora of applications

PH, as concern data analysis, is a versatile method: there is no restriction to
apply to any particular kind of data (such as images, sensor measurements, time-
series, graphs, etc.). When we want to analyse an image, a shape or a dataset,
generally we choose a representation for the input data, e.g. the vertices of a
triangulation for a shape or an n-dimensional point cloud for a dataset, along
with a (natural) notion of distance, or similarity, between them. This distance is
generally induced by the metric in the ambient space (e.g. the Euclidean metric)
or may come as an intrinsic metric defined by a pairwise distance matrix. It is
important to notice that the choice of the metric may be critical to reveal inter-
esting topological and geometric features of the data. To exploit PH methods,
depending on the data, different filtered simplicial complexes may be used, e.g.
Vietoris-Rips complex, C̆ech complex, Alpha complex, Witness complex, Morse
complex, cubical complex, clique (or flag) complex, or CW complex.

In general, the TDA pipeline consists of the following three steps: 1. Give to
input data a multi-scale topological structure, i.e. a complex along with a fil-
tration; 2. Compute multi-scale topological signature (as PH-based descriptors);
3. Take advantage of the signature to perform pattern analysis tasks, exploiting
machine learning methods (i.e. looking at statistical aspects and representations
of topological persistence).

In the following, there is a focus on applications of PH to image and signal
analysis.

Image and shape analysis Results in [9] provide an example of how un-
expected could be the findings of topological enquire of imaging: the authors
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showed that the space of 3×3 high-contrast patches from digital images has the
topology of a Klein bottle, and suggested to use this fact to implement a novel
compression method of 2D images.

First applications of PH were in 2D and 3D shape analysis, and specifically
in diverse tasks, i.e. classification, segmentation, retrieval, and many others. We
list here just a few examples: in 2006 [17] the original size functions were used
to generate 25 measuring functions for automatic retrieval of trademark images,
outperforming existing whole-image matching techniques; In 2010 [62] a persis-
tence based clustering and the Heat Kernel Signature function are combined
to achieve a multi-scale isometry invariant segmentation of deformable shapes;
in [64], Turner and colleagues demonstrated how PH may be used to represent
shapes and execute operations such as computing distances between shapes or
classifying and modeling shapes and surfaces. Persistence descriptors have been
used also statistical shape analysis, as in [34].

Signal processing and time series analysis Even if PH originates in the
context of image and shape analysis, due to its versatility it was successfully and
largely applied in signal processing and analysis. Indeed PH provides efficient
tools to denoise and analyse both homogeneous and heterogeneous time series,
and many researchers exploited topological features.

Perea and Harer [55] used a sliding window approach to obtain a point cloud
from a time series; the point cloud is then analysed looking at periodicity as
the repetition of patterns, quantifying this recurrence as the degree of circu-
larity/roundness in the generated point-cloud. This approach has been applied
data from gene expression and physiology, astronomical data, and weather.

Y. Umeda, in [65], proposed a novel approach for the classification of volatile
time series: TDA is used to extract the structure of attractors, resulting efficient
for both chaotic and non-chaotic time series, achieving performances improved
of 18.5% compared to conventional approaches.

In [3] the occupancy of specific areas or rooms in a smart building is mon-
itored, using a method based on the analysis of a set of topological features
extracted from the data acquired in a room for a week by three different low-
cost sensors.

The set of signals to which TDA can be applied is today quite rich; it includes,
for example, physiological signals such as EEG or ECG (as in [26]), and financial
time series such as stock market indices. The analysis of market crashes in [36] is
quite interesting, because was the first application of TDA to this kind of data,
providing a new type of econometric analysis, which complements the standard
statistical measures, to perform a reliable early detection of early warning signals
of imminent market crashes.

5 New trends: PH into ML

The idea of allowing neural networks to learn topological information has been
explored most frequently by feature engineering, looking at some predefined stan-
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dard features conveying topological information. Only very recently, researchers
devoted such an effort in building topological layers to be used in deep learning.
Unfortunately, even if persistence diagrams and barcodes found a large number
of applications, the space of persistence diagrams lacks structure, e.g. different
persistence diagrams may have a different number of points, and several basic
operations are not well-defined, such as addition and scalar multiplication: the
(metric) space of persistence diagrams is not a Hilbert space. In addition, the
cost of computing the bottleneck or Wasserstein distance grows quickly as the
number of off-diagonal points in the diagrams increases [25].

To tackle this issue, a lot of effort has been devoted to vectorization and
kernel methods. Vectorizations of persistence diagrams is based on the construc-
tion of either finite-dimensional embeddings [1, 14, 19], i.e., embeddings turning
persistence diagrams into vectors in Euclidean space Rd. We already met some
of them in Section 3: landscapes and images are the most referred and used.

