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The ground state of an homogeneous electron gas is a paradigmatic state that has been used to model and
predict the electronic structure of matter at equilibrium for nearly a century. For half a century, it has been
successfully used to predict ground states of quantum systems via the local density approximation (LDA)
of density functional theory (DFT), and systematic improvements in the form of generalized gradient
approximations and evolution thereon. Here, we introduce the LDA for excited states by considering a
particular class of nonthermal ensemble states of the homogeneous electron gas. These states find sound
foundation and application in ensemble DFT—a generalization of DFT that can deal with ground and
excited states on equal footing. The ensemble LDA is shown to successfully predict difficult low-lying
excitations in atoms and molecules for which approximations based on local spin density approximation
and time-dependent LDA fail.
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I. INTRODUCTION

Excitation of many-electron systems characterizes novel
states of matter and increasingly permeates the functions of
novel advanced technologies. In problems ranging from
photovoltaic devices to quantum dots, nanoparticle cata-
lysts, and quantum computing devices, particlelike, col-
lective, or topological excitations are exploited coherently.
Challenges are multidisciplinary, yet solutions can be
inspired—and, increasingly, predicted—by computation-
ally investigating quantum structures and mechanisms at
the nanoscale. Density functional theory (DFT) [1,2] has
dominated the stage of computational electronic structure
methodologies since the 1960s by balancing accuracy with
efficiency. But DFT does not handle excited states directly,
being restricted to addressing eigenstates of lowest energy
(i.e., ground states). This work will show how successful
DFT methods for ground states can be upgraded into
methods for also tackling excited states.
The most fundamental model from which DFT

gained inspiration can be traced back to the seminal
works by Thomas [3] and Fermi [4]. In 1927, they

independently proposed a remarkable approximation for
quantum physics—that the state of any many-electron
system can be modeled by referring, via the particle density
(a local quantity), to a homogeneous gas (HEG) of
electrons. Because of its poor treatment of kinetic energy
contributions, the resulting Thomas-Fermi approximation
(TFA) is not very good in practice. But almost all modern
modeling of electronic structure employs its spiritual
descendent, in the form of Kohn-Sham (KS) DFT [1,2]:
(1) kinetic energy contributions are treated quantum
mechanically, via a noninteracting auxilliary system,
(2) the energy of electrostatic interactions is treated clasi-
cally, for any given particle density, and (3) the HEG is only
used to treat the remaining quantum exchange-correlation
(xc) energy contributions.
The HEG [5] is, arguably, the simplest many-electron

system. It involvesN → ∞ electrons interacting in response
to a uniform positive background charge of fixed density n
and volume V ¼ N=n → ∞. The resulting (interacting)
electronic structure problem can be solved semianalyti-
cally in its high-density and low-density limits, and to high
accuracy formoderate densities using quantumMonteCarlo
(QMC) techniques [6–8]. The known paradigmatic xc
behavior of HEG may then be used to approximate the
unknown xc behavior of inhomogeneous quantum systems,
via parametrizations [9–11]. Crucially, it has also been
recognized that the local density approximation (LDA)
provides exact leading terms in a semiclassical expansion
of any quantum system, under appropriate limits [12–16],
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which helps to explain the ongoing success of the Jacob’s
ladder [17] philosophy of systematically improving on the
LDA [18–21].
What about excited states? In the late 1980s, the time-

dependent extension of DFT (TDDFT) was revealed to be a
highly effective tool for simulating spectra, via a perturbative
(linear-response) expansion around the ground state. But,
despite its ongoing success, it was soon revealed [22,23] that
approximations to TDDFT could not describe important
double excitations at all, and struggled to describe
charge transfer excitations except by using specialized
approximations [24–26]. More recently, singlet-triplet
inversion [27] (with great promise for photovoltaics) has
emerged as another important problem where TDDFT
struggles [28,29].
In parallel with TDDFT, Kohn and collaborators put

forward a density functional theory for stationary excita-
tions based on mixed states (ensembles) rather than pure
states: ensemble DFT (EDFT) [30,31]. Unlike the pertur-
bation-based formalism of TDDFT, EDFT recast the
problem of computing excited states into an extended
“ground-state-like” problem involving variational minima.
TDDFT’s rapid success in predicting spectra, and chal-
lenges in constructing useful ensemble approximations,
initially led to EDFT falling by the wayside. Recently,
however, it has reemerged as a powerful alternative to
TDDFT because approximations in EDFT can solve
precisely those excitation problems for which TDDFT
struggles or fails [32–45].
Moreover, recent theoretical breakthroughs [37,46–50]

have revealed aspects of the architecture of key functional
forms in EDFT that have opened unprecedented possibil-
ities for novel approximations for excited states. The
change of perspective brought about by EDFT compared
to (TD)DFT is radical: (1) the auxiliary states of the Kohn-
Sham ensemble can acquire the form of coherent (finite)
superposition of Slater determinants (rather than the
“disentangled” single determinant for pure ground states),
(2) the ensemble Hartree energy (in contrast to the classical
Hartree energy) accounts for peculiar quantum features,
(3) the ensemble exchange energy does not (necessarily)
reduce to textbook Fock-exchange expressions, and (4) in
addition to regular looking state-driven (SD) correlations,
unusual density-driven (DD) correlations emerge.
In this work, we demonstrate that the same system of

knowledge allows us to derive an exchange-correlation
energy approximation from first principles (ab initio). We
consider the prominent example of approximations that are
derivable from the HEG. Given nearly 100 years of
exploration, one might expect the HEG to have given up
all its useful secrets. Crucially this work reveals that when
the HEG is viewed from the perspective of EDFT, we can
introduce a class of nonthermal ensembles from which
we can derive a local approximation for excited states
directly. The regular LDA has provided a highly effective

cornerstone for systematic improvements for ground
states—both as the first rung of Jacob’s ladder [17] and
as a paradigmatic limit that can constrain functional
forms [18–20,51]. The ensemble LDA developed in this
work therefore provides us with a (long-sought) corner-
stone for systematic improvements to approximations for
excited states.
The remainder of this work is organized as follows.

Section II gives an introduction to the HEG in the context
of density functional theory and briefly reviews relevant
attempts that predate our current proposal. Section III
introduces the elements of ensemble DFT which are
exploited in the novel parts of the work and presents the
relevant ensemble states of HEG, which are designed to
capture excited-state physics in crucial energy components
of the HEG ensemble states (Appendix D reports a para-
metrization). Sections IV and V demonstrate the practical
usefulness of the formal developments done by setting up
(Sec. IV) and applying (Sec. V) an ensemble LDA to atoms
and molecules. Finally, Sec. VI summarizes the work, looks
toward the near future, and draws conclusions.

