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A B S T R A C T   

Hyperspectral (HS) satellites like PRISMA (PRecursore IperSpettrale della Missione Applicativa) offer remarkable 
capabilities, yet they are constrained by a relatively coarse spatial resolution, curbing their efficacy in those 
applications that require pinpoint accuracy. Here we propose a fusion process, aimed at the enhancement of 
PRISMA HS spatial resolution by using the spatial and spectral information of Sentinel-2 multispectral (MS) data 
(HS-MS fusion process), validated against four airborne HS flights simultaneous to satellite overpasses on 
different land use distributions. Adopting the PRISMA panchromatic (PAN) image, the proposed solution was 
also compared with the results of a HS-PAN pansharpening process. A two-steps operational workflow is pro-
posed, based on two state-of-the-art and open-source algorithms. The first step consisted of the geocoding of 
PRISMA L2 products using Senintel-2 as reference and was accomplished with the phase-based algorithm 
implemented in AROSICS (Automated and Robust Open-Source Image Co-registration Software). The geometric 
displacement in L2 data was found to be between 80 m and 250 m, irregularly spatially distributed throughout 
the same scene and among scenes, and it was corrected by means of thousands of regularly spatially distributed 
tie points. A second-order polynomial transformation function was integrated in the algorithm. The second step 
consisted of employing the HySure (HS Super resolution) fusion algorithm to perform both the HS-MS fusion and 
the HS-PAN pansharpening, returning a PRISMA HS improved dataset with a spatial resolution of 10 m and 5 m, 
respectively. Four different per-band accuracy metrics were used to evaluate the accuracy of both products 
against airborne data. Overall, HS-MS data achieved increased accuracy in all validation metrics, i.e. + 28 % 
(root mean square error, RMSE), +23 % (spectral angle mapper, SAM), +7% (peak signal-to-noise ratio, PSNR) 
and + 11 % (universal image quality index, UIQI), with respect of HS-PAN data. These outcomes showed that 
using the spectral information of Sentinel-2 both spectral and spatial patterns were reconstructed more consis-
tently in three different urban and rural scenarios, avoiding the presence of blur and at-edge artefacts as opposed 
to HS-PAN pansharpening, therefore suggesting an optimal strategy for satellite HS data resolution enhancement.   

1. Introduction 

Hyperspectral (HS) image systems, with high spectral resolutions, 
lead to more accurate characterisation of the Earth’s surface and 
biosphere and assessment of its chemical and (bio)physical composition 
(Alicandro et al., 2022; Brezini and Deville, 2023; Lanaras et al., 2017; 
Vangi et al., 2021) with respect multispectral sensors (MS). In the 
context of spaceborne remote sensing, this finer spectral resolution has 

been exploited in several different Earth observation application do-
mains, ranging from natural resources, semi-natural environments, and 
urban areas (Qian, 2021). 

Among the last HS-related space missions, the PRISMA (PRecursore 
IperSpettrale della Missione Applicativa) (Loizzo et al., 2019), funded by 
the Italian Space Agency (ASI), opened new opportunities for the study 
and application of spaceborne HS information in Earth observation 
(Alicandro et al., 2022). It deploys an innovative optical instrument, 
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which comprises a HS sensor based on a prism spectrometer, in com-
bination with a panchromatic (PAN) camera. PRISMA was launched in 
March 2019 as precursor for future developments and releases (expected 
operating life of 5 years), with the purpose to assess the HS capability for 
monitoring Earth’s natural resources, ecosystems and atmosphere. The 
free-data-access to PRISMA data has been enabled since May 2020, 
while, (Cogliati et al., 2021; Guarini et al., 2018; Loizzo et al., 2019; 
Pignatti et al., 2022, 2013) an independent scientific CAL/VAL activity 
was made since 2019 by the PRISCAV project (PRISMA CAL/VAL), 
investigating the performance of the sensors over a set of selected areas 
covering different land-uses (Cogliati et al., 2021; Guarini et al., 2018; 
Loizzo et al., 2019; Pignatti et al., 2022, Pignatti et al. (2013)). Further 
scientific contributes have already been shared with the community, 
focusing non-photosynthetic vegetation detection and classification 
(Pepe et al. 2020; 2023), soil matter characterization (Angelopoulou 
et al., 2023), water bodies investigation (Amieva et al., 2023; Giardino 
et al., 2020; Niroumand-Jadidi et al., 2020), marine plastic litter 
detection (Kremezi et al., 2021), methane point sources assessment 
(Guanter et al., 2021), archaeology (Alicandro et al., 2022), fire severity 
mapping (Quintano et al., 2023), cryosphere (Bohn et al., 2022; De 
Gregorio et al., 2023) urban local climate zones classification (Vavassori 
et al., 2023), highlighting an increasing interest of diverse communities 
around these HS data. 

To achieve an acceptable signal-to-noise ratio (SNR) (Wang et al., 
2021; Zhang et al., 2023), the ground sampling distance (GSD) of 
PRISMA HS images is limited at 30 m x 30 m. Such trade-off prevents the 
applications to those frameworks requiring a spatial detailed analysis 
(Acito et al., 2022; Brezini and Deville, 2023; Niroumand-Jadidi et al., 
2020). 

The spatial resolution improvement of optical satellite imagery is a 
common issue in Earth observation frameworks, therefore largely 
addressed in the literature (Brezini and Deville, 2023; Dian et al., 2021; 
Vivone, 2023). Several applications may benefit from the improvement 
of spatial resolution, where it is necessary to distinguish specific spatial 
features in agricultural, lithological, glacier and urban contexts (Acito 
et al., 2022; Brezini and Deville, 2023; Kremezi et al., 2021; Niroumand- 
Jadidi et al., 2020), or classification tasks (Lanaras et al., 2017; Vangi 
et al., 2021). More generally, an increase in spatial resolution would also 
improve multi-sensor interoperability, combining HS and higher reso-
lution MS sensors. Alicandro et al. (2022), for example, expressed the 
possibility of a substantial archaeological multiscale analysis improve-
ment if robust pansharpening method would be developed for spatial 
resolution enhancement of PRISMA HS data. 

Pansharpening and image fusion represent the most common and 
effective approaches to enhance the spatial resolution of HS data (Dian 
et al., 2021; Vivone, 2023; Wang et al., 2021). The pansharpening 
technique (HS-PAN pansharpening) refers to the process of HS image 
spatial resolution improvement by exploiting the high-resolution geo-
metric detail provided by a single-band panchromatic (PAN) visible 
image; that is why spaceborne HS sensors, including PRISMA, often 
acquire a synchronous high-resolution PAN image. Pansharpening 
methods were the first to be applied, relying on the established use of 
this technique to improve the spatial resolution of MS images (Vivone 
et al., 2021). However, due to the significant gap between the spectral 
range covered by the PAN’s and HS’s spectra, the pansharpening 
approach generally returns both spectral and spatial distortions (Brezini 
and Deville, 2023; Dian et al., 2018). 

As an extension of pansharpening, the image fusion (HS-MS fusion) 
of a HS image with a MS image is based on exploiting the spatial in-
formation (finer than HS) and spectral information (finer than PAN) of 
MS data for HS spatial resolution improvement, preserving the consis-
tency with the original HS spectral information (Brezini and Deville, 
2023; Dian et al., 2021; Lanaras et al., 2017). The growing availability of 
high spatial and temporal resolution MS images has increasingly stim-
ulated the implementation of HS-MS fusion for HS spatial resolution 
enhancing. Among various space missions operating MS sensors, the 

Copernicus Sentinel-2 mission, operated by the European Space Agency 
(ESA), results to be suitable for the HS-MS fusion purposes, since it in-
cludes the free-available high spatial (GSD of 10 m) and temporal 
(revisit time of 5 days under the same viewing conditions) resolution. 
Exploiting Sentinel-2 MS information is interesting from both a quali-
tative and operative point of view. Alicandro et al. (2022) showed an 
optimal agreement between PRISMA and Sentinel-2 spectral signatures, 
specifically representative of pits, rocks, soils, sea and sand. Similarly, 
Giardino et al. (2020) and Niroumand-Jadidi et al. (2020) observed 
strong spectral consistency between the two sensors, in the visible (VIS) 
and NIR region (VNIR) at TOA and BOA respectively, while analysing 
water bodies. Also in forest land covers, high similarity between the 
overall signatures of the two sensors was reported (Vangi et al., 2021). 

