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ABSTRACT The acquisition of a fluid and legible handwriting in elementary school has a positive impact on
multiple skills (e.g., reading, memory, and learning of novel information). In recent years, the growing per-
centages of children that encounter mild to severe difficulties in the acquisition of grapho-motor parameters
(GMPs) has highlighted the importance of timely and reliable assessments. Unfortunately, currently available
tests relying on pen and paper and human-based coding (HBC) require extensive coding time, and provide
little or no information on motor processes enacted during handwriting. To overcome these limitations,
this work presents a novel screen-based platform for Grapho-motor Handwriting Evaluation & Exercise
(GHEE). It was designed to support both fully automatic machine-based coding (MBC) of quantitative
GMPs and human-machine interaction coding (MBC+HBC) of GMPs accounting for qualitative aspects
of a child’s personal handwriting style (i.e., qualitative GMPs). Our main goal was to test: the GHEE coding
approach in a relevant environment to assess its reliability compared to HBC; the efficacy of human-machine
interaction in supporting coding of qualitative GMPs; and the possibility to provide data on kinematic
aspects of handwriting. The preliminary results on 10 elementary school children showed reliability of
fully automatic MBC of quantitative GMPs with respect to traditional HBC, a higher resolution of mixed
human-machine interaction systems in assessing qualitative GMPs, and suitability of this technology in
providing new information on handwriting kinematics.

INDEX TERMS Children, grapho-motor skills, handwriting, human–machine interaction, kinematics,
machine-based coding, screen-based technology.

I. INTRODUCTION
Handwriting is an essential component of educational cur-
ricula in many countries. Research literature shows that the
benefits of handwriting extend well beyond its immediate
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communicative function. Multiple studies comparing hand-
writing and typing have shown positive effects of the former
on reading, spelling, letter recognition, and memory in chil-
dren [1], [2], [3], [4]. However, mastering the complex
grapho-motor skills involved in handwriting is a demand-
ing task, requiring consistent time and exercise. Elementary
school children dedicate over 50% of their time to the
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acquisition of fluid movements supporting handwriting [5],
[6]. Data from multiple countries show that children often
struggle to achieve the grapho-motor competencies required
to produce legible handwriting [7], [8], [9], [10]. Recent
concerns raised on the growing percentages of children that
manifest mild (poor writers) to severe (dysgraphic) dif-
ficulties in handwriting, have led both Governments and
Academia to suggest the development of more timely and
wide-spread assessment tools [11], [12].

A. TRADITIONAL PEN AND PAPER ASSESSMENT TOOLS
To date, the detection of handwriting difficulties in most
countries begins with elementary school teachers’ reports
based on observation of children’s performance. Parents may
then seek to obtain clinical evaluation at local clinical centers,
where grapho-motor skills are measured relying on school
notebooks or gold-standard tests for grapho-motor skills.
The latter are mostly pen and paper tests providing post-hoc
analytic evaluations of the readability of a child’s handwriting
(evaluating the handwriting product), rather than the fine- and
gross-motor skills involved during handwriting tasks (mea-
suring handwriting processes; e.g., fluid fine-motor planning
involved in letter tracing, as well as child posture and/or
pen grasps) [5]. For example, in Italy the two most com-
monly used tests for standardized assessments of children’s
grapho-motor skills are: the Italian Test per la Valutazione
delle Difficolta’ Grafo-Motorie e Posturali della Scrittura
(DGM-P) [13] and the Italian standardization of the Con-
cise Assessment Scale for Children’s Handwriting (Brave
Handwriting Kinder) (BHK) [14]. Both tools ask children
to use a ballpoint pen to copy one or more typed phrases
in cursive handwriting on a sheet of paper. Handwriting is
later scored by a human coder (human-based coding, HBC) to
measure grapho-motor parameters (GMPs) of relevance (e.g.,
letter size, word alignment, space between words, margin
alignment, etc.). These tests differ in number/types of GMPs
and in how they are measured (e.g., the BHK test consid-
ers 13 GMPs while the DGM-P measures 12 GMPs with
significant differences in scoring methods). Such post-hoc
analytic evaluations rely on very fine-grained measurements
of GMPs. For example, human coders must actively check
for interruptions in the writing trace in order to account for
presence of inappropriate connections between letters, and/or
measure each letter’s height using transparent tracing paper
to evaluate appropriate letter size [13], [14]. HBC of some
GMPs (e.g., wrong connections between letters) is important
as it allows coders to grasp qualitative aspects of a child’s
personal handwriting style, essential in designing tailored
exercises. On the other hand, analytic evaluations of other
GMPs (e.g., measuring letter size) are purely quantitative and
extremely time-consuming when relying on HBC. Finally,
it is important to stress that post-hoc assessments of the
handwriting product provide little or no direct information on
the actual processes enacted by children during handwriting.
Therefore, intervention strategies rarely target specific motor
difficulties experienced by children [5].