II. LOCAL DENSITY APPROXIMATION

This section will first motivate the standard approach to
understanding HEGs, in the context of density functional
theory, to lay out the foundation of the LDA. Section III
then introduces ensemble density functional theory and
excited state HEGs as the foundations of the excited-state
LDA (eLDA). Together, these sections provide the key
theoretical tools for the rest of the work. Throughout, we
use atomic units so that lengths are expressed in Bohr and
energies are expressed in Hartree.
Before getting to the details, it is worth noting that the

properties of HEGs are conventionally defined using the
Wigner-Seitz radius, rs ≔ ð3=4πnÞ1=3 ≈ 0.620350n−1=3,
and spin-polarization factor, ζ ¼ ðn↑ − n↓=nÞ. Here, n is
the density of electrons and n↑;↓ are the densities of ↑;↓
electrons obeying n↑ þ n↓ ¼ n. This combination of terms
reflects the fact that interactions between same- and differ-
ent-spin electrons are fundamentally different due to the
Pauli exclusion principle, so energies change not only with
the total density but also the relative contributions of
majority (↑) and minority (↓) electrons to the density.
Wewill sometimes use n instead of rs to clarify dependence
on the density.

A. DFT of homogeneous electron gases

DFT provides an important tool for the analysis and
parametrization of HEGs. Key theorems [1,52,53] demon-
strate that all properties of a quantum mechanical ground
state are described by its density nðrÞ (constant, n in an
HEG). This is easily extended to spin DFT [54], which
covers de facto ground states like the lowest energy with a
given spin polarization ζðrÞ (constant ζ in an HEG). DFT is
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typically used synonymously with KS DFT, [2] and we
shall adopt this convention throughout.
In Kohn-Sham DFT, the ground state energy of an

N-electron system in external (nuclear) potential vðrÞ is
written as

E0½n� ≔ Ts½n� þ
Z

nvdrþ EH½n� þ Ex½n� þ Ec½n�; ð1Þ

where [n] indicates a functional of the density nðrÞ, obeyingR
ndr ¼ N. Useful exact energy expressions are known

for [55]
(1) the Kohn-Sham kinetic energy functional Ts½n� that

includes kinetic energy effects from a noninteracting
system with the same density (and spin)—we may
write Ts ¼

P
iσ ∈ occ

R
1
2
j∇ϕiσðrÞj2dr using a set of

occupied Kohn-Sham orbitals ϕiσðrÞ [2],
(2) the Hartree energy functional, EH½n� ¼ U½n�, that

includes mean-field electrostatic interactions,
(3) the Fock exchange energy functional, Ex½n� ¼

−
P

ii0σ ∈ occ U½ϕiσϕ
�
i0σ�, that includes corrections

for fermionic exchange based on the same non-
interacting system used for Ts.

The unknown correlation energy functional Ec½n� captures
classical and quantum contributions that are missed in the
other terms.
Here we introduced an electrostatic Coulomb integral,

U½ρ� ¼
Z

ρðrÞρ�ðr0Þ drdr0

2jr − r0j ¼ U½ρ�� ð2Þ

that was adapted for complex-valued inputs to accommo-
date classical (here, in EH only) and quantum (here, in Ex
only) interactions. All functionals are readily extended to
spin-polarized ground states by introducing the number,
N↑ ≤ N, of ↑ electrons (N↓ ¼ N − N↑) as an additional
constraint, or equivalently setting ζ ¼ ðN↑ − N↓Þ=N.
Precise details do not matter at this point and will be
introduced as required.
In a standard HEG, the mean-field Hartree contribution

(from EH) is canceled exactly by the positive background
charge. The energy per particle, e ¼ E=N, of an HEG may
therefore be separated into three components,

eðn; ζÞ ¼ tsðn; ζÞ þ ϵxðn; ζÞ þ ϵcðn; ζÞ; ð3Þ

using Eq. (1). Here, n and ζ are scalar constants, and
ts ≔ Ts=N, ϵx ≔ Ex=N, and ϵc ≔ Ec=N are energy den-
sities per particle. The Kohn-Sham kinetic and exchange
energies may be obtained analytically, and are

tsðrs; ζÞ ¼ tsðrsÞ
ð1þ ζÞ5=3 þ ð1 − ζÞ5=3

2

≔ tsðrsÞfsðζÞ; ð4Þ

ϵxðrs; ζÞ ¼ ϵxðrsÞ
ð1þ ζÞ4=3 þ ð1 − ζÞ4=3

2

≔ ϵxðrsÞfxðζÞ; ð5Þ

where

tsðrsÞ ≔
Ct

r2s
¼ 3

10

�
9π

4

�
2=3

r−2s ¼ 1.10495r−2s ; ð6Þ

ϵxðrsÞ ≔
−Cx

rs
¼ −

3

4π

�
9π

4

�
1=3

r−1s ¼ −0.458165r−1s ð7Þ

are the kinetic and exchange energies of an unpolarized
HEG (in atomic units). We may alternately write tsðnÞ ¼
2.87123n2=3 and ϵxðnÞ ¼ −0.738559n1=3.
The final ingredient is the correlation energy term,

ϵcðrs; ζÞ ≔
X
k

ϵkcðrsÞfkcðζÞ; ð8Þ

which has known series expansions for the high- (rs → 0)
and low-density (rs → ∞) limits, but is unknown in general.
Total energies eQMC of HEGs may be evaluated to high
accuracy via quantumMonte Carlo simulations, which have
served to supplement limiting cases since the pioneering
work by Ceperley and Alder [6]. Then, ϵc ¼ eQMC − ts − ϵx
may be parametrized (see, e.g., Refs. [9–11]) by a truncated
series in the general form of Eq. (8). Models and parameters
for ϵc are usually designed to satisfy or approximately satisfy
limiting behaviors of HEGs, with some free parameters that
can be optimized to reproduce reference data from QMC at
intermediate values.

B. From HEGs to real systems

The LDA models the quantum mechanics of an inho-
mogeneous system by combining exact DFT terms with
terms reusing expressions from HEGs. In detail, for an
inhomogeneous system with nuclear potential v and
electronic density n, the LDA yields a ground state energy:

ELDA½n� ¼ Ts½n� þ
Z

nvdrþ EH½n� þ
Z

nϵxcdr: ð9Þ

The first three terms of Eq. (9) have the same form as the
corresponding exact terms. HEGs are used to approximate
the xc energy, Exc½n� ≈ ELDA

x ½n� þ ELDA
c ½n�. Specifically,

the xc energy density is locally approximated by using the
xc energy per unit particle, ϵxcðrÞ ¼ ϵx(nðrÞ)þ ϵc(nðrÞ)
[from Eqs. (7) and (8)], of an HEG with density nðrÞ.
The LDA is an important component of many successful

density functional approximations (DFAs) and is the
cornerstone of “Jacob’s ladder” [17] for DFAs. Its success
is typically justified by arguments based on “xc holes” that
also help in extending LDAs to incorporate semilocal
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properties like density gradients or metadensities [56].
Successes of the TFA—which also approximates the non-
interacting kinetic energy by an LDA—and of the usual KS
LDA have also been justified by appealing to exact semi-
classical limits and universal bounds for quantum mechani-
cal systems [12–16,57]. It should not be forgotten,
however, that without the initial judicious choice by
Kohn and Sham of not changing the form of Ts and EH,
the broad success of DFT would not have gone much
beyond the much more limited success of the TFA.
One of the most important and earliest extensions of the