Several pansharpening and HS–MS fusion algorithms have been 
developed. Vivone et al. (2021) published an exhaustive benchmark on 
the main pansharpening methods for multispectral images, while 
Yokoya et al. (2017) focused on the fusion of hyperspectral and multi-
spectral data. Dian et al. (2021) and Sara et al. (2021) reviewed the 
latest advances on HS-MS fusion, while Li et al. (2022) provided a 
comprehensive survey focused on deep learning approaches. Vivone 
(2023) proposed the last survey on this topic. Specific approaches to HS- 
MS fusion, broadly distinguishable in matrix-factorization, Bayesan and 
deep learning methods, have reached superior performances compared 
to earlier pansharpening-derived models (Sara et al., 2021; Selva et al., 
2015; Yokoya et al., 2017), especially in dealing with spectral and 
spatial discrepancies between HS and MS or PAN information (Dian 
et al., 2021; Qu et al., 2022; Simões et al., 2015; Vivone et al., 2023). 
Although there is growing interest toward advanced neural network 
architectures (e.g. convolutional neural network, generative adversarial 
network) due to the very promising and constantly improving results 
(Dian et al., 2021; He et al., 2021; Li et al., 2022; Qu et al., 2022), 
different issues limit their practical application, such as the training 
requirements (thousands of samples which are hard-to-obtain), high 
computational costs, limited generalization capabilities, and complex 
parameters setting (Dian et al., 2021; He et al., 2021; Qu et al., 2022; 
Vivone et al., 2023). Such limitations were pointed out by Kremezi et al. 
(2021). Conversely, matrix-factorization methods, especially those 
adopting unmixing approach to define image spectral priors, have 
achieved the most balanced ratio between quality of fused results, 
reduced reconstruction error, generalization, training-independence 
and efficiency of implementation (Dian et al., 2021; Lanaras et al., 
2017; Sara et al., 2021; Wei et al., 2015; Yokoya et al., 2017). 

In unmixing-based methods, extensively employed in HS-MS fusion 
framework (Brezini and Deville, 2023), the spectral information of each 
HS pixel is approximated as a mixture of pure spectral signatures 
(endmembers) in different proportions (abundance). Adopting the MS 
data as reference, the matching (HS-MS) spectral dictionary is then 
reconstructed at enhanced resolution, accounting, at pixel level, for the 
endmembers abundances, as well as for the relative spectral and spatial 
characteristics of the two sensors to improve the quality of reconstruc-
tion, described by the spectral response function (SRF) and the point 
spread functions (PSF) respectively (Dian et al., 2021; He et al., 2021; 
Lanaras et al., 2017; Simões et al., 2015; Veganzones et al., 2016; 
Yokoya et al., 2017). Simões et al. (2015) proposed the hyperspectral 
super-resolution model (HySure), an optimized unmixing-based algo-
rithm that formulates the fusion problem as a minimization of a convex 
objective function in a low-dimensional subspace configuration 
retrieved from the low-resolution HS image. Two very attractive fea-
tures of HySure are the automatic estimation of relative SRFs and PSFs 
included in its fusion processing, and its ambivalence in being able to be 
applied for pansharpening, though it was designed for HS-MS fusion. 
This capability made HySure widely applied in the literature (Acito 
et al., 2022; Brezini and Deville, 2023; Lanaras et al., 2017; Yokoya 
et al., 2017), with several scholars (Acito et al., 2022; Lanaras et al., 
2017; Wang et al., 2021) that adopted it as a robust baseline reference 
algorithm for results validation. 
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The application of any image fusion and/or pansharpening process 
requires a correct geometric co-registration of the images as a pre- 
requisite, since even small misalignments could turn into significant 
errors in the image fusion outputs (Yokoya et al., 2017). Co-registration 
is also necessary when different sensors (with different SNR, SRF, etc.), 
at different spatial resolution, are fused or compared. The success of the 
co-registration depends on how many reliable correspondences can be 
found between the two images, and on the level of homogeneity of their 
distribution along the entire scene (Barazzetti et al., 2014). PRISMA HS 
images present a geolocation accuracy up to 200 m (mission re-
quirements ≤ 400 m), variable between scenes and within the single 
scene. Alicandro et al. (2022), for example, who adopted PRISMA im-
agery for archaeological investigations, perceived the necessity of an 
improved georeferencing. Angelopoulou et al. (2023), had to enforce a 
manual selection of ground tie points on which a second-order poly-
nomial model was applied to rectify the residual geometric shift to 1–2 
pixels on PRISMA images. Vavassori et al. (2023) and Amieva et al. 
(2023) adopted an automatic non-parametric coregistration algorithm 
(Geoscience Extended Flow Optical Lucas-Kanade Iterative, GeoFolki) to 
correct PRISMA’s geolocation for classification purposes. Automatic co- 
registration methodologies mainly differ for the image matching algo-
rithms. Well-known are the feature-based strategies, such as the Scale 
Invariant Feature Transform (SIFT) (Lowe, 1999) and the Speeded Up 
Robust Features (SURF) (Bay et al., 2008), that rely on the detection of 
common and distinct object on the scenes (Bay et al., 2008; Scheffler 
et al., 2017), however, significantly reduced in the case of data coming 
from different sensors and/or with different spatial resolution (Vakalo-
poulou et al., 2019). The intensity-based is another class of methods that 
are based on the identification of corresponding grey value patterns 
between reference and target image (Scheffler et al., 2017). While 
earlier intensity-based methods suffered from sensibility to image de-
formations, and from high computational requirements (Long et al., 
2016), recently Scheffler et al. (2017) proposed the AROSICS (Auto-
mated and Robust Open-Source Image Co-Registration Software) open- 
source tool, adopting an optimized phase-based correlation procedure, 
aiming at the sub-pixel co-registration of multi-sensor remote sensing 
images and able to operate also with data at different pixel resolution. 
Phase-based subcategory methods exploit the translation property of the 
Fourier transformation to measure displacements between two images 
in the frequency domain. Since the dominant shift is highly recognizable 
by a sharp peak in the cross-power spectrum, they resulted more accu-
rate and insensitive to temporal land albedo variations than other 
intensity-based methods, even in poor SNR conditions (Gianinetto and 
Scaioni, 2008; Long et al., 2016; Scheffler et al., 2017; Skakun et al., 
2017; Zitová and Flusser, 2003). The AROSICS tool is widely adopted 
due to its effectiveness in achieving sub-pixel accuracies, in overcoming 
multi-sensor and multi-resolution limits, in requiring few input param-
eters to set, in computational efficiency, in its user-friendly layout 
(Brotoisworo et al., 2022; Stumpf et al., 2018). However, as far as we 
know, among the few contributions that dealt with the absolute geore-
ferencing correction of PRISMA data (Amieva et al., 2023; Vavassori 
et al., 2023), no experiments have implemented this cutting-edge al-
gorithm. This study represented a useful opportunity to test it on a such 
geo-incorrect imagery, by adopting Sentinel-2 as geometric reference. 
Actually, in Cogliati et al. (2021) the application of AROSICS was 
limited to the detection of displacement between VNIR and SWIR bands 
of L1 PRISMA data. 

To the extent of our current knowledge, only few studies dealt with 
the spatial resolution improvement of PRISMA HS images, most 
applying HS-PAN pansharpening methods Kremezi et al. (2021) Vivone 
et al. (2023), while only Acito et al. (2022) proposed a HS-MS fusion 
approach. 

The aim of this study is therefore to propose a robust methodology 
capable of addressing at the same time two issues affecting PRISMA HS 
images: i) solving the well-known geometrical displacement of PRISMA; 
ii) optimally improving the spatial resolution by preserving as much as 

possible both spatial and spectral information. For these purposes, a HS- 
MS co-registration and fusion workflow was implemented, using 
Sentinel-2 MS data as spatial and spectral reference on different sce-
narios. Fusion results were also extensively compared with HS-PAN pan- 
sharpening using the panchromatic PRISMA band. Two well-know and 
robust algorithms were adopted to fulfil the objectives, never fully 
employed on PRISMA imagery: AROSICS for co-registration, and HySure 
for both fusion and pan-sharpening. A strength of the present study was 
the availability of independent airborne high-resolution HS images to be 
used as reference for the quantitative assessment of the fused and pan-
sharpened results. Finally, guidelines are provided for adopting the 
optimal HS satellite data processing strategy, focused on PRISMA but 
scalable to other similar present and forthcoming missions, exploiting 
either panchromatic or Sentinel-2 data in combination with HS data. 