Summing up, currently available pen and paper tools for
grapho-motor skill evaluation, based entirely on HBC, while
very helpful in capturing qualitative aspects of children’s
handwriting, are extremely time-consuming when consid-
ering quantitative measures. This has a negative impact
on frequency of child evaluations, especially in public
health care centers, which operate under consistent time
and cost constraints, with cascading effects on timeliness of
intervention.

B. NOVEL SCREEN-BASED TECHNOLOGIES
A viable alternative to traditional pen and paper assess-
ment tools is relying on novel screen-based technologies for
child handwriting assessments. These technologies promise
to reduce coding times of quantitative GMPs by relying
on machine-based coding (MBC) and support the acquisi-
tion of kinematic data related to handwriting processes [5].
However, to date, use of screen-based technologies for child
handwriting evaluation is limited by: (1) lack of data on
reliability of MBC of quantitative GMPs compared to HBC;
(2) a wide-spread tendency to develop tools that provide fully
automated MBC of all GMPs, and that therefore replace,
rather than support, HBC of qualitative GMPs.

The first limitation is due to the lack of published data
on direct comparisons between MBC and HBC of quanti-
tative GMPs (e.g., letter size). As for the second limitation,
consistent research has been dedicated to developing tools
that allow fully automatic extraction of GMPs, often resulting
in systems that only provide, as output measures, composite
scores, but little or no information on qualitative GMPs or
individual characteristics of a child’s handwriting [15], [16],
[17], [18]. A less commonly used approach is to rely on
‘mixed systems’, involving some form of human-machine
interaction, to support rather than substitute human coder
observation skills [19]. For example, Dimauro and colleagues
proposed a software system for early diagnosis of dysgraphia
(TestGraphia), allowing fully automatic extraction of some
GMPs (which prove to be time consuming when coded exclu-
sively via HBC, e.g., writing size, margin alignment, space
between words), while other GMP’s were set to be coded by
the clinician (e.g., atypical letters, ambiguous letters) [20].
Mixed systems relying on MBC as well as on some

human-machine interaction (i.e., MBC+HBC) carrymultiple
benefits by consistently reducing coding times of quantita-
tive GMPs, while still allowing to grasp qualitative GMPs
related to child’s personal handwriting style (e.g., atypical
connections between letters). However, mixed systems are
either rare or still relying on pen and paper data acquisition
(as in the case of TestGraphia), therefore providing little or
no information on handwriting processes [20].

C. WORK OBJECTIVES
In the present study we attempt to overcome the
afore-mentioned limitations by modifying a recently
developed platform called Grapho-motor Handwriting
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Evaluation & Exercise (GHEE) to evaluate children’s cursive
handwriting skills [21]. GHEE was designed to rely on
screen-based tools and modified in this study to support a
mixed coding approach of GMPs derived from the DGM-P
and BHK tests. In preliminary testing with adults, we verified
system portability and parsed out those GMPs which would
be best coded throughMBCor by human-machine interaction
[21]. In this paper, we aim to move one step further, testing
the GHEE platform to assess GMPs in a group of 10 children
and showing:

1. reliability of GHEE MBC of quantitative GMPs com-
pared to HBC of the same screen-based data;

2. efficacy of mixed approaches relying on human-
machine interaction when assessing qualitative GMPs;

3. viability of kinematic parameter extraction to extend
child handwriting assessments by considering hand-
writing processes.

In relation to our first objective, in the present work we
specifically compared fully automatic MBC vs. the HBC
of 4 quantitative GMPs based on children’s texts written
on the GHEE screen. As for the second aim, we com-
pared the HBC of 2 qualitative GMPs vs. the assessment
obtained by the mixed human-machine interaction approach
i.e., MBC+HBC). Finally, for the third aim we implemented
a measure of fluency based on the analysis of handwriting
velocity and tested it simulating different velocity profiles
corresponding to different handwriting performances.

II. MATERIALS AND METHODS
GHEE is composed of a Wacom Cintiq 16 interactive display
(Display Full HD with a resolution of 1920 × 1080 pixels),
a smart pen, the Pro Pen 2 stylus, FIGURE 1.A (see [21] for
more details about requirements), and a remote laptop run-
ning software for stimuli presentation, data acquisition and
GMP extraction. In particular, stimuli presentation and acqui-
sition of pen tip position data have been managed using Eye
and Pen Software [22]. Pen tip position data are referred to a
global reference frame (Sheet reference frame) centered in the
bottom left corner of the screen, with the x axis pointing right
and the y axis pointing up. Single words are automatically
separated within Eye and Pen, and manually labelled. These
data feed a custom App developed in MATLAB R2021a App
Designer to perform GMP extraction. This is composed of
two modules: i) letter segmentation, performed manually by
a human coder; and ii) a coding module performed by GHEE
automatically or in collaboration with a human coder. This
latter module allows both MBC of quantitative GMPs and/or
mixed coding (MBC+HBC) of qualitative GMPs from raw
pen data as well as to dynamically interact with the child’s
written text on the screen by zooming in and/or zooming out.