LDA is the local spin density approximation (LSDA) [58],
which uses the local densities, n↑ðrÞ and n↓ðrÞ, of the two
spin channels separately. Equation (9) is extended to
ELSDA½n↑;n↓�¼Ts½n↑;n↓�þ

R
nvdrþEH½n�þ

R
nϵxcðn;ζÞdr,

which includes the effect of spin in Ts by allowing the
orbitals to differ for different spin channel and uses the
local density, nðrÞ ¼ n↑ðrÞ þ n↓ðrÞ, and spin polarization,
ζðrÞ ¼ ½n↑ðrÞ − n↓ðrÞ�=N, in the HEG parametrization.
The LDA then becomes the special case n↑¼n↓. Indeed
the LSDA is the true cornerstone of almost all modern DFT
applications because, by introducing spin, it extends the
applicability of HEG-based approximations to spin-polar-
ized states; i.e., either ground states acted upon a (collinear)
magnetic field, or the lowest excited state of a given net
spin-polarization. A natural next step would be to extend
the LDA to stationary but otherwise general excited states.

C. Long-standing conundrum: Local approximations
for excitations

Let us begin by highlighting why the eLDA problem is
more difficult than ground states. Firstly, DFT itself is not
well defined for excited states, so one needs to work out
what terms should be treated exactly, or by approximations,
or other extensions [59,60]. Secondly, the spectra of
molecules is discrete and the spectra of insulators is
gapped, whereas HEGs are a metal with no gap and a
continuous (dense) spectrum; the eLDA must therefore
map between fundamentally different physics. Finally,
excitations innately invoke nonlocal physics (e.g., via
the underlying global reciprocal orthogonality conditions
for the corresponding eigenstates, or the transfer of elec-
trons through a subset of orbitals in transitions) which
challenges the use of only local properties like the particle
and spin-polarization densities. Despite these fundamental
difficulties, various attempts have been made to produce
eLDAs, as surveyed below.
An early attempt was by Kohn [61], who sought to

connect inhomogeneous excited states with finite temper-
ature HEGs by enforcing a relation between auxiliary
ensembles of excited states and proper thermal ensembles.
Kohn’s approach implies to deal with quantities like the
entropy, heat capacity, and temperature, thus reducing the
problem of finding excitation energies to the problem of
finding some key aspect of the thermodynamics of a

system. Because the approach involves an effective temper-
ature to be estimated by integrating entropies per unit
volume over the whole space [see Eq. (26) in Ref. [62] for a
helpful discussion], Kohn does not regard the approach as
a purely local density approximation but defines it to be a
quasi-LDA. This approximation was used in a foundational
paper on excited state EDFT [62], but its restriction to
averages over multiple excited states meant that it could not
resolve singlet-triplet spin splitting.
Theophilou and Papaconstantinou [63] later introduced an

eLDA in which the reference to thermodynamics was finally
removed. They also added the important spin dependence,
useful to evaluate spin splittings. Their approach reduces to
the LSDA in which the spin polarization is replaced with a
global quantity (independent of space) that is related to the
spin state of the underlying spin-restricted symmetry adapted
approach, and is therefore a quasi-LSDA.
Harbola and co-workers [64,65] were able to exploit the

exchange energy of proper excited HEGs to derive an LDA
thereto. Their approach is most similar in spirit to the work
presented here. However, their approach does not go
beyond exchange, possibly because they used the conven-
tional ground state DFT framework instead of EDFT.
Furthermore, orbital-dependent self-interaction-correction
terms must be included as well.
A much more recent attempt, that works within the

framework of EDFT, is from Loos and co-workers [41,42]
who parametrized a local density approximation for
ensembles based on the properties of uniform electron
gases with finite numbers of electrons [66–69]. Their
approach captures important excited-state physics, notably
by avoiding the issue of a continuous spectra in the HEG,
and is explicitly designed for EDFT problems. However,
applications were presented only for two-electron systems,
and extensions are required to make the approach more
generally applicable.
Finally, “combination rules” have recently been identified

that allow reuse of any existing ground state DFA, including
L(S)DA, for use in excited-state problems [44,45].
Therefore, combination rules highlight that the locality
assumptions behind LDAs can be extended to excited
states. This is because combination rules are equivalent
to setting (for a specific excited state) nϵexcitedxc ðnÞ ≈P

P cPnPϵ
DFA
xc ðnPÞ inEexcited

xc ¼ R
nϵexcitedxc dr, whereP labels

auxiliary states, nP are their densities, cP are constants, and
ϵDFAxc is an existing (semi)local DFA. It follows that the
locality of ϵDFAxc is extended through the weighted sum in
ϵexcitedxc . Despite being exact for exchange and working
effectively for xc DFAs [44], the rules are inexact for
correlations, meaning there is room for improvement. The
approach presented here may thus be regarded as a first step
toward circumventing combination rules, by replacing them
with an excited-state LDA foundation.
Crucially, we should stress that previous attempts

(except the combination rules) were made by working
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with an incomplete understanding of the structure of the
relevant exact density functionals for excited states. In
particular, recent analysis has revealed that Hartree and
exchange in EDFT go beyond the previous restrictive—
sometimes even problematic—definitions [46,49]. We now
know that correlations come in two kinds: state driven
(which resemble ground state correlations) and density
driven (which are totally new). All new terms in the
ensemble Hartree and DD correlation are highly nonlocal
expressions. Recent progress has also revealed that regular
DFT approximations (and thus LDA expressions) are
appropriate for the novel exchange terms and the novel
SD-correlation terms [44,49]—more below. Thus, in
Sec. III, we show that the aforementioned novel compo-
nents can be determined also in HEGs.

III. EDFT OF EXCITED-STATE HEGs

As discussed in Sec. II C, previous attempts to develop
excited-state LDAs have run into problems or limitations. It
is reasonable to assume that some of these difficulties
reflect the fact that previous work was based on incomplete
understanding of the structure of excited states. This section
thus first (Sec. III A) discusses an upgraded and first
principles understanding of how the excited-states physics
can be encoded into the relevant energy components of
EDFT. From these foundations it becomes easier to discern
which HEG expressions may be used to approximate which
exact energy component in inhomogeneous systems, as a
first enabling step toward an effective excited-state LDA.
Section III B then introduces and derives a “constant

occupation factor ensemble” (cofe) HEG to serve as a
foundation for excited-state approximations. The results
derived in this section are later applied to inhomogeneous
systems in Sec. IV, which also expands on why and how the
cofe HEG is relevant. Results on realistic systems are then
presented in Sec. V.