2. Data and methods 

2.1. Study area 

Three study areas were selected (Fig. 1), located in the Italian ter-
ritories of Grosseto (N42◦82′94′′, E11◦06′96′′), Prato (N42◦87′99′′, 
E11◦08′93′′) and Arborea (N39◦80′15′′, E8◦60′44′′), representing 
different land use spatial distributions including anthropic and semi- 
natural landscapes. Grosseto study area is composed by medium-small 
agricultural fields, interspersed by small rural urban/industrial settle-
ments; a forest area is present in the north-west part of the scene. Prato 
area includes urban and industrial patterns, surrounded by agricultural 
fields and semi-natural areas. Arborea area is a cropland, with a complex 
mosaic of large and small farms. 

2.2. Image datasets and pre-processing 

2.2.1. PRISMA 
The PRISMA HS system spans a wavelength range of 400 to 2500 nm, 

distributed among 239 bands with a spectral sampling interval < 12 nm, 
and it is composed by two hyperspectral cubes: the VNIR (66 bands, 
400–1000 nm) and the SWIR (173 bands, 1000–2500 nm). Adopting a 
push-broom image scanning mode, with a swath of 30 km (across track), 
covering 1000 pixels, field of view (FOV) of 2.77◦, the GSD is of 30 m 
(ASI - Agenzia Spaziale Italiana, 2020). The PAN frame, projected on the 
same swath, but covering 6000 pixels with its 5 m of GSD, is appended to 
the HS cubes. It covers the VIS spectral range between 400 and 700 nm. 
The satellite revolves in a circular Sun-synchronous low-Earth orbit, 
with a repeat cycle of around 29 days and with a < 7 days potential 
revisit pass (off-nadir), for on-demand specific requested target (Giar-
dino et al., 2020; Pepe et al., 2020). 

In this work, for all the study areas, PRISMA standard Level-2D 
products were used, containing bottom-of-atmosphere (BOA) reflec-
tance derived by a MODTRAN-based atmospheric correction of the at- 
sensor radiance (processor v.02.05). The product is ortho-projected 
and geocoded in UTM projection (EPSG: 32632), without use of external 
ground control points (GCPs). Four cloud-free images were acquired 
through on-demand request during PRISCAV survey campaign 
(Table 1): Grosseto 31st July and 1st August 2020; Prato 27th June 
2020; Arborea 30th May 2022. 

The preliminary band selection consisted of three steps: a) automatic 
elimination of “zero bands”, i.e. defective bands flagged as zero in 
metadata and/or bands with zero-valued pixels > 90 % out of the total; 
b) exclusion of spectral bands corresponding to water vapor absorption 
windows between 1350–1470 nm, 1800–1950 nm, and, as stated by 
Alicandro et al. (2022), at around 920, 1120 and 2020 nm; c) exclusion 
of bands poorly correlated to neighbouring ones (e.g. “salt-and-pepper”, 
“Gaussian like” noise), including the first 3 bands (406.9–––423.8 nm) of 
VNIR and the last 23 bands of SWIR (2342.8–––2477.1 nm) were also 
filtered out. The final HS spectral cube, consisting of 167 bands, did not 
vary among the four datasets. 
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A subset of the image was clipped for each study area (Fig. 1), 
matching the scene captured by an airborne HS survey (Section 2.2.3), 
and used as input scenes in HS-MS fusion process (Section 2.3.2); the 
entire PRISMA image was instead involved during co-registration pro-
cess (Section 2.3.1). 

2.2.2. Sentinel-2 
Sentinel-2 satellites are equipped with a MS sensor – namely Multi-

Spectral Instrument (MSI) − performing spectral observations between 
440 nm and 2200 nm, distributed in 13 bands at 12-bit radiometric 
resolution, at native GSD of 10 m (VIS and NIR), 20 m (NIR and SWIR) or 
60 m (auxiliary water content and cirrus bands), providing a revisit time 
of 5 days at mid-latitudes. Sentinel-2 Level-1C products geolocation 

accuracy is reported to be within 8 m (Sentinel Online, 2021). A series of 
Sentinel-2 Level-2A (BOA, geocoded in UTM projection data − EPSG: 
32632) images covering the same study areas and as close as possible to 
acquisition dates of PRISMA images were retrieved (Table 1). One scene 
for Grosseto study area (1st August 2020, same day as the second 
PRISMA image), one scene for Prato (27th June 2020, same day as 
PRISMA), and one scene for Arborea (31st May 2022, 2 days before 
PRISMA) were downloaded. 

The pre-processing consisted of a pixel upsampling to 10 m GSD of 
those bands whose native GSD was 20 m, using the red band (B4) as 
pixel spacing reference and the nearest neighbour interpolation as 
resampling method. This intra-equalization of bands’ GSD was neces-
sary in anticipation of the HS-MS fusion. The open-source SNAP v.9 

Table 1 
Employed data schematization. (N42◦87′99′′, E11◦08′93′′) and Arborea (N39◦80′15′′, E8◦60′44′′).  

Study Area PRISMA Sentinel-2 Airborne  
Date Roll angle Date Date Payload 

Grosseto 
(N42◦82′94′′, E11◦06′96′) 

31st July 2020  −12.7◦ 1st August 2020 31st July 2020 CASI/SASI 
1st August 2020  +17.0◦ 1st August 2020 CASI/SASI 

Prato 
(N42◦87′99′′, E11◦08′93′′) 

27th June 2020  +8.3◦ 27th June 2020 22nd June 2020 HySpex (VNIR/SWIR) 

Arborea 
(N39◦80′15′′, E8◦60′44′′) 

30th May 2022  +13.6◦ 31st May 2022 30th May 2022 CASI/SASI  

Fig. 1. Continental and national location of the study areas (on the top). On the bottom, the true color overviews of Grosseto (left), Prato (middle) and Arborea 
(right) study areas. 
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software (ESA SNAP Cookbook, 2024), implemented via the SNAP- 
Python API interface (snappy), was used to perform the pre- 
processing. The final multispectral bands involved in subsequent ana-
lyses were Blue (B2), Green (B3), Red (B4), Red-Edge01 (B5), Red- 
Edge02 (B6), Red-Edge03 (B7), NIR (B8), SWIR01 (B11), SWIR02 (B12). 

The entire Sentinel-2 images were employed to co-register the entire 
PRISMA HS imagery. Successively, the first were clipped according to 
PRISMA HS subset (Section 2.2.1.) to be involved in the HS-MS fusion 
step. 

Fig. 2. Flowchart schematizing the HS-MS fusion processes that characterized the present study.  
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2.2.3. Airborne data: CASI/SASI and HySpex VNIR/SWIR 
At Grosseto and Arborea sites, airborne HS measurements were made 

simultaneously with PRISMA overpasses (in clear-sky conditions) within 
the PRISCAV project operating a CASI/SASI (compact VNIR/SWIR 
airborne spectrographic imager) payload; at Prato site, airborne HS 
measurements were made 4 days before PRISMA overpass operating a 
HySpex sensors payload (Table 1). CASI/SASI data were made available 
within the PRISCAV project, while HySpex data are freely available from 
Tuscany regional administration. 

The CASI/SASI (Itres Reasearch ltd., Canada) consist of two push- 
broom sensors (jointly mounted on gyro-stabilisation platform): the 
CASI-1500, covering the VNIR spectral range within 380 and 1050 nm, 
distributed over 96 bands, with a spectral sampling interval of 7.2 nm; 
the SASI-600, covering the SWIR between 950 nm and 2450 nm by 100 
bands, with a sampling interval of 15 nm. The spectral distance between 
central wavelengths of PRISMA HS and CASI/SASI sensors never 
exceeded 3 nm (CASI) and 7 nm (SASI) across the entire spectral range. 
The initial GSD of returned image strips was 1.5 m for CASI, and 3.75 m 
for SASI (Grosseto). Although for Arborea the SASI dataset was acquired, 
the sensor incurred in hardware technical problems during the flight 
that hampered the dataset. 