Persistence kernels are generalized scalar products that implicitly turn per-
sistence diagrams into elements of infinite-dimensional Hilbert spaces. As for
vectorization, the construction of kernels for persistence diagrams, preserving
their stability properties has attracted some attention. Most kernels have been
obtained by considering diagrams as discrete measures in R2. Convolving a sym-
metrized (with respect to the diagonal) version of persistence diagrams with a
2D Gaussian distribution, Reininghaus et al. [58] introduce a multi-scale ker-
nel to perform shape classification and texture recognition. Considering Wasser-
stein distance between projections of persistence diagrams on lines, Carriere and
Oudot [13] build another kernel and test its performance on several benchmarks.
Other kernels, still obtained by considering persistence diagrams as measures,
have also been proposed by Kusano et al. [44] and Le et al. [45].

Refer to [40] for further details about vectorization and kernel approaches to
represent barcodes.

Even though vectorization and kernel methods improved the use of persis-
tence diagrams in machine learning tremendously, several issues remain. For
instance, most of them only have a few trainable parameters; therefore, it may
be very difficult to determine which vectorization is going to work best for a
given task. On the contrary, kernel methods are generally efficient, but require
large memory resources to compute and store the kernel evaluations (whose com-
putations have at least linear complexity) for each pair of persistence diagrams.
Hence, such methods are very costly with respect to memory usage and running
time on large datasets.

In general, a framework using topological signatures in a neural network
could suffer from some limitations: (i) it may rely on a particular filtration, (ii)
it may lack stability results, and (iii) the differentiability of persistent homology
generally is not guaranteed with respect to the layer’s input. Hence, such a topo-
logical layer cannot be placed in the middle of a deep network. In the following a
list of most used and successful topological layers, most of them published with
code, is provided.
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5.1 Topological layers

In these last five years, many research groups defined and implemented topolog-
ical layers to exploit topological features in deep learning pipeline.

Hofer et al.[39] first developed a technique to input persistence diagrams
into neural networks by introducing their own topological layer, able to learn a
task-optimal representation during training.

In [33] the authors propose a differentiable Topology Layer that computes
persistent homology, based on level set filtrations and edge-based filtrations. It
is publicly available and its implementation is based on PyTorch. A note: this
layer may be placed at the beginning of a deep network and, using the fact that
our input layer is differentiable, it can be used to perform adversarial attacks
(gradient attack), i.e. cause a trained neural network to misclassify input.

PersLay [15] is one of the first neural network layers, designed to handle per-
sistence diagrams. It is based on a general framework for diagram vectorization:
maybe the simplest way to generate a permutation-invariant and differentiable
feature map is to turn each point of the persistence diagram into a vector, and
then sum over all such vectors to eventually get a single vector. This is the
core idea of Perslay: depending on the way the diagram points are turned into
vectors and on the permutation-invariant operation that is being used, one can
show that one can compute persistence images, persistence landscapes, persis-
tence silhouettes as particular instances of Perslay.

Very recently, in [43] the authors propose PLLAY, a layer based on the
weighted persistence landscapes. They show a tight stability bound that does
not depend on the input complexity; therefore PLLAY is less prone to extreme
topological distortions. Importantly, they provide guarantees of the differentia-
bility of PLLAY with respect to the layer’s input: hence, such a layer may be
placed anywhere in the network.

In [63] it is demonstrated how to fuse persistence image computation in super-
vised deep learning architectures: PI-Net is maybe the first framework using
deep learning for computing topological features directly from data. Authors
tested such framework on two applications: human activity recognition using
tri-axial accelerometer sensor data and image classification. Also, the authors
speeded up the extraction of persistence images form data of several orders of
magnitude, paving the way to new real-time applications for TDA.

6 Conclusions

The present paper provides an overview of TDA and PH, enabling the reader to
appreciate the remarkable steps to the spread and great popularity of such meth-
ods: (i) from persistence theory to computable topological descriptors, (ii) from
algorithms to fast computation, enabling people to compute topological features
and explore their efficacy (e.g. classification or clustering) in several application
domains; (iii) from the computation of PH-descriptors to the development of
topological layers for deep learning.
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Moreover, PH gave rise to novel techniques for improving or even understand-
ing CNN. For example, Guss and Salakhutdinov [37], Rieck et al. [59] proposed
a complexity measure for neural network architectures based on topological data
analysis; Carlsson and Gabrielsson [12] applied topological approaches to deep
convolutional networks to understand and improve the computations of the net-
work; and Naitzat et al [52] provide insights in how shallow and deep nets behave
with respect to the topology of input data.

In this perspective, we have foreseen that the interplay of PH with machine
learning and deep learning techniques will continue to be successful, for example,
in machine learning explainability, using the topological lens to look into the
black-box.
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