A. Ensemble DFT from first principles

To understand ensemble DFT [30,31], let us first define
quantum state ensembles. A (quantum state) ensemble Γ̂ is
an operator that describes a classical mixture of quantum
states. It may be defined using a spectral representation,

Γ̂ ¼
X
κ

wκjκihκj; 0 ≤ wκ ≤ 1;
X
κ

wκ ¼ 1; ð10Þ

in which an arbitrary set of orthonormal quantum states jκi
are assigned probabilities or weights wκ. Operator expect-
ation values, Ō¼hΨjÔjΨi, are replaced by Ōw¼Tr½Γ̂wÔ�¼P

κwκhκjÔjκi, which involves quantum and classical aver-
ages. Ensembles are more flexible than wave functions, so
can describe constrained, open, and degenerate systems that
are otherwise outside the remit of wave function mechanics
or DFT. Various theorems [30,31,70] extend key results

of DFT to ensembles, including important variational
principles.
In excited-state EDFT, the usual variational formula,

E0 ¼ minΨhΨjĤjΨi, is replaced by the weighted average,

Ew ≔ inf
Γ̂w
Tr½Γ̂wĤ� ¼

X
κ

wκEκ; ð11Þ

where Γ̂w is an ensemble with a given set of weights
w ¼ fw0; w1;…g, and Eκ are eigenenergies of Ĥ ordered
such that the lowest energies are associated with the largest
weights. The energies are in usual ascending “excitation”
order if we define the weights to be monotonically
decreasing, i.e., wκ0 ≤ wκ for Eκ0 ≥ Eκ. Note that we follow
the usual convention of using superscripts w (or cofe later)
to identify ensemble functionals. But we depart from the
recent convention of using calligraphic letters to avoid
confusion between E for total energies of ensembles and ϵ
for energies per particle of HEGs.
It is convenient to generalize Eq. (1) to ensembles by

writing

Ew½n�≔Tw
s ½n�þ

Z
nvdrþEw

H½n�þEw
x ½n�þEw

c ½n�: ð12Þ

Here, w indicates the set of weights, n is the density, and v
is the external potential. In a Kohn-Sham formalism, the
ensemble density is conveniently written as

nwðrÞ ≔
X
i

fwi niðrÞ; fwi ≔
X
κ

wκθ
κ
i ; ð13Þ

in terms of orbital densities, niðrÞ ≔ jϕiðrÞj2, and average
occupation factors fwi , which may be noninteger and
involve a weighted average over the integer occupation
factors, θκi ∈ ð0; 1; 2Þ (i.e., no occupation, occupation in one
spin, or occupation in both spins) of each KS state in the
ensemble. The orbitals obey a spin-independent KS-like
equation, ½t̂þ vws ðrÞ�ϕiðrÞ ¼ εiϕiðrÞ, where t̂≡ − 1

2
∇2 is

the one-body kinetic energy operator. Note, functions of the
position like orbitals (ϕi ≡ ϕw

i ) and densities (ni ≡ jϕw
i j2

and similar) also carry an implicit dependence on the
weights w as do KS wave functions (jκsi≡ jκws i), but
we leave the superscript off to avoid clutter in equations.
With the ensemble formalism defined, we are now ready

to define the terms in Eq. (12). Recent work [46,47,49] has
sought to rigorously define exact energy functionals for
excited-state ensembles, giving

Tw
s ½n� ≔

X
i

fwi

Z
1

2
j∇ϕij2dr; ð14Þ

Ew
H½n� ≔

X
κκ0

wmaxðκ;κ0ÞU½ns;κκ0 �; ð15Þ
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Ew
x ½n� ≔ −

X
ii0

fwmaxði;i0ÞU½ϕiϕ
�
i0 �: ð16Þ

Here, we used
R
ϕ�t̂ϕdr ¼ R

1
2
j∇ϕj2dr, U½ρ� as defined

earlier in Eq. (2), introduced ns;κκðrÞ ¼ hκsjn̂ðrÞjκsi as
the density of Kohn-Sham state jκsi, and introduced
ns;κ≠κ0 ðrÞ ¼ hκsjn̂ðrÞjκ0si as the (potentially complex-val-
ued) transition density between Kohn-Sham states jκsi and
jκ0si. Equation (14) retains its well-known “textbook”
expression in all cases. By contrast, Eqs. (15) and (16)
reproduce textbook expressions for the lowest energy
state of each spin-polarization (maximal jSzj) only—i.e.,
“conventional” states accessible by ground state DFT—but
are different in ensembles and excited states.
The remaining energy, Ew

c ≔Ew−
R
nvdr−Tw

s −Ew
H−Ew

x ,
is the unknown correlation energy functional. It is con-
venient to partition

Ew
c ½n� ≔ ESD;w

c ½n� þ EDD;w
c ½n� ð17Þ

into state-driven and density-driven components, each with
different physical origins [47–49]. The SD correlation
energy may be written as

ESD;w
c ≔

Z
1

0

dλ
Z

∞

0

−dω
π

Z
drdr0

2jr − r0j
× ½χwλ ðr; r0; iωÞ − χw0 ðr; r0; iωÞ�; ð18Þ

in terms of density-density response function [see Ref. [49]
for details], and retains the same general expression as the
ground state correlation energy. The density-driven term is
always zero in conventional states (e.g., molecular ground
states) so is not considered in ground state DFT. We shall
address its general expression shortly.
It is sometimes useful to rewrite Eqs. (15) and (16) as

Ew
H=x ¼

Z
nw2;H=xðr; r0Þ

drdr0

2jr − r0j ð19Þ

using the ensemble Hartree and exchange pair densities,

nw2;Hðr; r0Þ ¼
X
κκ0

wmaxðκ;κ0Þns;κκ0 ðrÞns;κ0κðr0Þ; ð20Þ

nw2;xðr; r0Þ ¼ −
X
ii0

fmaxði;i0Þρiðr; r0Þρ�i0 ðr; r0Þ; ð21Þ

where ρiðr; r0Þ ¼ ϕiðrÞϕ�
i ðr0Þ. It is straightforward to see

that using Eqs. (20) and (21) in Eq. (19) gives the same
energies as Eqs. (15) and (16), respectively. The DD
correlation energy also can be expressed using Eq. (19).
Its pair density has a similar form to the Hartree energy,

nDD;w2;c ðr; r0Þ ¼
X
κκ0

wmaxðκ;κ0Þ

Z
1

0

½nλκκ0 ðrÞnλκ0κðr0Þ

− ns;κκ0 ðrÞns;κ0κðr0Þ�dλ; ð22Þ

but involves the difference between transition densities
at interaction strength λ and their KS counterparts (i.e.,
λ ¼ 0) [49]. Thus, like the Hartree energy, EDD;w

c has an
explicitly nonlocal dependence on densities and orbitals
and should not by approximated locally. Details and other
helpful relationships for functionals will be introduced and
used as required.
Before proceeding further, we make the important

assumption that the results of Sec. III A apply to HEGs.
This is an assumption because all EDFT results shown so
far are for finite systems with countable numbers of
excitations. By contrast, homogeneous electron gases are
infinite and their excitations are uncountable. The rest of
this paper treats HEGs as the appropriate thermodynamic
limit of finite systems whose properties are consistent with
the ensemble density functional theory presented in this
section, and so obey straightforward generalizations of key
equations.