The HySpex sensor (Norsk Elektro Optikk, Norway) incorporates two 
separate push-broom HS scanners, the VNIR-1800 (400–1000 nm) and 
the SWIR-384 (960–2500 nm). Arranging a spectral sampling interval of 
3.3 nm for VNIR and 5.5 nm for SWIR, the resulting bands were 186 and 
288 respectively. The spectral distance with PRISMA HS central wave-
lengths was ≤ ± 2 nm. The GSD was 1 m for VNIR and 3 m for SWIR. 

The HS images deriving from both CASI/SASI and HySpex sensors 
were radiometrically corrected, calibrated and ortho-projected. The at-
mospheric correction was carried out, separately for VNIR and SWIR, 
employing the atmospheric radiative transfer model MODTRAN-5 
implemented into the ATCOR-4 software (ReSe Applications LLC, Lan-
geggweg 3, CH-9500 Wil SG, Switzerland). The ground reflectance and 
radiance, collected by FieldSpec 3 instrument (Malvern Panalytical Ltd, 
Malvern, UK) (Grosseto and Prato) and Spectral Evolution RS5400 
(Haverhill, Massachusetts, USA) (Arborea) in test areas during over-
flight, were assumed as reference during the calibration process. Sub-
sequently, the image strips were mosaicked, resampled to 5 m, 10 m, and 
30 m pixel spacing applying a bilinear interpolation, and the respective 
VNIR and SWIR spectral cubes were stacked. During this process, carried 
out using GDAL library (GDAL, 2024), the pixels matrices were aligned 
to those of co-registered PRISMA PAN, Sentinel-2 and co-registered 
PRISMA HS respectively. The resulting datasets were spectral resam-
pled to the PRISMA SRF using the Spectral Resampling tool imple-
mented in the ENVI 5.6 software (NV5 Geospatial, Broomfield, 
Colorado, USA), after that the noisy bands had been filtered out as 
already done for PRISMA HS (Section 2.2.1). The Spectral Resampling 
tool automatically builds the SRF on a Gaussian model employing the 
full width at half maximum (FWHM) as spacing values. 

To overcome different reflectance scaling factors between images, all 
the spaceborne and airborne images were rescaled to floating point 
digits at 32 bits [0, 1]. 

2.3. Processing workflow 

The proposed workflow consisted of three main processing steps, 

summarized in Fig. 2. Most of the procedures were carried out imple-
menting open-source and free-available software, libraries and/or codes 
(Python libraries, QGIS, SNAP). Excluding the validation process, in 
which the pre-processing steps of airborne data required commercial 
software, the HS-MS fusion model was the only operative phase of the 
workflow to have been carried out using a non-open-source environ-
ment (MATLAB). 

2.3.1. Image co-registration 
The AROSICS algorithm (Scheffler et al., 2017) applies an improved 

phase-correlation approach (Foroosh et al., 2002), employing discrete 
Fourier transformation domain (Fastest Fourier Transform in the West, 
FFTW) (Bracewell and Kahn, 1966; Frigo and Johnson, 2005, 1997) to 
derive pixel geometrical displacement among a pre-constructed grid of 
tie points. The detailed description of the algorithm is available in 
Scheffler et al. (2017). In this study, the local co-registration algorithm 
was employed instead of global co-registration. The algorithm presented 
some intuitive parameters that were easily set during the main steps of 
its chain process (Table 2). In detail, it applies the phase-correlation 
algorithm toward a moving window across a regular pre-set grid of tie 
points, so as the magnitude of the shift for each tie point is estimated 
locally. 

As a prerequisite for the application of phase correlation, the spatial 
resolution of the two images (reference-target) is temporarily equalised 
by an automatic image down-sampling, a highlight overpassing the 
different spatial resolutions issue. A reliability score [0–100 %] is first 
calculated for each tie points to filter them by applying the formulas (3), 
(4), (5) and (6) in Scheffler et al. (2017), which aim to analyse the three- 
dimensional shape of the cross-power spectrum and to quantify peak 
sharpness. The final thresholding filtering was performed by excluding 
all the points presenting reliability score < 75 %, although Scheffler et al. 
(2017) declared that the points can be maintained until the 30 % reli-
ability threshold. 

The local X/Y shift values detected for each tie point were finally 
adopted for the construction of a second-order polynomial geometric 
transformation function, to warp the target image and then correct the 
misregistration with the respective reference image. In the original 
AROSICS tool, only the first-order polynomial function is available for 

Table 2 
AROSICS parameters set for the estimation of X/Y shift.  

PARAMETER VALUE DECRIPTION 
Moving window size 15x15 pixels X/Y size of moving window; number of pixels adopting the resolution of target image 
Grid resolution 30x30 pixels X/Y distance of tie points within the generated dense grid; number of pixels adopting the resolution of target image 
Resampling algorithm nearest neighbour the resampling algorithm used during the automatic temporary equalization of spatial resolution between target and reference images 
Max iterations 25 maximum number of iterations during matching process 
Maximum shift 30 pixels maximum tolerated X/Y shift threshold beyond which the point is considered unrealistic and thus the respective tie point is rejected.  

Table 3 
HySure parameters and respective set of values combinations tested during 
tuning.  

HySure 
parameter 

Description Values tested 

λm regularization parameters (control the 
optimization terms) 

1, 20, 50, 08 
λϕ 0.001, 0.005, 

0.01, 0.05 0.1 
p subspace dimensionality (number of 

endmembers) of HS image that was expected 
to be retrieved from VCA 

2, 10, 25, 50 

λR Regularization parameter for relative SRF 
auto-estimation 

5, 10, 50 

λB Regularization parameter for relative PSF 
auto-estimation 

5, 10, 50 

X/Y windows 
size 

X/Y dimension (pixels at highest resolution) of 
convolution kernel size (2D cyclic 
convolution) that supports the auto- 
estimation of PSF 

5, 10, 15  
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shift correction. This did not result suitable enough to fit the actual 
geometrical displacement found in PRISMA. In our application, the 
source code was therefore integrated with a second-order polynomial, 
through GDAL library. The nearest neighbour resampling method was 
used to minimize the eventual manipulation of the original pixel values. 

To improve the correspondences detection, by minimizing the 

residual measurement errors (Scaioni et al., 2018), the algorithm was 
iterated for each reference-target (Sentinel-2 − PRISMA) band pairs that 
present the closest central wavelength (e.g. B2-B12, B3-B21), for a total 
of 9 matches (the number of employed Sentinel-2 bands). For each 
match, the point grid was reinstituted reporting the specific X/Y shift 
estimated for that bands pair. The final grid, reporting the X/Y shift 

Fig. 3. Spatial distribution of tie points grid on the entire PRISMA HS image for the four scenes Grosseto_0731, Grosseto_0801, Prato and Arborea, as resulted by the 
co-registration algorithm, vested by a color palette indicative of the reliability score (on the top). On the bottom, the respective histogram plot reporting the frequency 
of the absolute shifting magnitude (in meters) among points, with the mean (red dashed line) and median (black dashed line) values pointed out. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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values employed in successive processes, was retrieved by applying a 
composite process, in which, for each tie point, the X/Y shift of the one 
that reached higher reliability in the respective 9 reference-target 
matches was chosen to be included in the final grid. 

After having quantified and corrected the surface displacement of the 
entire PRISMA HS/PAN images, all the following analysis were con-
ducted on a subset of the whole PRISMA scene to target the central part 
of the scene. 

2.3.2. HS-MS fusion and HS-PAN pansharpening 
The state-of-the-art HySure (Simões et al., 2015, 2014) was imple-

mented via MATLAB to both fuse PRISMA HS and Sentinel-2 MS images 
and apply pan-sharpening between HS and PAN. 

The algorithm addresses the fusion problem as a minimization of a 
convex objective function in a subspace configuration retrieved from the 
low-resolution HS image. Specifically, the model integrates the well- 
known VCA algorithm to estimate the subspace dimension, a rapid 
technique that reduces the processing time in endmember extraction 
(Brezini and Deville, 2023), acting as a matrix linear unmixing problem. 
The ill-posed nature of the reduce-dimensionality problem makes it 
necessary the implementation of an edge-preserve regularization pro-
cess, also integrated into HySure in the form of VTV (Bresson and Chan, 
2008), accounting for both spatial and spectral sensor specifics (Simões 
et al., 2015). Finally, the convex optimization is solved by the Split 
Augmented Lagrangian Shrinkage Algorithm (SALSA), which applies the 
Alternating Direction Method of Multipliers (ADMM) optimization 
method (for an exhaustive explanation of the algorithm, please refer to 
(Simões et al., 2015). 