A. PARTICIPANTS AND PROCEDURES
Ten children (2 males) were enrolled in this study. Inclusion
criteria were chronological age between 7 and 9 years, current
enrollment in a primary school and exclusion criterion was

FIGURE 1. Experimental Set-up with the main components of the GHEE
platform: Wacom Cintiq 16 interactive display (A); the Pro Pen 2 stylus (B);
the remote Laptop (C). In the central and bottom panel of the figure two
screenshot of the familiarization phase and of the test phase respectively.

documented history of neurodevelopmental or motor disor-
ders. Based on these criteria, all children were included in
the present sample. Participants’ mean chronological age was
8.7 years (SD = 0.4, range 8.1 – 9.4 years), they were all
right-handed, and had normal or corrected vision, with one
participant wearing glasses. Eight children were enrolled in
3rd grade elementary school at the time of assessment, while
the remaining two were enrolled in 2nd grade. Intellectual
functioning (IQ) was evaluated in all children using Raven’s
Colored Progressive Matrices (RCPM) [23] and visuo-motor
coordination skills were assessed using the Beery Visual
Motor Integration Test (VMI), including the Visual Percep-
tion and the Motor Coordination subtests [24]. Participants’
mean score in the VMI tests was 105.4 (SD 14.2, range
88-134) while mean score in the Visual Perception subtest
was 108.2 (SD 11.8, range 86-126) and 116.3 in the Motor
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TABLE 1. Participants characteristics. SD: Standard deviation.

Coordination subtest (SD 12.6, range 95-127) (see Table 1).
All participants displayed an IQ of 90 or above (see Table 1
for participants’ details). Participants were recruited through
word of mouth, and they completed the GHEE task as well
as standardized tests during one study session carried out at
Università Campus Bio-medico di Roma. Children showed
good understanding of verbal instructions. This experimental
study was conducted according to Declaration of Helsinki
guidelines and approved by the Ethics Committee of Univer-
sità Campus Bio-Medico di Roma (protocol code PAR 73.21,
Rome 28 Sept. 2021).

Parents of all participating children signed written
informed consent prior to children’s inclusion in the research
sample. The interactive display was placed on a desk in front
of the child with the screen oriented vertically and the stylus
was placed on the right of the display in accordance with hand
dominance in the sample (see FIGURE 1.A). All sessions
were video recorded to check for correct software functioning
as well as inappropriate sitting positions and or pen grasps
(which are the object of another study). Each trial started
with a familiarization phase, allowing children to use the
stylus on the screen in some drawing tasks (FIGURE 1.B).
Subsequently, children were asked to select the type of ruled
paper that they commonly used for handwriting in school
from a set of virtual paper formats shown on the GHEE
screen. They were then shown a typed sentence in Italian,
right above the selected virtual paper format appearing on
the screen, and asked to copy it in cursive handwriting. The
chosen sentence (i.e., ‘‘L’elefante vide benissimo quel topo
che rubava qualche pezzo di formaggio’’, literally ‘‘The ele-
phant could see very well the mouse which stole some bits of
cheese’’) was picked as it includes each letter of the Italian
alphabet at least once. Children performed this task twice
(FIGURE 1.C): in the first condition they were asked to copy
the phrase in their best cursive handwriting (best condition),
while in the second condition they were asked to write it as
fast as possible in cursive handwriting (fast condition). All
participants completed both conditions except for one child
who did not complete the fast condition.

B. ASSESSMENT OF GMPs USING GHEE GMPs APP
GMPs were measured using an App developed ad-hoc in
Matlab App designer for GMP extraction. GHEE data are

FIGURE 2. Manual letter segmentation process. The GHEE GMPs
detection app asks to the human coder to segment the beginning and the
end of each letter.

organized in twomodular and hierarchical structures: ‘‘Child-
Data’’ and ‘‘Task’’. The first one collects metadata on the
experimental session, that is information related to the child
(i.e., age on experiment day, gender, class attended) and the
experimental setting (i.e., type of sheet chosen, condition).
The structure ‘‘Task’’ contains data on ruled paper and raw
data. It is divided into two sub-structures: ‘‘Paper’’ contain-
ing data about the size of rows, columns, and margins of
the ruled paper chosen by the participant; and ‘‘Sentence’’
containing raw data of the stylus (i.e., timestamp, the x y
coordinates of the stylus tip, and a field reporting the ‘‘pen in
the air’’ label when the stylus is not in contact with the screen
and up to 5 cm above it) split in one substructure for each
word.