B. cofe HEGs

With core theory now established, let us proceed to
explore generalizations of HEG physics that exploit the
additional degrees of freedom from ensembles. Our aim is
to develop an understanding of HEGs that spans ground
state and excited-state physics. To that end, we will reveal
the properties of constant occupation factor ensemble
HEGs—the meaning of the name will soon become
apparent. The key to generalizations is to invoke both
ground and excited states of HEGs. As we shall show
below, many properties are then uniquely determined by
the occupation factors fq of the HEG, while others depend
on w explicitly, so require some extra restrictions on the
nature of excited states because there can be many different
sets of weights w that yield a given fq.
Equations (13), (14), and (16) reveal that the density,

kinetic energy, and exchange energy of any ensemble
system depend explicitly only on the orbital occupation
factors fwi . In HEGs, we replace f

w
i by fq, i.e., as a function

of absolute wave number q. This follows from the fact that
(i) the KS “orbitals” of an HEG are plane waves ϕqðrÞ ∝
eiq·r and (ii) that KS minimization dictates that we fill each
q ¼ jqj in full. Thus, given fq it is possible to define the
density n as well as the kinetic and exchange energies. We
will therefore first discuss some HEGs from the perspective
of orbital occupation factors, before proceeding to refine
the definition.
The most intuitive form of HEG is an unpolarized gas in

the lowest energy (ground) state. In orbital (KS) terms, the
unpolarized HEG noninteracting ground state is a Slater
determinant of doubly occupied plane-wave orbitals.
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Occupied states fill in ↑=↓ pairs up to a single Fermi wave
number kF. Its wave-number-dependent occupation factor
and density are

funpolq ¼ 2ΘðkF − qÞ; kF ¼ ð3π2nÞ1=3; ð23Þ

where ΘðxÞ ¼ f1 ∀ x ≥ 0; 0 ∀ x < 0g is a Heaviside step
function. The density n of the gas is sufficient to describe
the state.
Ground states realized by exposing the HEG to a uniform

external magnetic field (the corresponding vector potential
being ignored, as in spin DFT) have a wave-number-
dependent occupation factor determined by spin-dependent
Fermi wave numbers:

fpolq ¼Θðk↑F−qÞþΘðk↓F−qÞ; k↑;↓F ¼ð6π2n↑;↓Þ1=3: ð24Þ

The unpolarized gas is then the special case of n↑ ¼ n↓ ¼
ðn=2Þ giving ζ ¼ 0. A fully polarized gas has n↑ ¼ n,
n↓ ¼ 0, and ζ ¼ 1. For definiteness, we work under the
convention that the majority spin channel is the “up” (↑)
channel. The density n and spin polarization ζ are sufficient
to describe the state.
In this work, we consider (nonthermal) ensembles of

excited states, which correspond to averaged occupation
factors. Specifically, we consider ensembles obeying

fcofeq ¼ f̄Θðk̄cofeF − qÞ; k̄cofeF ¼ ð6π2n=f̄Þ1=3: ð25Þ

The bar on top of f̄ (and, thus, k̄F) means that this quantity
stems from an average with respect to an ensemble rather
than to a pure state, and “cofe” stands for constant
occupation factor ensemble [71], reflecting the fact that
the system has the same occupation factor right up to a
single (ensemble) Fermi level, unlike a polarized gas. We
shall discuss below that the correct interpretation associates
fcofeq with an unpolarized ensemble.
Before proceeding further, it is worth considering why

we should choose fcofeq to be constant or zero, rather than
any of the infinite number of other options we could have
chosen. The main motivation is simplicity. Firstly, we aim
to keep the number of parameters to two (n and f̄) like the
spin-polarized gas (n and ζ). We also aim to ensure that
limiting cases (unpolarized and fully polarized gases) are
reproduced by cofe gases—once adapted to inhomo-
geneous systems the limits respectively correspond to
singlet ground states and ground and excited states of
one-electron systems. Finally, noting that both limits have
the special feature that they yield constant occupation
factors (two and one, respectively), we aim to retain this
special feature in between the limits as a sensible gener-
alization that incorporates excited states. Crucially, Sec. IV
will demonstrate that the cofe model can indeed be
localized to approximate inhomogeneous states by recov-
ering meaningful exact conditions.

The above goals dictate the form of Eq. (25), as well as
the kinetic and exchange energies of cofe HEGs. The
addition of some extra restrictions (to be discussed below,
as needed) on the excited states dictates the remaining
properties of cofe HEGs. As we shall see in Sec. V the
resulting cofe gas is effective for predicting ground and
excited states of inhomogeneous systems.
Figure 1 illustrates the different occupation factors for

unpolarized, polarized, and cofe HEGs, all at the same
density n. The polarized gas has ζ ¼ 1

2
, while the cofe HEG

has f̄ ¼ 1.7. The unpolarized gas has a single Fermi level
with double occupations, the polarized gas has two Fermi
levels, one higher (↑) and one lower (↓) than that of the
unpolarized gas, and is doubly occupied up to the lower
level and then singly occupied to the higher level. The cofe
gas also has a single Fermi level between the unpolarized
and ↓ levels, but is only partly occupied for all q. The
choice of ζ ¼ 1

2
and f̄ ¼ 1.7 ensures that the polarized and

cofe HEGs also have the same exchange energy—as can be
seen by evaluating Eqs. (5) and (29). We will exploit this
feature in Sec. III B 4.
Once we accept to deal with ensembles from constrained

occupation factors, we can mix with equal weights a
polarized HEG with its time-reversed partner. Nothing
changes in terms of the evaluation of the energy compo-
nents. What changes is the interpretation. Now we can find
a continuum of unpolarized ensembles of cofe HEGs, with
energies that go from that of the regular unpolarized to that
of the regular fully polarized HEGs. But the ensembles can
also accommodate ground states and excited states (keep-
ing in mind that the polarized gas is itself an excited state in
the absence of a magnetic field), in a sense that will be
clarified just below.
The ingredients of Γ̂cofe are most easily understood by

considering a finite system with four electrons.
(i) The unique unpolarized state is junpoli ¼ j1222i,

which is consistent with a Fermi level, k̄cofeF ¼ ϵþ2 ,
just above the second orbital energy. As a singular
state we set wunpol ¼ 1 and obtain f1 ¼ f2 ¼ f̄ ¼ 2.

(ii) The fully polarized system, jfullpoli ¼ j1↑2↑3↑4↑i,
is also unique (wfullpol ¼ 1). It has k̄cofeF ¼ ϵþ4 (four
orbitals allowed) and yields f1¼f2¼f3¼f4¼f̄¼1.
The corresponding state with all ↓ electrons has the

FIG. 1. Occupation (Occ.) factors as a function of wave number
for an unpolarized gas (dash-dotted line), polarized gas (ζ ¼ 1

2
,

solid line), and cofe gas (dashed line)—all at the same electron
density.
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same energetics (but time-reversed dynamics).
Ensemble averaging the ↑- and ↓-spin systems
therefore yields a net unpolarized system with the
same energy terms.