Matching spatial and spectral responses of the two sensors is needed 
to maintain a physical significance of the fusion process (Brezini and 
Deville, 2023; Inamdar et al., 2020; Lanaras et al., 2017; Otazu et al., 
2005). The HySure way to calculate the relative SRF and PSF of the two 
sensors is data-driven from the images, approaching it as another convex 
quadratic optimization problem (Simões et al., 2015). 

The HySure model depends on several parameters (Table 3). The best 
combination of model parameter values was set by careful tuning, 
adopting the combination that resulted in the best accuracy assessed 
among the various tested ones, thus adapted to each specific dataset and 
separately for HS-MS fusion and HS-PAN pan-sharpening. The evalua-
tion of tuning results was carried out both visually and analytically, by 
applying the accuracy assessment procedure (validation data and ac-
curacy metrics) as implemented in Section 2.3.3. The values setting was 
however initialized in accordance with the suggestions provided by the 
original authors (Simões et al., 2015) and successive implementation by 
other scholars (e.g. Yokoya et al., 2017). 

Performing the ADMM approach for optimization increases the 
computational cost, counterbalanced by setting an appropriate number 
of iterations (Acito et al., 2022). The number of iterations for ADMM was 
set to 200 (default) as suggested by (Simões et al., 2015). 

2.3.3. Accuracy assessment 
Quantitative and qualitative evaluation of the fused images was 

performed by measuring their spectral and spatial consistence with 
respect both the original HS images and the high-spatial HS reference 
dataset, using different metrics. A first assessment relied on the visual 
comparison between spectral signatures of fused/pansharpened image 
(output) and the high-resolution (resampled at 10 m or 5 m respectively) 
airborne HS data (reference). For a more exhaustive comparison, the 
signatures of the original PRISMA image and Sentinel-2 were also in-
tegrated into the same comparison. Spectral signatures were retrieved 
over a series of region of interests (ROIs). ROIs had the size of PRISMA’s 
original GSD (30 m) and, therefore, each ROI is contained in at least 1 
PRISMA pixel, 9 fused/Sentinel-2 pixels and 36 pan-sharpened pixels. 
These ROIs were carefully chosen by visual inspection to be purely 
representative (at all resolutions) of three macro land user/cover (LUC) 
on the scene (green vegetation, bare soil, urban), while a small part 

which laid at the border between two adjacent LUCs (e.g. soil-green 
vegetation) is used to detect the presence of edge-artefacts. In total, 
40 ROIs for each study area (10 per LUC) were retrieved, distributed 
around the whole scenes to be as representative as possible of the land 
use and spatial heterogeneity distribution. 

To perform a robust and comprehensive accuracy assessment of both 
the HS-MS fusion and HS-PAN pan-sharpening outputs, several state-of- 
the-art validation metrics were computed on a pixel basis. The root 
means square error (RMSE) between the fused/pansharpened image, 
and the reference truth was calculated for each pixel (RMSEP), and for 
each band according to: 

RMSEP =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
nb
∑nb

ib=1
(pib − p̂ ib)

2

√√√√ (1)  

RMSEb =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
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np
∑np

xy=1

(
pxy − p̂xy

)2
√√√√ (2)  

where the symbol ̂ differentiates the reference truth image, pib indicates 
the pixel i for a specific band b; nb is the number of bands; pxv indicates 
the pixel in the xy position on the specific analysed image band; np is the 
number of pixels in the specific analysed image band. 

The Spectral Angle Mapper (SAM) (Yuhas, Goetz, and Boardman 
1992) was used to calculate the per-pixel angle between each ith pixel 
spectrum (x) of fused/pansharpened image and the respective pixel 
spectrum of the reference truth image (x̂) (SAMp). The SAM, expressed 
in in radians [0, π], measures the spectral similarity of the compared 
pixels, by comparing the shape of their spectra. The more the SAM value 
tends towards 0, the lower the spectral distortion, indicating higher 
spectral affinity between the compared spectra. The average over all 
pixels was also computed as quality summary indicator of the entire 
fused/pansharpened output. 

SAMp = arcos
(∑nb

i=1(xi • x̂i)
‖xi‖2‖x̂i‖2

)
(3)  

The peak signal-to-noise ratio (PSNR) stands for the spatial reconstruc-
tion quality of the fused/pansharpened product. For each band PSNRb is 
computed while the summary quality measure of the entire output is 
retrieved by averaging the PSNR value over all bands. It is expressed in 
decibel (dB) and directly proportional to the similarity between the 
compared images, with higher values corresponding to higher spatial 
reconstruction quality. 

PSNRb = 10 • log10

(
max(xi)

2

‖xi − x̂ i‖
2
2/P

)
(4)  

where P represents the number of pixels in a band; max(xi)2 is the 
maximum pixel value in the specific band. 

Finally, the universal image quality index (UIQI) was employed as 
final evaluator of the spectral correlation between the two images. The 
UIQI value ranges between −1 (highest spectral distortion) and 1 
(lowest spectral distortion). The UIQIb was computed for each band, 
while the average value among bands was retrieved as summary quality 
metric of the entire output. 

UIQIb =
4 • δxx̂ • μx • μx̂(

σ2x + σ2
x̂
)
•
(
μ2x + μ2

x̂
) (6)  

where δx̂x is the covariance between reference and fused/pansharpened, 
while σ2 and μ denote their variance and mean respectively. 

Signatures comparison and validation metrics calculation were per-
formed via Python libraries. 

G. De Luca et al.                                                                                                                                                                                                                                



ISPRS Journal of Photogrammetry and Remote Sensing 215 (2024) 112–135

120

3. Results 

3.1. Geometrical displacement of PRISMA 

The semi-automatic process for image co-registration, made with 
AROSICS algorithm, returned several information about the geolocation 
error affecting PRISMA images. The by-product of this process, the tie 
point grid, which consisted of around 3550 (Grosseto, both dates), 3650 
(Prato) and 3910 (Arborea) correspondences respectively, provided i) 
the spatial distribution of the X/Y shift of each point, ii) the respective 
direction shift vector, iii) the magnitude of the X/Y shift of each point, 
and iv) a reliability score computed to filter low-standard correspon-
dences (reliability < 75 %). Only the latter two information have been 
reported here (Fig. 3), meanwhile the first two ones are consultable in 
the supplementary material attached to this manuscript. 

Most of the tie points had high values of reliability in all the study 
areas. The unreliable points observable in the figures (tending towards 
red) are for illustrative purposes only. These points were in fact excluded 
during the filtering procedure before applying the warping process. 

The magnitude of the spatial shift is quite homogeneous among the 
two images focused on Grosseto and Arborea. A slight difference is 
observable in Prato compared to the other areas, especially for the fre-
quency distribution among points. Highest shifts were found in Prato 
(mean 170 m and median 172 m), while Grosseto_0731 reached lowest 
average displacement, whit a mean shift of 118 m. In both Grosseto 
areas and Arborea, values that regularly hovered around zero are 
observable. 

3.2. Image fusion and pansharpening 

Table 4 shows the resulting averaged (and respective standard de-
viation) scoring of RMSE, SAM, PSNR and UIQI overall accuracy metrics, 
obtained by comparing the HySure outputs (fused or pansharpened) 
with the respective airborne images reference. For a more consistent 
assessment, the accuracy metrics calculated for each band (RMSEb, 
UIQIb and PSNRb) are plotted in Fig. 4, while the spatial distribution of 
the per-pixel accuracy is represented by the RMSEp and the SAMp maps 
in Fig. 5, indicating the magnitude and the spectra angle of the error at 
each pixel spectrum (Yokoya et al., 2017). The relative cold-warm color 
palette adopted for the two maps describes the level of spectral simi-
larity of each pixel: the warmer the color (yellow), the worse the spectral 
quality; the colder the color (dark blue, RMSEp; dark purple, SAMp), the 
greater the spectral similarity. It is important to remind that for Arborea 
study area, only the VNIR part of the spectrum was analyzed, due to the 
unavailability of the airborne SASI SWIR reference image. 