The GHEE GMPs App implements the mixed approach
described above to extract four quantitative GMPs, two qual-
itative GMPs, and one GMP directly related to handwriting
kinematics. Firstly, it instructs the coder to manually segment
the beginning and the end of the written trace for each let-
ter. A dedicated window allows to mark these points with
simple mouse clicks (see FIGURE 2). On average, a total
of 50 mouse clicks were necessary for the overall sentence
segmentation in our sample. Data manually segmented and

118868 VOLUME 11, 2023



C. Provenzale et al.: Using Screen-Based Technologies to Assess Handwriting in Children

FIGURE 3. Measure of the vertical distance between letter and paper line.
The distance is considered positive when the letter is above the line as in
figure, negative otherwise.

FIGURE 4. Measure of the height of the letter as the distance between
the letter extremal points along the vertical axis.

FIGURE 5. Measure of space performed by GHEE GMPs App. Red points
represent the extremal points between which the measure is performed,
i.e., the last point of the word ‘‘quel’’ and the first point of the following
word ‘‘topo’’.

labelled are subsequently used for automatic coding of GMPs
as detailed in the following paragraphs.

Fluctuations which measure the vertical distances
between each letter and the paper line (see FIGURE 3),
include two features: i) amplitude of fluctuation defined as
the sum of the maximum vertical distance in mm above and
below the ruled paper line [13]; ii) number of fluctuating
letters, computed as the number of letters with a distance
above or below the ruled paper line exceeding 1.5 mm [13].
Dimensions which measure the height of each letter (see

FIGURE 4) include three features: i) height variation of
medium letters (HVmL, i.e., a, c, e, i, m, n, o, r, s, u, v, z);
ii) height variation of ascending/descending letters (HVadL,
i.e., b, d, f, g, h, l, p, q, t), both defined as the difference in mm
in letter height between the largest and smallest letter within
each letter group [13]; iii) overall letter height (OH) defined
as the average height in mm of the largest and smallest
medium letters [14].

Space: space between words, corresponding to the dif-
ference between the coordinates of the last point of a word
and the first point of the following one, along the horizontal
axis (see FIGURE 5). This space is labeled as ‘‘insufficient’’
when it is below a set threshold, defined according to [14]
as the mean width of the letter ‘‘o’’ measured for each child.
To define this threshold for each participant, GHEE fits the
points of each ‘‘o’’ letter with an elliptical law, extracts the

FIGURE 6. Linear fitting of the left extremal points of each line to
measure the alignment with the left margin.

FIGURE 7. Measure of connections performed by GHEE GMPs App.
It verifies the presence of an overlapping (example on the left) or a gap
between letters greater than 0.5 mm (example on the right).

measures of the horizontal axes, and sets the threshold as their
median value.

Margin alignment which measures the alignment with
theleft margin. A linear fitting of the left extremal point of
the first letter of each line is computed (see FIGURE 6). The
margin alignment is scored as 0 if the angular coefficient is
positive, otherwise it is assessed using a set of 5 oblique lines
derived from the BHK test [14]. In detail, it is scored between
1 to 5 according to the line with the angular coefficient nearest
to the one measured with the linear fitting.

Furthermore, a mixed approach based on human-machine
interactionwas implemented to extract two qualitative param-
eters, as follows:

Connections: errors in connecting adjacent letters. GHEE
verifies the presence of an overlapping between letters; if it
is not present, GHEE measures the lowest Euclidian distance
between each couple of consecutive letters and compares it
with a threshold set to 0.5 mm (according to the thickness
of the digital trace, i.e., 2 pixel) (see FIGURE 7). In case of
overlapping, or for distances higher than the threshold, GHEE
assesses the connection as ‘‘missing or wrong connection’’
and provides the human coder with a visual outcome of the
results asking them to approve or reject the evaluation, thus
performing an MBC supervised by a human coder (MBC-H).
Differently from [21] a mixed approach has been imple-
mented to code this parameter in order to avoidmissing out on
relevant qualitative information on what type of errors (e.g.,
missing connection vs. overlapping) are being made by the
child and where.
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FIGURE 8. Letter directions according to [25]. Letters were grouped in
5 classes according to their morphological characteristics.

FIGURE 9. Example of the 4 directions assessed by GHEE GMPs detection
app.

Direction: sequence of movements with which the child
has traced the letters compared to letter tracing directions
taught by teachers in elementary school (FIGURE 8). For
example, in letters containing round shapes (a, c, d, o, q)
children are taught that these should be written using coun-
terclockwise movements, while for letter with eyelets (b, e,
l, h, f) children are taught that these should be traced with
an initial upward movement followed by a downward one
[13], [25]. GHEE identifies 4 main directions by analyzing
stylus tip kinematics (see example in FIGURE 9): i) up-right,
for an increment along both x and y axes; ii) down-right,
for an increment along x axis and a decrement along y axis;
iii) up-left, for an increment along y axis and a decrement
along x axis; and iv) down-left for a decrement along both x
and y axes. The software provides a visual representation of
the sequence of directions identified for each letter according
to the target movement of the specific class to which the letter
appropriateness of letter tracing direction belongs. The coder

FIGURE 10. Example of NIV extraction derived from the experimental
dataset. The upper plot shows the vertical position data with highlighted
local extremal points corresponding to a change in vertical direction.
These points correspond to 0-points of the vertical shown in the central
figure. Local minima and maxima points in the vertical velocity (red circle
in the figure) correspond to a change in the sign of the vertical
acceleration (0-points of the vertical acceleration), i.e., to a ballistic
movement.

is then in charge of assessing, thus performing an ‘‘HBC
supported by the machine’’ (HBC-M).