(iii) But, if we allow three orbitals, we have three
maximally polarized (N↑ ¼ 3 and N↓ ¼ 1) states:
jcofe0i≡j122↑3↑i, jcofe1i≡j1↑223↑i, and jcofe2i≡
j1↑2↑32i. Each state has a spin polarization ζeff ¼
3−1
4

¼ 1
2
. The (noninteracting) Fermi level k↑F for ↑

electrons is always k↑F ¼ ϵþ3 . But we cannot define a
level for ↓ electrons due to holes in jcofe1i and
jcofe2i. Assigning each of the three states an equal
weight, w0¼w1¼w2¼ 1

3
, yields f1 ¼ f2 ¼ f3 ¼ 4

3
,

as desired. Thus, k̄cofeF ¼ k↑Fð¼ k↓FÞ ¼ ϵþ3 (after we
also average over spin) for the whole ensemble.

Replacing orbital indices by q, and taking the limit
N;V → ∞ for fixed density, n ¼ ðN=VÞ, and ensemble
Fermi level, k̄F, yields the actual constant occupation factor
ensemble. It is composed of ground and excited states all
with the same polarization, ζeff ¼ 2=f̄ − 1 (and their time-
reversed partners), where f̄ ¼ 6π2nk̄−3F follows from
Eq. (25). Sections III B 2 and III B 4 will expand a little
on the specifics of states required for cofe HEGs. Here and
henceforth we drop the superscript from k̄cofeF and simply
use k̄F.
It is finally worth noting that the energy of a cofe HEG

with f̄ ¼ 2 is always equal to that of an unpolarized gas
with ζ ¼ 0, while the energy of a cofe HEG with f̄ ¼ 1 is

always equal to that of a fully polarized gas with ζ ¼ 1
(keeping in mind that the ensemble averages over the time-
reversed state). Figure 2 shows fq for a selection of
polarized and cofe gases between (and at) these limits,
all yielding the same density, n. Values of ζ and f̄ are
“paired” to yield the same exchange energy—we will later
exploit this pairing in Eq. (44) of Sec. III B 4.
We will next proceed to compute the energy components

of the cofe HEG. Key results are summarized in Table I.

1. Density, kinetic, and exchange energies
of cofe HEGs

The density, n½fq� ≔
R
∞
0 fqðq2dq=2π2Þ, and kinetic

energy per particle,

ts½fq� ≔
1

n½fq�
Z

∞

0

fq
q2

2

q2dq
2π2

; ð26Þ

of an HEG are direct functionals of the occupation factor
distribution fq. Prefactors deal with normalization of the
orbitals and energies. The kinetic energy integral follows
from the fact that ϕ�

qðrÞ½− 1
2
∇2ϕqðrÞ� ¼ 1

2
q2ϕ�

qðrÞϕqðrÞ.
Typically we are interested in some fixed density,

n ¼ ð3=4πr3sÞ, defined by its Wigner-Seitz radius rs, which
imposes constraints on fq (e.g., the Fermi levels in the
previous section). Throughout we will implicitly define all
HEGs to be at fixed Wigner-Seitz radius rs and vary other
parameters under this assumption. Using the occupation
factor model for a polarized gas with fixed ζ and rs yields
the kinetic energy given by Eq. (4).
Consider instead a cofe HEG, where fq is given by

Eq. (25). We obtain n½fq� ¼ ðf̄k̄3F=6π2Þ from which we
confirm that k̄F ¼ ð6π2n=f̄Þ1=3. The kinetic energy of a
cofe HEG therefore has the separable expression,

tcofes ðrs; f̄Þ ¼
3k̄Fðrs; f̄Þ2

10
¼ tsðrsÞ

�
2

f̄

�
2=3

; ð27Þ

using tsðrsÞ from Eq. (6).
In addition to the density and kinetic energy, the

exchange energy of any HEG may also be evaluated
directly from fq. Replacing sums over k and k0 by integrals
over q and q0 lets us rewrite Eq. (16) as

FIG. 2. Like Fig. 1 except showing polarized and cofe HEGs at
a variety of ζ and f̄. Note that the polarized and cofe gas are, as
expected, the same for ζ ¼ 0 and f̄ ¼ 2, or ζ ¼ 1 and f̄ ¼ 1.

TABLE I. Summary of Kohn-Sham derived properties of the HEGs considered in this work. Here, Cs ¼ 1.10495
and Cx ¼ 0.458165. The cases ζ ¼ 0 and f̄ ¼ 2 correspond to an unpolarized gas, and ζ ¼ 1 and f̄ ¼ 1 are
equivalent.

Type of HEG Parameters ts ϵx ΔϵH
Unpolarized gas rs Cs

r2s

−Cx
rs

0

Polarized gas rs, ζ Cs

r2s

ð1þζÞ5=3þð1−ζÞ5=3
2

−Cx
rs

ð1þζÞ4=3þð1−ζÞ4=3
2

0

Constant occupation factor ensemble (cofe) rs, f̄
Cs

r2s
½2
f̄
�2=3 −Cx

rs
½2
f̄
�1=3 jϵxj ð2−f̄Þðf̄−1Þf̄
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ϵx½fq� ≔ −
1

n½fq�
Z

∞

0

Z
∞

0

fmaxðq;q0ÞVðq; q0Þ
q02dq0

2π2
q2dq
2π2

;

ð28Þ

where Vðq; q0Þ ¼ R
1
−1ðπdx=q2 þ q02 − 2qq0xÞ ¼ ðπ=qq0Þ×

logðjqþ q0j=jq − q0jÞ is the spherically averaged Coulomb
potential. A little additional work on the integral (see
Appendix A for details) yields Eq. (5) for a polarized gas,
and

ϵcofex ðrs; f̄Þ ¼ −
f̄
n

Z
k̄F

0

q
π

q2dq
2π2

¼ ϵxðrsÞ
�
2

f̄

�
1=3

ð29Þ

for cofe HEGs, where ϵxðrsÞ is the unpolarized HEG
expression of Eq. (7).
Although not necessary for computing ϵx, we may

similarly derive an expression for the HEG exchange hole,
defined in Eq. (21). We obtain

ncofe2;x ðR; rs; f̄Þ ¼ Πcofe
x ðrs; f̄ÞNðk̄FRÞ; ð30Þ

where

Πcofe
x ðrs; f̄Þ ¼ −f̄

Z
k̄F

0

q3

3π2
q2dq
2π2

¼ −n2

f̄
ð31Þ

is the on-top pair density of the exchange hole and NðxÞ ≔
9½sinðxÞ − x cosðxÞ�2=x6 is a function. We will use the
relationship between the exchange energy and exchange
hole to help in deriving the properties of the Hartree energy
in the next section.