The overall spectral similarity is very high for all configurations, 
with a better performance of the fusion process output as compared to 
the pansharpened. The worst performance in terms of RMSE, SAM and 
UIQI are found in the Prato area. Nevertheless, even in the worst case, 
the absolute error values are relatively small (worse average RMSE =
0.071, worse average SAM = 0.187 rad and worse average UIQI =
0.594). The spectral dissimilarity is confirmed by the average values 

expressed as a function of the spectral bands (Fig. 4), for which the 
pansharpened Prato outputs reached more critical UIQIb values, corre-
sponding to a substantial loss of nearly 0.3 with respect to the other 
scenes and to the fusion output of the same scene. Albeit with different 
intensity, this gap between accuracy metrics values of fusion and pan-
sharpening outputs is observable in all the scenes. 

Contrarily, the spatial quality metrics, empirically described by the 
higher PSNR values, indicates the Prato fused image as better recon-
structed (25.949 dB). Both Grosseto scenes showed similar results in 
terms of overall and per-band accuracy, and of difference performance 
between the two adopted methodologies (fusion and pansharpening). 
This latter aspect becomes evident observing the gradient color contrast 
in the RMSEp and SAMp maps in Fig. 5. The pansharpened images 
present a slightly lower spectral quality reconstruction. As expected, 
higher values of RMSEp and SAMp are equally concentrated at the edges 
of geometrical objects/shapes on the earth’s surface (e.g. edges of 
buildings, boundaries between one agricultural field and another, road 
edges, etc.). Noticeable is the greater sensitivity of the SAM index to 
water bodies (river in Prato and lakes in Grosseto), with high values not 
equally observable in RMSEp map. 

The fused/pansharpened (orange line) and the original PRISMA 
(dashed black line) signatures, retrieved from the 40 representative 
ROIs, are significantly correlated along the entire spectrum in all the 
comparisons (slight divergences are observable only on urban surfaces). 
On the other hand, discrepancies are observable between PRISMA (both 
fused and pansharpened) and reference airborne images: in the first 
bands of SWIR (930 and 1300 nm), the discrepancies are common in all 
the scenarios, thus refuting what was observed in Fig. 4; the divergency 
between 730 and 920 nm observable only in Arborea and Grosseto 
(0731); and that one between 1500 and 1750 nm present in Grosseto 
0731. These discrepancies, however, were not affected by the fusion 
and/or pansharpening process, as they were already observable with 
original PRISMA images. In general, the spectral signatures retrieved 
from Prato showed the best cross-sensor fit on all the analysed land 
covers, differently to what was observed in Table 4. 

The visual interpretation of results is still a very strong error indi-
cator (Vaiopoulos and Karantzalos, 2016; Wang et al., 2021), and sup-
ported the accuracy assessment. In particular, the careful band-by-band 
inspection of all the tested outputs made it possible to see how, in most 
spectral bands, the HS-MS fusion process outperformed HS-PAN pan-
sharpening in terms of spatial information retaining. The latter, in fact, 
resulted affected by strong blurred artefacts in some image bands. This 
was found mainly in Prato and Arborea sites (Fig. 14), where the het-
erogeneity of the urban or intensively agricultural landscapes 
mosaicking is more apparent. In Prato, in particular, the blurred arte-
facts were noticeably present in correspondence to urban or natural 
green areas. However, the three true color images observable on the top 
of Figs. 6-13, showing, in detail, a representative region of the respective 
scene, highlight that both fusion and pansharpening processes per-
formed optimally in the VIS region (similar vivid color tonality), where 
the spectral information obtained from MS and PAN was complete in 
both cases. 

Table 4 
Accuracy metrics values (mean and standard deviation) computed, for each study area, by comparing the PRISMA fused and pansharpened HySure outputs with the 
respective airborne reference HS images. The most suitable parameters values, founded for each situation, are also reported.   

RMSEp SAM PSNR UIQI 
μ ±σ μ ±σ μ ±σ μ ±σ 

Grosseto_0731 Fused R10 B10 p50 phi-0.005 λm1 10 m 0.039 0.014 0.095 0.035 24.983 3.309 0.932 0.025 
Pansharpened R10 B10 p50 λϕ0.01 λm20 W10m 0.045 0.020 0.110 0.055 21.898 1.687 0.860 0.072 

Grosseto_0801 Fused R10 B10 p50 phi-0.02 λm20 10 m  0.036  0.018  0.106  0.099  23.807  3.284  0.885  0.065 
Pansharpened R10 B10 p25 λϕ0.005 λm1 W10m  0.042  0.022  0.123  0.106  22.566  2.096  0.838  0.073 

Prato Fused R10 B10 p50 λϕ0.01 λm1 W10m  0.050  0.034  0.140  0.087  25.949  2.459  0.778  0.067 
Pansharpened R10 B10 p10 λϕ0.001 λm1 W15m  0.071  0.048  0.187  0.127  24.031  2.365  0.594  0.122 

Arborea Fused R10 B55 p10 λϕ0.02 λm1 W10m  0.018  0.022  0.105  0.099  25.114  1.742  0.911  0.049 
Pansharpened R10 B10 p10 λϕ0.01 λm20 W10m  0.025  0.028  0.134  0.108  24.983  4.773  0.858  0.078  
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Fig. 4. The plots report the per-band accuracy metrics (RMSEb, UIQIb and PSNRb) curves, as functions of the wavelengths of the spectral bands, computed for each 
study area, by comparing the PRISMA fused and pansharpened HySure outputs with the respective airborne reference HS images. 
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Fig. 5. Spatial distribution of per-pixel RMSE and per-pixel SAM, computed for each study area by comparing the PRISMA fused and pansharpened HySure outputs 
with the respective airborne reference HS images. The resulted accuracy maps generated from the HS-MS fused and the HS-PAN pansharpened outputs are placed side 
by side for an immediate visual comparison. 
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Fig. 6. Grosseto 0731 study area. On the top row: true color PRISMA fused image, as returned by HySure HS-MS fusing process (left); Sentinel-2 image (middle); 
original PRISMA HS image (right). On the bottom, the spectral signatures retrieved from the PRISMA fused and original, airborne reference and Sentinel-2 images are 
plotted, representing four representative land cover classes (vegetation, top-left; bare soil, top-right; urban, bottom-left; edges, bottom-right). 
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Fig. 7. Grosseto 0801 study area. On the top row: true color PRISMA fused image, as returned by HySure HS-MS fusing process (left); Sentinel-2 image (middle); 
original PRISMA HS image (right). On the bottom, the spectral signatures retrieved from the PRISMA fused and original, airborne reference and Sentinel-2 images are 
plotted, representing four representative land cover classes (vegetation, top-left; bare soil, top-right; urban, bottom-left; edges, bottom-right). 
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Fig. 8. Prato study area. On the top row: true color PRISMA fused image, as returned by HySure HS-MS fusing process (left); Sentinel-2 image (middle); original 
PRISMA HS image (right). On the bottom, the spectral signatures retrieved from the PRISMA fused and original, airborne reference and Sentinel-2 images are plotted, 
representing four representative land cover classes (vegetation, top-left; bare soil, top-right; urban, bottom-left; edges, bottom-right). 
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Fig. 9. Arborea study area. On the top row: true color PRISMA fused image, as returned by HySure HS-MS fusing process (left); Sentinel-2 image (middle); original 
PRISMA HS image (right). On the bottom, the spectral signatures retrieved from the PRISMA fused and original, airborne reference and Sentinel-2 images are plotted, 
representing four representative land cover classes (vegetation, top-left; bare soil, top-right; urban, bottom-left; edges, bottom-right). 