Finally, alongside Directions, we attempted to extend cur-
rent evaluations of handwriting processes in children by
measuring a GMP accounting for the fluidity of handwriting
movements. To this aim, we focused on the fully automatic
MBC of the Number of Inversions of Velocity (NIV) [26]
[27], [28], which is a measure of the number of directional
changes in vertical velocity (i.e., along the y axis of the sheet
reference frame). At the base of NIV there is the assumption
that a fully developed handwriting process can be consid-
ered as a sequence of elementary ballistic movements: i.e.,
movements composed of a single acceleration followed by a
deceleration phase [29].

This assumption, confirmed by [29] and [30], extends
the findings of Morasso and colleagues [31], which showed
that point to point movements of the arm can be described
via bell-shaped velocity profile. According to [32], NIV is
measured along the vertical direction (y(t), see FIGURE 10):
the sentence is divided into components, i.e., a sequence of
characters of the sameword between two consecutive pen lifts
[16]. Each component is further divided into intervals (called
strokes) between two consecutive local extreme points (max-
ima/minima) of the vertical position coordinate [32], [33].
Within each stroke, y(t) data are filtered for noise reduction
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using a second order low pass Butterworth filter with cut-off
frequency equal to 10 Hz [16]. The vertical velocity is com-
puted by means of a 9-point central difference function [34]
and the NIV is measured as the number of local maxima and
minima in the vertical velocity, corresponding to a change in
the sign of the vertical acceleration (see FIGURE 10) i.e., to a
ballistic movement. If only one extremal point is found in the
stroke, this means that only one ballistic movement has been
carried out with a bell-shaped profile in velocity.

Summing up, in each condition (i.e., best and fast) GHEE’s
coding of GMPs uses a fully automatic MBC approach
for Fluctuations, Dimensions, Space, Margin alignment, and
NIV, whereas Connections and Directions are coded using
a mixed human-machine interaction approach: MBC-H and
HBC-M.

C. ASSESSMENT OF GMPs USING TRADITIONAL HUMAN
BASED CODING
An image of the sentence written by each participant was
printed on a A4 sheet, with horizontal and vertical resolutions
equal to 96 dpi. This resolution was chosen to avoid alter-
ing proportions and/or letter size. A human coder assessed
each child’s handwritten text as printed from the GHEE
screen to code qualitative and quantitative GMPs, except
for the NIV, which could only be extracted using GHEE.
Each dataset was split according to task conditions: best and
fast. Fluctuations, DimensionsandSpace included quanti-
tative features as in GHEE GMPs App (i.e., amplitude of
fluctuation, number of fluctuating letters, height variation
of medium letters, height variation of ascending/descending
letters, overall height, space between words). These GMPs
were measured manually using transparent graph paper with
1 mm resolution and manually calculated using coding crite-
ria described in GHEE’s MBC above and coding procedures
described in [13] and [14].Margin alignmentreferred to the
same GMP coded in the GHEEGMPs App and was manually
scored using a transparent scoring sheet with 5 oblique lines,
identical to the one provided in the BHK test [14]. The
human coder placed the transparent scoring sheet with the
5 oblique lines on the child’s written sample to check for text
alignment and used the same scoring system present in GHEE
described above. Connectionsand Directionswere manually
coded through post-hoc observation of the child’s written
trace. Any interruption or overlap in the trace was analyzed
and scored as a missing/incorrect connection as in GHEE,
while errors in letter tracing direction were inferred from the
trace and assessed following the coding procedures described
in [13].

D. DATA ANALYSIS
In order to demonstrate reliability of the GHEE platform in
a relevant environment with children, and test the effective-
ness of the mixed coding approach, we assessed the level of
agreement between traditional HBC and GHEE coding both
for handwriting product and process.

FIGURE 11. Linear trajectory used to test the algorithm for NIV extraction.

Normality distribution of GMPs was tested relying on the
Shapiro-Wilk test and the comparison between traditional
HBC and the outcome of the GHEE GMPs App was per-
formed with a paired samples t-test or with the Wilcoxon
signed-rank test, depending on the distribution type (nor-
mal vs non-normal distribution respectively). For quantitative
parameters, a significant difference between the two datasets
means a poor agreement between HBC and MBC.

For the qualitative parameters relying on a mixed cod-
ing approach (i.e., Connections and Direction) comparisons
between traditional HBC and GHEE GMPs App may justify
the use of a mixed MBC+HBC approach.