2. Hartree energy of cofe HEGs

The ensemble Hartree energy functional is given in
Eq. (15). This term is usually ignored in HEG discussions
because n2;H ¼ n2 in polarized and unpolarized gases at
arbitrary ζ, which means that ϵH exactly cancels the
energy of the positive background charge, ϵbg—that is,
ϵH½n2;H ¼ n2� ¼ −ϵbg. In cofe HEGs this cancellation is
incomplete. The singular background charge is guaranteed,
by charge neutrality, to be canceled in full. However, the
Hartree pair density, nw2;H ≠ n2, differs from the background
charge density n2, and thus ϵwH includes additional terms.
The energy per particle of an ensemble HEG is

ew½fwq � ≔ ts½fwq � þ ΔϵwH½fwq � þ ϵx½fwq � þ ϵwc ½fwq �; ð32Þ

where superscripts w indicate an explicit dependence on the
nature of the ensemble. The additional positive Hartree
energy contribution,

ΔϵwH ¼ ϵwH − ϵbg ¼
1

n

Z
Δnw2;HðRÞ

dR
2R

; ð33Þ

may be evaluated [Eqs. (19) and (20)] using the ensemble
Hartree pair-density deviation, Δnw2;H ¼ nw2;H − n2.
We therefore seek closed-form expressions for ncofe2;H and

ΔϵcofeH for the special case of a cofe HEG with maximal
polarization within the ensemble, as defined earlier. Full
details for Hartree expressions are rather involved so have
been left to Appendix B. The rough argument is as follows:
(1) the background charge is canceled by κ ¼ κ0 terms in
Eq. (15) or (20), so we need only evaluate κ ≠ κ0 terms,
(2) the cofe states jκi contain every possible combination of
paired and unpaired orbitals up to k̄F, (3) each of these
states is weighted equally, and (4) we may therefore use
combinatorial arguments to evaluate key expressions. The
final step recognizes that each state may be defined by a set,
fqgdouble, of doubly occupied orbitals, such that the
remaining occupied orbitals (with jqj ≤ k̄F) contain only
an ↑ electron. Each noninteracting state is then a Slater
determinant consistent with the occupations, whose proper-
ties may be understood via fqgdouble and k̄F.

Appendix B yieldsΔϵcofeH ðrs;f̄Þ≔CH
rs

ð2−f̄Þðf̄−1Þ
f̄4=3

[Eq. (B8)],

where CH ¼ 21=3Cx. We rewrite this as

ΔϵcofeH ðrs; f̄Þ ¼ jϵxðrs; f̄Þj
ð2 − f̄Þðf̄ − 1Þ

f̄
ð34Þ

for use in Eq. (32) and later expressions. This result follows
from the fact that

ncofe2;H ðR; rs; f̄Þ ¼ n2 þ ΔΠcofe
H ðrs; f̄ÞNðk̄FRÞ; ð35Þ

ΔΠcofe
H ðrs; f̄Þ ¼ n2

ð2 − f̄Þðf̄ − 1Þ
f̄2

¼ −
ð2 − f̄Þðf̄ − 1Þ

f̄
Πcofe

x ; ð36Þ

where NðxÞ is the same expression used in Eq. (30).

3. Energies in the low-density limit of cofe HEGs

We cannot analytically evaluate the energy of an HEG at
arbitrary density n. We can, however, semianalytically
evaluate it in the high-density (large n, small rs) and
low-density (small n, large rs) limits. The high-density
limit may be obtained from a series solution around the
Kohn-Sham solution. In the low-density limit, the electrons
are far enough apart to undergo a process known as a
Wigner crystallization [72,73]. The resulting “strictly
correlated electron” physics may then be understood via
a classical leading order term, with quantum corrections.
The transition occurs at rs ≈ 100 bohr.
Recent work [50] has shown that any dependence on

ensemble properties must vanish in the low-density limit of
any finite system, so that all excited-state properties
become degenerate to both leading and subleading order.
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It is very likely that this result also holds true in the
thermodynamic limit of HEGs, as justified by the following
intuition.
(1) As the density becomes small, the distance between

electrons becomes large and the particles become
effectively classical with a quantum state defined by
fluctuations around a classical minima.

(2) Whether the system is finite or infinite, the fluctua-
tions may be “excited” any number of times with no
impact on the classical leading order term of the
interaction energy.

(3) Furthermore, the next leading order quantum cor-
rection from zero-point energy fluctuations around
the classical minima are dictated only by the density
constraint, and are therefore also independent of
excitation structure.

This result has important implications for both spin-
polarized and cofe HEGs, as both may be represented as
ensemble of excited states—with specific properties gov-
erned by ζ or f̄, respectively. It follows from the above that
the leading two orders of their low-density energies are
independent of the excitation structure. Consequently,
energies are independent of f̄ and ζ. Independence of ζ
has long been theorized for spin-polarized HEGs. Recent
QMC data [74] provide confirmation of this result.
The leading order terms correspond to 1=rs and 1=r

3=2
s in

the usual large-rs series description of HEGs. Therefore,
ensemble and spin effects can only contribute at Oð1=r2sÞ.
The (Hartree) exchange and correlation energy of strictly
correlated electrons in the low-density limit (ld) therefore
obeys limrs→∞ ϵHxcðrs; ζÞ ¼ ϵldHxcðrsÞ, where

ϵldHxcðrsÞ ≔
−C∞

rs
þ C0

∞

r3=2s

þ � � � ð37Þ

includes only the part of the Hartree energy that is not
canceled by background charge. The best estimates
for coefficients are C∞ ¼ 0.8959 ≈ 1.95Cx and C0

∞ ¼
1.328 [75,76].
In regular HEGs, the Hartree term is fully canceled by

background charge and so can be ignored. For polarized
HEGs we therefore obtain limrs→∞ ϵc ¼ ϵldHxc − ϵx and

lim
rs→∞

ϵcðrs; ζÞ ≔
−C∞ þ CxfxðζÞ

rs
þ C0

∞

r3=2s

þ � � � ; ð38Þ

using fx from Eq. (5). By contrast, in a cofe HEG there is a
nonzero component (ΔϵcofeH ) in the Hartree energy. It
therefore follows that limrs→∞ ϵcofec ¼ ϵldxc − ΔϵcofeH − ϵcofex .
We finally obtain

lim
rs→∞

ϵcofec ðrs; f̄Þ ¼
−C∞ þ CxfcofeHx ðf̄Þ

rs
þ C0

∞

r3=2s

þ � � � ; ð39Þ

where

fcofeHx ðf̄Þ ¼
�
2

f̄

�
1=3 ðf̄ − 1Þ2 þ 1

f̄
ð40Þ

follows from Eqs. (29) and (34). This is the appropriate
low-density series expansion for the correlation energy of
cofe HEGs.