G. De Luca et al.                                                                                                                                                                                                                                



ISPRS Journal of Photogrammetry and Remote Sensing 215 (2024) 112–135

127

Fig. 10. Grosseto 0731 study area. On the top row: true color PRISMA fused image, as returned by HySure HS-PAN pansharpening process (left); PAN image 
(middle); original PRISMA HS image (right). On the bottom, the spectral signatures retrieved from the PRISMA pansharpened and original, airborne reference and 
Sentinel-2 images are plotted, representing four representative land cover classes (vegetation, top-left; bare soil, top-right; urban, bottom-left; edges, bottom-right). 
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Fig. 11. Grosseto 0801 study area. On the top row: true color PRISMA fused image, as returned by HySure HS-PAN pansharpening process (left); PAN image 
(middle); original PRISMA HS image (right). On the bottom, the spectral signatures retrieved from the PRISMA pansharpened and original, airborne reference and 
Sentinel-2 images are plotted, representing four representative land cover classes (vegetation, top-left; bare soil, top-right; urban, bottom-left; edges, bottom-right). 
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Fig. 12. Prato study area. On the top row: true color PRISMA fused image, as returned by HySure HS-PAN pansharpening process (left); PAN image (middle); original 
PRISMA HS image (right). On the bottom, the spectral signatures retrieved from the PRISMA pansharpened and original, airborne reference and Sentinel-2 images are 
plotted, representing four representative land cover classes (vegetation, top-left; bare soil, top-right; urban, bottom-left; edges, bottom-right). 
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Fig. 13. Arborea study area. On the top row: true color PRISMA fused image, as returned by HySure HS-MS PAN pansharpening (left); PAN image (middle); original 
PRISMA HS image (right). On the bottom, the spectral signatures retrieved from the PRISMA pansharpened and original, airborne reference and Sentinel-2 images are 
plotted, representing four representative land cover classes (vegetation, top-left; bare soil, top-right; urban, bottom-left; edges, bottom-right). 
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In terms of computation demand, the process of HS-MS fusion took 
between 1800 and 2500 s to complete the 200 iterations per image with 
an Intel Core i7-12700 CPU running at 2.10 GHz with 16 GB of RAM, 
while time rises to 8000 s for pansharpening. Computation time is 
strictly dependent on image size, pixel size and number of iterations. 

4. Discussion 

4.1. Image co-registration 

Finding an effective solution to address the PRISMA geometrical shift 

was necessary, due to the fast-growing demand by the EO-product 
providers (scientists, public agencies, industrial/business sector). The 
results of this study substantiated the declared geolocation accuracy of 
PRISMA imagery, with an average spatial error between 118 m and 170 
m in all scenes, although it was found that the error is variable along the 
image (Figures S1-S5 in supplementary material). This precluded the use 
of models based on rigid displacements (first degree polynomial), in 
favour of a second-degree polynomial model to fully comply with the 
variable PRISMA shift. Similarly, Angelopoulou et al. (2023), enforced a 
manual selection of tie points on which a second-order polynomial 
model was applied to rectify the residual geometric shift to 1–2 pixels on 

Fig. 14. Detailed overview focused on the blur artefacts present in some pansharpened (HS-PAN) PRISMA bands of Prato and Arborea study areas, compared to 
relative fused (HS-MS) and Sentinel-2 MS ones. The image band used as example is set on 950 nm (fused and pansharpened) and 833 nm (Sentinel-2). 
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PRISMA images. Moreover, in AROSICS the correction was optimized 
using a moving window, in which an image portion is isolated from any 
surrounding high-distortion differences, allowing the local estimation of 
the shift and a more adequate transformation function. 

When the co-registration is computed using single image pairs, it is 
expected that the advantages will be greater, as each slave image’s ir-
regularities are uniquely addressed (Barazzetti et al., 2014). Addition-
ally, the composite process proposed in this study minimized residual 
errors raised during per-band image matching, ensuring higher-reli-
ability tie point retrieval than comparing each pair of bands individually. 
Exception are the points in proximity to image edges, on water bodies, as 
already reported in the literature (Brotoisworo et al., 2022), and some 
residual randomly scattered across the scenes. 

Often, if the time range between the target and the reference image is 
large, mismatches might arise due to variations at the surface, or due to 
changes in the solar angle (Chen and Jiang, 2021; Scaioni et al., 2018). 
The high temporal resolution of Sentinel-2 deals properly with this 
problem since most of the times close acquisition times to PRISMA’s one 
is present. 

Generally, in this study all the advantages claimed for AROSICS, 
namely the requirement of few input parameters, the possibility of 
managing multiple sensors, dealing with differences in reflectance, 
viewing geometry, acquisition mode and spatial resolution with no need 
for knowledge of remote system technical details and acquisition pa-
rameters, and the capability to return a point-based shapefile containing 
all the displacement statistics (e.g.: XY shift, reliability, etc.) were posi-
tively experienced. 

4.2. Image fusion and pansharpening 

Both HS-MS fusion and HS-PAN pansharpening yielded a satisfactory 
reconstruction of the spectral details in the improved-resolution PRISMA 
HS image, although the analyses reported here have demonstrated a 
superiority of the first approach compared to the second one. Still, the 
HS-MS outperformed pansharpening in reconstructing spatial patterns. 

The reconstruction quality across the spectrum descripted by 
RMSEb, UIQIb and PSNRb metrics (Fig. 4) ascertains the robustness of 
the HS-MS fusion methodology in preserving the original spectral 
properties and minimize deformations, despite the divergence of 
Sentinel-2 in some regions of the spectrum (Figs. 6-13), which is sub-
stantial for those applications where the contribution of all − or of few 
but specific − bands, is required (Paris et al., 2019). This was confirmed 
by the comparison between spectral signatures of fusion/pansharpening 
outputs and original PRISMA (Figs. 6-13), from which it is hard to 
visually discern the differences between the original and the respective 
fused/pansharpened PRISMA’s signatures. Overall color information 
performed also well, observing the three true color maps on the top of 
the same figures. On the other hand, this comparison raised that the 
spectral inconsistencies between the airborne reference data and the 
PRISMA satellite data were already present independently from the 
application of the HySure model, therefore not due to the fusion process. 
Actually, these cross-sensors discrepancies in PRISMA imagery were also 
found in Cogliati and coworkers (2021). Factors related to spectral 
resolution inconsistency between the two sensors should be excluded a 
priori: with a difference of central wavelength between PRISMA and 
airborne HS never exceeding 3 nm (CASI), 7 nm (SASI) and 2 nm 
(HySpex VNIR/SWIR), much lower than the respective FWHM, the 
spectral overlap was fully satisfied. Such difference was definitively 
minimized by the spectral resampling process. On the other hand, the 
divergencies observable in the VIS (especially on soil, urban and edges) 
and NIR regions (also on vegetation) might be partially related to the 
flawed parametrization of MODTRAN-5 model (airborne data correc-
tion), since the high sensitivity to the atmospheric scattering (especially 
blue region) (Niroumand-Jadidi et al., 2020; Pignatti et al., 2022). 
Concerning the comparison with Sentinel-2, Niroumand-Jadidi et al. 
(2020) also found some radiometric differences with PRISMA also in 

simultaneous acquisitions, possible attributable to other various factors 
that are not easily controllable, such as differences in the atmospheric 
correction, different noise patterns, sensor sensitivity. The same authors 
also deduced that the atmospheric path radiance (VNIR) is slightly 
underestimated in PRISMA level 2D products, especially at short- 
wavelength bands (442 nm and 492 nm) if compared to Sentinel-2 
spectrum. Actually, spectral fidelity issues affecting PRISMA’s blue 
bands are well-known, raising within PRISCAV experiments (e.g. Pel-
legrino et al. 2023; Braga et al. 2022). However, it must be taken into 
account that the PRISMA atmospheric correction processor is continu-
ously updated, which leads to growing improvements in radiometric 
artefacts presence. Further investigation should be invested in this sense, 
for example by harmonizing the atmospheric correction across all the 
adopted sensors. This might be easily applied operationally thanks to the 
availability of highly-versatile software, such as the MODTRAN-based 
ImaACor (Palombo and Santini, 2020), which already includes several 
utilities for PRISMA and Sentinel-2 pre-processing, as well as being 
already tested on CASI imagery. 

Besides the bias between cross-sensor signatures comparison, the 
resulted overall accuracy metrics values expressed very satisfying per-
formances, in line with optimal values presented in literature (Acito 
et al., 2022; Dian et al., 2021; Lanaras et al., 2017; Wang et al., 2021). 
Considering only pansharpened outputs, the quantitative results ach-
ieved in our analysis are equal to, or even superior (UIQI for Prato and 
Grosseto study areas) the baselines proposed in the WHISPERS 2022 
competition (Vivone et al., 2023). 