To test the algorithm for NIV extraction we defined a sim-
ple linear trajectory between three points (see FIGURE 11).
This trajectory simulated simple point to point movements
and allowed to control movement characteristics to simu-
late different levels of smoothness. The points’ position was
chosen limiting the vertical displacement to space between
paper lines of Italian II grade students’ paper notebooks (i.e.,
5 mm). The horizontal displacement was chosen arbitrarily,
because, NIV measurement relies only on vertical displace-
ment. According to the stroke definition, the trajectory chosen
is composed of two strokes: stroke 1 from A to B; stroke
2 from B to C. For each stroke we simulated three fluency
conditions: perfect (NIV =1); moderate (NIV = 3, i.e., close
to the mean fluency expected for a 4th grade child [26]), and
poor (NIV= 15, i.e., 5 times the NIV expected for a 4th grade
child and higher than the maximum NIV (i.e., 9) measured in
48 children with handwriting difficulties [26]) by composing
quintic polynomial velocities with 1, 3 and 15 local maxima
or minima velocities, respectively.

Finally, we measured the time needed for HBC and GHEE
GMP extraction in the best trial within the best condition (i.e.,
the trial with the highest score) and the worst trial within
the fast condition (i.e., the trial with the lowest score) in
order to compare the two assessments in terms of coding
time.

III. RESULTS
Comparison of quantitative GMP coding relying on GHEE’s
MBC vs. traditional HBC did not show significant differ-
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TABLE 2. Comparison between MBC vs. HBC for Fluctuation, Dimension, Space, and Margin GMPs. The values reported in the table represent averages for
features analyzed through paired samples t-test while median values for those analyzed through Wilcoxon signed rank test.

TABLE 3. Comparison between MBC-H and HBC for the connections
parameter. Table reports connection errors detected by the human coder
(HBC) and by the machine supervised by a human coder (MBC-H) in the
two task conditions.

ences in terms of amplitude fluctuation, height variation
of medium letters, height variation of ascending/descending
letters, overall letter height, space between words, and left
margin alignment in both conditions (i.e., best and fast).
Only the difference in number of fluctuating letters (10 vs.
13 respectively in MBC and HBC) showed a weak significant
difference and only in the fast condition (Z = 26, p= 0.050)
(see Table 2 ). Comparison of qualitative GMP coding relying
on mixed MBC+HBC approach vs. traditional HBC showed

TABLE 4. Comparison between HBC-M and HBC for the direction
parameter. Table reports direction errors detected by the human coder
(HBC) by the human supported by the machine (HBC-M) in the two task
conditions.

highly significant differences in terms of Connections in both
best (t(9) = −6.771, p < 0.001) and fast (t(8) = −2.419,
p = 0.042) conditions. MBC-H approach detected a higher
number of errors in both cases (best condition: 13.2 with
GHEE vs. 6.8 with HBC; fast condition: 12.2 with GHEE
vs. 8.4 with HBC) (see Table 3 ). Furthermore, a highly
significant difference emerged in Direction, but only in the
best condition (Z = 1.5, p = 0.023). Once again GHEE’s
mixed system detected a higher number of Direction errors
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(see Table 4 ). Finally, FIGURE 12 shows the three conditions
simulated to test NIV extraction: the upper part shows the
linear trajectory (stroke 1 between points A-B, blue line;
stroke 2 between points B-C, orange line); the bottom part
displays the vertical velocity profile simulated along the ver-
tical direction. Red circles indicate occurrences of inversions
of velocity as detected by GHEE.

The number of inversions fits with the artificial trace gen-
erated to test NIV. The comparison of coding times between
HBC andGHEEGMP extraction, shows that GHEE allows to
save about 8% of coding time as compared to manual coding
in the best trial (i.e., 01:22’’ with GHEE coding vs. 17:48’’
with manual coding) and 23% of coding time as compared
to manual coding in the worst trial (i.e., 05:22’’ with GHEE
coding vs. 23:19’’ with manual coding).

IV. DISCUSSION
Novel screen-based technologies appear to be promising tools
to assess the grapho-motor skills that are needed in order to
produce legible and fluid handwriting in childhood. In fact,
current standardized tools supporting analytic evaluations of
both quantitative and qualitative GMPs rely heavily on HBC,
which proves to be particularly time consuming. Further-
more, these tools are mostly post-hoc evaluations of written
texts, therefore they shed no light on the kinematics of hand-
writing processes enacted by children. However, the use of
screen-based technologies is currently limited by multiple
factors. One first limitation is due to lack of published data on
direct comparisons between MBC and HBC of quantitative
GMPs.

A. RELIABILITY OF GHEE MBC OF QUANTITATIVE GMPs
In this work we aimed to address lack of published data on
direct comparisons between MBC and HBC of quantitative
GMPs by proposing a novel screen-based system, the GHEE
platform, which allows for automatic coding of 4 quantitative
GMPs and compared its performance with traditional HBC.
For this reason, even if GHEE aims at supporting the work
of coders allowing to save some coding time (as detailed
above), we preferred to maintain letter segmentation and
labelling manual, focusing the reliability assessment only on
the automatization of the tasks necessary to code the man-
ually segmented data. This comparison showed that GHEE
is able to automatically code all quantitative GMPs with
an accuracy equivalent to the one obtained via traditional
HBC when children are asked to copy a phrase in cursive
handwriting as best they can. On the other hand, when they
are asked to copy it as fast as they can GHEE was able
to reliably code 6 out of the 7 target features of quantita-
tive GMPs, but some differences emerged in the number of
fluctuating letters detected. Since traditional HBC of this
GMP requires the alignment of transparent graph paper on
the text, such a difference may be due to a parallax error,
amplified by the higher number of fluctuating letters in the
fast condition. Such interpretation seems to be confirmed by
the absence of any difference in the amplitude of fluctuation:

indeed, parallax error introduces an offset in themeasurement
that is compensated in the assessment of the amplitude of
fluctuation. Moreover, our data concerning the time that is
needed to assess the text with HBC compared to GHEE
GMPs extraction in the best and worst trial confirms that
GHEE is a time-saving device notwithstanding reliance on
manual segmentation. In our future developments of GHEE,
we intend to test new forms of automatic letter segmentation
to further reduce coding times.

B. EFFICACY OF MIXED APPROACHES
A second limitation toward use of screen-based technologies
in child handwriting evaluation is due to the fact that consis-
tent research has been dedicated to developing tools that allow
fully automatic extraction of qualitative GMPs, resulting in
systems which provide little or no information on individual
characteristics of a child’s handwriting. To avoid this issue,
GHEE was designed instead as a mixed tool supporting some
human-machine interaction (MBC+HBC approach). There-
fore, our second aim was to test the reliability of this mixed
MBC+HBC approach in assessing qualitative GMPs against
traditional HBC. GHEE graphically presents connections and
directions to the coders asking them to confirm the presence
of missing/wrong Connections (i.e., MBC supported by a
human, MBC-H) and to assess the appropriateness of the
sequence of movements performed to write a specific letter
(i.e., Directions) showed on the screen (i.e., HBC supported
by the machine, HBC-M). Comparisons with results from
traditional HBC and assessment of a copy of the sentence
printed on an A4 sheet, showed significant differences in
both parameters. In particular, the differences in Connections
were significant in both conditions (best and fast), while
as for Directions the difference was significant only in the
best condition. These differences may possibly be due to a
more accurate assessment of qualitative GMPs performed
by GHEE. This is supported by the fact that for both Con-
nections and Directions the GHEE’s MBC+HBC system
allows to detect a greater number of errors in both condi-
tions. Based on our observation of GHEE’s coding system
we hypothesize that this greater accuracy is due to the fact
that GHEE allows the human coder to dynamically interact
with the child’s written text on the screen by zooming in
and/or zooming out. While this result confirms that novel
technologies may enhance current assessment procedures
for children’s grapho-motor skills, by supporting clinicians
rather than substituting them, it also raises new and relevant
issues in translational terms. For example, given that current
standardized assessment tools refer to normative data which
are based on pen and paper systems with a different level
of accuracy, the application of screen-based systems, imple-
menting an MBC+HBC approach, may risk overestimating
handwriting difficulties, as our preliminary data seem to point
out. Therefore, an appropriate use of these new technologies
will require better comparisons with standardized tests. How-
ever, it is important to note that, by allowing coders to directly
interact with the text, GHEE may in fact provide clinicians
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FIGURE 12. Conditions simulated to test NIV extraction. The simulated trajectory reports two point-to-point movements, respectively from A to B and
from B to C. Three different conditions have been simulated. In the first column we simulated one ballistic movement corresponding to a maximum and a
minimum point in the velocity profile. In the central column we simulated a condition of moderate fluency. Each point to point movement was split into
3 acceleration/deceleration couples corresponding to 3 extremal points in the velocity profile. In the right column we simulated a low fluency, with each
point to point movement split in 15 acceleration/deceleration couples. Red dots represent the event automatically identified by the program.

with relevant qualitative information supporting the design of
tailored intervention strategies.

C. BENEFIT OF KINEMATIC PARAMETER EXTRACTION
In the present work we aimed to show that screen-based
tools may have the benefit of providing some information
on the kinematics of the process enacted by children during
handwriting. To this scope, we extracted the NIV parameter
to measure handwriting fluency. Given that this GMP cannot
be assessed via HBC, we proposed a new method to test the
reliability of the algorithm implemented for its extraction.
We developed synthetic traces at three different levels of
NIV and assessed them with our algorithm. Results show the
ability of the algorithm to recognize the different simulated
levels.