The presented methodology returned a large number of pixels with 
low reconstruction errors, largely for HS-MS fusion outputs. The spatial 
distribution of reconstruction error, observable in the RMSEp and SAMp 
maps (Fig. 5) shows higher magnitude at slim shapes, single patches 
geometries and edge/transition between different land covers (roads, 
buildings, etc.) in outputs coming from pansharpening, while the fusion 
approach minimized the spatial errors on this type of geometries, pre-
serving texture and internal/external edge details. The error magnitude 
is in general more conspicuous in the urban area of Prato, but on the 
other hand this was expected and commonly found in literature since 
those are spatial features difficult to remodel (Veganzones et al., 2016). 
This could be due to the higher homogeneity of vegetation and soil 
components inside pixels, compared to the more complex texture of the 
urban land cover (red tiles roofs, asphalt, streets, metal roofs, solar 
panel, etc.). Nevertheless, the error values still contained even in the 
urban scenario corroborate what other authors (Brezini and Deville, 
2023) found out, concerning the reduced spatial distortion and a better 
spatial fidelity for the urban area provided by HySure compared to the 
other experimented fusion methods. At the same time, pansharpening 
outputs returned unclear blurred artefacts and inconsistent edge details 
in some bands of the IR domain (only in Arborea and Prato areas). This 
type of artifact is not the first time it has been encountered when trying 
to apply pansharpening to PRISMA images. Kremizi et al. (2021) 
observed blurring and duplicative edges after having tested different 
pansharpening approaches, including deep learning, attributing them to 
the injection of high-pass details, probably emphasized by incorrect 
registration between the HS and PAN data. Acito et al. (2022) supposed 
that such blurring artefacts are also attributable to residual coregistra-
tion bias. In the present work, a HS-PAN misalignment was not taken 
into account since both the manufacturer’s technical notes (ASI - 
Agenzia Spaziale Italiana, 2020) and visual inspections confirmed the 
effective spatial matching between HS and PAN in PRISMA. Regarding 
the HS-MS fusion process, Acito et al. (2022) found that the impact of 
minimum residual coregistration errors on PRISMA and Sentintel-2 
fusion was negligeable, also including experimental tests on HySure. 

Furthermore, the role played by the resolution ratio between 
PRISMA HS and Sentinel-2 GSDs should be accounted for. A more 
cautious reduction in the resolution of the raw data, in terms of low ratio 
between the original GSD and the expected improved GSD, is more 
efficient in preserving spatial information and minimizing distortions 
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than when the GSD ratios are higher (e.g. > 4), such as between PRISMA 
HS and PAN data (Dian et al., 2021; Fu et al., 2019; Vaiopoulos and 
Karantzalos, 2016). These kinds of issues were experienced also by 
Vivone et al. (2023) in the pansharpening of PRISMA images. Kremezi 
et al. (2021), again, suspected that their pansharpening results of 
PRISMA were negatively largely affected also by the high difference in 
spatial detail contained in the pixels of HS and PAN datasets, as well as 
the presence of linear periodic noise in the PAN image. In this last re-
gard, there is still no definitive evidence about the contribution of noise 
(and the impact of denoising processes) to image fusion. This topic needs 
to be further investigated, since PRISMA is affected by both random and 
fixed noise pattern (Carfora et al., 2022; Pignatti et al., 2022). Further 
investigation is required also to understand the influence of topo-
graphical complexity on sensor backscatter and SNR (Vangi et al., 2021). 
In the present case, some very noised PRISMA bands were excluded 
(Section 2.1.1) but, through preliminary visual tests (not reported), it 
was observed that the contribution given by the MS information 
managed to minimize the noise in the HS-MS fusion outputs also when 
the badly noised bands were kept. Similar results were also reported in 
Lanaras et al. (2017) after adopting an unmixing-based fusion algo-
rithm. Acito et al. (2022) observed that HySure expresses low noise 
sensitivity, attributable to its effective modeling of spectral re-
dundancies and similarities making use of the subspace projection and 
the VTV regularization (Dian et al., 2021). Yokoya et al. (2017) attrib-
uted the superior performance of HySure just to the denoising process 
integrated in its processes. Artifacts in the fusion images are, however, 
generally expected according to (Acito et al., 2022; Dian et al., 2018; 
Lanaras et al., 2017) and, in our opinion, they shouldn’t cause strong 
concerns if they remain few and weak, since much still needs to be done 
to optimize these algorithms. 

An actual limitation could be given by the computational efficiency 
and high memory consumption of the HySure model, which is typical for 
matrix factorization algorithms, especially if they need to solve the 
complex optimization problem iteratively (Dian et al., 2021; Sara et al., 
2021; Selva et al., 2015; Wang et al., 2021). This specific question was 
not yet fulfilled, as also requested in WHISPER 2022 (Vivone et al., 
2023). However, the free availability of the code would allow an 
improvement in this sense. 

5. Conclusions 

In the present study, the two processes of HS-MS fusion and HS-PAN 
pansharpening were implemented and compared to improve the spatial 
resolution of PRISMA images, precursor of the next-generation Euro-
pean HS satellites. The two processes involved the Sentinel-2 MS data 
and the PRISMA PAN respectively. The experiments were conducted 
with the well-known HySure model, considered a scientific baseline 
among image fusion methods for its cutting-edge performance, also 
extendable to pansharpening approaches. Three different land use dis-
tributions, within rural and urban landscapes, were examined, on which 
the sharpening quality was quantitatively evaluated by computation of 
ad-hoc validation metrics using airborne HS images as reference. In 
terms of accuracy of improved PRISMA HS, the fusion outperformed the 
pansharpening method in retaining both spectral and spatial informa-
tion, due to the positive contribution of the MS Sentinel 2 spectrum. 
Although pansharpening enabled the achievement of 5 m GSD, the HS- 
MS fusion outputs (10 m GSD) was more suited to resolve spatial het-
erogeneity, especially important in urban areas such as Prato, avoiding 
any severe blur and at-edge artefact that were, instead, observed in HS- 
PAN pansharpening. 

Sentinel-2 data has proven to be effective also as an accurate geo-
metric reference to estimate the spatial displacement and perform the 
semi-automatic geo-correction of PRISMA imagery. The experimental 
results demonstrated that the X/Y shift of PRISMA was, on average, 
around 150 m, with peaks of 200–250 m, and its spatial distribution was 
not consistent between one study area and another. Magnitude and 

directions of the shift were not constant across the scene (supplementary 
material) and resulted in the need to apply a second order polynomial 
function to optimize the image correction. 

Although the temporal gap between multi-source acquisitions of the 
same scene may not favor optimal spectral affinity between ground 
features, as well affecting the co-registration process due to possible land 
use changes that have occurred in the meantime, the high temporal 
resolution of Sentinel-2 prevented this issue. 

Additional tests should be also carried out in challenging landscapes, 
such as rough and sloping mountainous areas, high-albedo snowed 
areas, water surfaces, etc. In those contexts, a specific analysis should be 
applied due the complex and dynamical reflective behaviors, to which 
both co-registration and fusion processed are highly sensitive. Even 
greater attention must be paid to the analysis of water bodies. Both co- 
registration by-products and fusion/pansharpening accuracy (SAMp) 
showed high levels of error on this surface, probably associated with the 
low spectral response of the water (Veganzones et al., 2016), with its 
higher cross-sensor sensitivity (Giardino et al., 2020), and/or with other 
several optical properties of (Alicandro et al., 2022). 

We conclude that the combination of the two state-of-the-art tools, 
AROSICS and HySure, adopting both spatial and spectral information of 
the free-available and high temporal resolution Sentinel-2 data, can 
successfully resolve both the geometric displacement correction and the 
spatial resolution improvement of PRISMA HS imagery. It is worth 
mentioning that the code for both tools is easily available, and althought 
HySure is built in the closed-source MATLAB language, the code itself is 
provided free of charge and can be easily translatable to other open- 
source languages (such as Python). Given the sensitivity of fusion pro-
cess to the correct SRF selection, the relative SRF and PSF auto- 
estimation capacity is a very strong point of HySure, enabling it to 
maximizee the reconstruction accuracy. This process might not be im-
mune to critical issues, already reported in literature. In our opinion, the 
implementation of a trial-and-error approach for optimizing the regu-
larization parameters (λR and λB), is an efficient method to adapt this 
process to the observed scene. 

These characteristics are crucial for operational purposes, allowing a 
wide range of users to improve and fully exploit the whole set of HS 
information available in the framework of EO. Considering the list of 
upcoming European HS satellites (e.g., ESA CHIME; Spaceborne 
Hyperspectral Applicative Land and Ocean Mission, SHALOM; and ASI 
PRISMA-2), and currently competing with other constellations (EU and 
extra-EU) at different stages of development (Qian, 2021), whose fine 
spectral information will be fundamental in many environmental ap-
plications of growing interest, we believe that the analysis performed on 
PRISMA HS will provide useful information for further exploitation of 
co-registration and pansharpening/fusion approaches in HS remote 
sensing. 
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