D. ACHIEVEMENTS, LIMITATIONS, AND FUTURE WORKS
This preliminary study on 10 children demonstrates portabil-
ity and reliability of the GHEE platform’s mixedMBC+HBC
approach against traditional HBC of GMPs in relevant envi-
ronment. These preliminary results on a small sample support
the use of novel screen-based technologies for handwriting
assessment. Our sample size is shared by previous studies
addressing similar issues [17], [35], [36], but we still strongly
believe that our results may only be considered as preliminary
and that further comparisons are needed with standardized
pen and paper tools on larger children’s groups. Further stud-
ies, with larger samples, should also consider the correlations
between scores on standardized tests assessing visuo-motor
abilities involved in handwriting (e.g., VMI, M-ABC) and
GHEE assessments. This is something we are pursuing in our
current research. Notwithstanding initial manual segmenta-
tion and labelling of letters, the proposed system allows to
significantly reduce coding time, while maintaining a good
level of reliability. This choice was a limitation of the current
system due to the necessity to check for appropriately compa-

rable data. Future endeavorsmay consider providing effective
automatic letter recognition as attempted in other studies [37],
[38], [39] to further reduce coding time.

Relying on screen-based technologies to provide new kine-
matic data which cannot be extracted via traditional HBC
(i.e., NIV), also suggests that these technologies may be
further exploited to provide data on other motor compo-
nents of handwriting (e.g., pen pressure, grasps) or to extend
the number/type of features considered in the present paper
also to younger children. For example, Park and colleagues
in [40] used a Novint’s Falcon haptic device to investi-
gate the influence of several haptic guidance methods on
handwriting skills; Kim et al. in [41] built a workstation
to provide force feedback for transferring and improving
handwriting skills. In [42], the authors investigated the influ-
ence of pen grasp on handwriting speed and legibility asking
children to write on a tablet using a pen instrumented with
an array of 64 Tekscan 9811 force sensors applied to the
pen barrel [43]. Polsley and colleagues in [44] implemented
a machine learning algorithm to automatically recognize
drawing patterns important for handwriting (i.e., curvature
and corner drawings); Serpa-Andrade et al. in [45] used a
neural network trained with a collection of images drawn
by 300 children to automatically assess prewriting skills of
children based on analytical descriptors (moment invariants
[46] or on shape signature [47]). These approaches rely on
quantitative features based on the assessment of analytical
descriptors.

Notwithstanding such promising preliminary results, fur-
ther analyses are needed to assess the impact of these tools on
handwriting assessments. Indeed, multiple studies [15], [48],
[49] have shown that different tools influence grapho-motor
skills in multiple ways, and that these effects need to be
closely monitored especially in children that are still acquir-
ing skilled handwriting.
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V. CONCLUSION
This paper aimed at overcoming the limitations currently
posed by gold-standardized pen and paper tests for hand-
writing assessment in childhood. Our goal was to test
portability and reliability in relevant environment of a new
screen-based platform (i.e., GHEE) implementing a mixed
machine and human based coding system (MBC+HBC) to
extract grapho-motor parameters (GMPs) which contribute
towards text legibility and are, therefore, relevant in handwrit-
ing. The work is innovative for several reasons. First of all,
it was the first to allow a direct comparison between assess-
ments exclusively based on human coding (i.e., HBC pen
and paper assessments) of GMPs and assessments based on a
mixed approach (i.e., MBC+HBC), the latter allowing to sig-
nificantly reduce coding time, while maintaining a good level
of reliability notwithstanding initial manual segmentation and
labelling. Moreover, we showed how the use of screen-based
technologies may potentially extend current assessments of
handwriting skills in elementary school children by providing
information on kinematics of handwriting processes enacted
by children.

In this paper we asked a group of 10 children to copy a
sample text in cursive handwriting using a stylus on a screen.
Children’s texts were then analyzed to extract 7 GMPs of
relevance (e.g., including both quantitative and qualitative
GMPs) either manually via HBC (with the only exception of
NIV) and through MBC or MBC+HBC as implemented in
the GHEE platform. This allowed us to achieve the paper’s
main goals:

1. We confirmed reliability of GHEE’s coding of quanti-
tative GMPs given that only minor differences emerged
compared to HBC of the same screen-based data;

2. We proved the efficacy of GHEE’s mixed approach
(MBC+HBC) of qualitative GMPs as GHEE’s mea-
surements appeared to be more accurate and we also
suggested the necessity to extend data acquisitions with
MBC+HBC systems in order to achieve reliability.

3. We showed viability of using GHEE to achieve novel
data on the kinematics of handwriting in children by
showing the possibility of extracting parameters related
to handwriting fluidity (e.g., NIV).

Our findings are of great relevance for research studies
addressing the development of novel screen-based tech-
nologies to assess handwriting skills in elementary school
children. However, our dataset only included 10 participants;
therefore, future works should attempt to extend use of a sim-
ilar technology to larger samples. Another possible limitation
of this work is that it only compared different types of coding,
while the handwritten texts were all produced on the screen;
future works should attempt to compare paper assessments
and screen-based assessments to better parse out the impact of
screen use and of different writing tools on child handwriting.
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