4. State-driven correlation energies of cofe HEGs

In general, the correlation energy of an ensemble is
separable into two terms [47–49], Ew

c ≔ ESD;w
c þ EDD;w

c

[Eq. (17)], where each covers different physics of the
ensemble. The state-driven term is the only term present in
pure states, such as polarized gases. In general ensembles, it
is like a weighted average of conventional correlation
energies for the different states of the ensemble. The
density-driven term reflects the fact that the densities of
the individual Kohn-Sham and interacting states that form
the ensemble are not necessarily the same—only the
averaged ensemble density is the same.
We expect that only the SD part of the correlation energy

should form part of the xc energy used in density functional
approximations, so we focus here on this term—we explain
this choice in Sec. IV. Our goal is therefore to determine
ϵSD;cofec ðrs; f̄Þ as a function of rs and f̄, which wewill use as
a basis for parametrization in the next section. This involves
considering the high- and low-density limits of matter (and
therefore cofe HEGs), for which exact results will be
derived. We will also discuss how to repurpose existing
data for values in between these limits. Comprehensive
analysis of both state- and density-driven correlation terms
is reported in Appendix C. Below, we summarize key
elements of the SD correlation energy analysis.
The division into SD and DD terms is not unique

[47–49], and any explicit study of the separation into
SD and DD terms requires accessing the properties of a
variety of excited states of interacting HEGs. Nevertheless,
discussion near Eq. (14) of [49] argues that the SD
correlation energy may be written in adiabatic connection
and fluctuation-dissipation (ACFD) theorem form:

ϵSDc ≔
1

n

Z
1

0

dλ
Z

∞

0

−dω
π

Z
drdr0

2jr − r0j
× ½χλðr; r0; iωÞ − χ0ðr; r0; iωÞ�; ð41Þ

which is Eq. (18) adapted to HEGs. Here, χ0 is the collective
density-density response of the noninteracting cofe HEG
defined earlier—i.e., the ensemble of part-polarized ground
and excited states that yield f̄. χλ is its equivalent for a scaled
Coulomb interaction ð1=RÞ → ðλ=RÞ. In principal, the
individual states in the interacting ensemble may be fol-
lowed from their known λ ¼ 0values to their unknownvalue
at arbitrary λ, although this is not required in practice.
The key step toward understanding how to separate

and parametrize terms is to use the random-phase
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approximation (RPA). RPA becomes exact (to leading
order) in the high-density limit [10]. More generally,
RPA provides an approximate solution for Eq. (41), and
thus provides insights into the SD correlation term. Details
are provided in Appendix C 1. Key findings are that
(i) ϵSD;cofec is approximately linear in f̄ for high densities
and (ii) for low densities we obtain a scaling that is similar
to fcofex ðf̄Þ. Appendix C 2 then uses the RPA results and
fundamental theory to argue that

ϵSD;cofe;hdc ðrs; f̄Þ¼ ðf̄−1Þϵcðrs;0Þþð2− f̄Þϵcðrs;1Þ; ð42Þ

ϵSD;cofe;ldc ðrs; f̄Þ ¼ ϵxðrsÞ
�
C∞

Cx
− fcofex ðf̄Þ

�
þ C0

∞

r3=2s

ð43Þ

are, respectively, the exact high- and low-density limits of
ϵcofec . That is, limrs→0 ϵ

SD;cofe
c ðrs; f̄Þ ¼ ϵSD;cofe;hdc ðrs; f̄Þ and

limrs→∞ ϵSD;cofec ðrs; f̄Þ ¼ ϵSD;cofe;ldc ðrs; f̄Þ.
Filling in the gaps between these limits requires

QMC calculations, which, however, are available only
for spin-polarized ground states of homogeneous gases.
Appendix C 2 therefore shows how to reuse existing spin-
polarized QMC data for the in-between regime, by adapting
it for cofe HEGs. Specifically, it argues that

ϵSD;cofe;mhd
c ðrs; f̄Þ≡ ϵQMC

c (rs; ζ ¼ f̂−1x-mapðf̄Þ) ð44Þ

is a reasonable approximation for medium-high densities
(mhd). The key assumption behind this relationship is that
HEGs with same exchange energy should have a similar
state-driven correlation energy. Thus, f̂x-mapðζÞ is a function
yielding ϵcofex (rs;f̂x-mapðζÞ)¼ϵxðrs;ζÞ and ϵcofex ðrs; f̄Þ ¼
ϵx(rs; f̂

−1
x-mapðf̄Þ). Equation (44) becomes exact in the

low-density limit, but incorrect in the high-density limit.
More information is provided in Appendix C 2.
Appendix D details parametrization of ϵSD;cofec ðrs; f̄Þ for

arbitrary densities, based on the theoretical work in this
section. As an intermediate step, it also introduces approx-
imations for f̂x-map and its inverse, for use in Eq. (44).
Key results are visually summarized in Fig. 3, which
compares the parametrization of ϵSD;cofec with the (adapted)
reference data used to fit it. The top plot shows correlation
energies, ϵSD;cofec ðrs; f̄Þ. The middle plot shows deviations,
ΔϵSD;cofexc ¼ ϵSD;cofexc ðrs; f̄Þ − ϵSD;cofexc ðrs; 2Þ, from unpolar-
ized gas values. The bottom plot shows xc enhancement
factors, ϵSD;cofexc ðrs; f̄Þ=ϵSD;cofexc ðrs; 2Þ, which must approach
one (100%) in the low-density (large rs) limit.

IV. FROM cofe HEGs TO REAL SYSTEMS

As discussed in Sec. II B, Kohn and Sham used an
inhomogeneous description of the (quantum mechanical)
kinetic and (classical) Hartree energies, together with an

HEG-based approximation for the exchange and correla-
tion energy only, per Eq. (9). It is natural to assume that
ensembles and excited states can benefit from a similar
treatment. However, for ensembles it is important to work
with the corresponding extended functionals and, in par-
ticular, the Hartree functional forms described in Eq. (15).
Recent applications have confirmed the advantages of
using Eq. (15), rather than the traditional classical electro-
stratic energy [43–45].
Switching to ensemble of excited states, and mimicking

Eq. (9) to employ the cofe HEGs, leads to

Ew
eLDA ¼ min

n

�
Tw
s ½n� þ

Z
nðrÞvðrÞdrþ Ew

H½n�

þ
Z

nðrÞϵcofexc ðrsðrÞ; f̄ðrÞÞdr
�
: ð45Þ

Here, we have replaced pure state Ts and EH by their
ensemble equivalents, Tw

s [Eq. (14)] and Ew
H [Eq. (15)], and

locally approximated the xc energy by the cofe LDA with
local Wigner-Seitz radius rsðrÞ and local effective occu-
pation factor f̄ðrÞ. Note, as was done earlier, we leave w
superscripts off local quantities (n, rs, and f̄).
Furthermore—and much more useful in practice—it

is possible to use Eq. (45) to generate state-resolved

FIG. 3. Correlation (top) and xc (middle) energies and xc
(bottom) enhancement factors for HEGs as a function of rs and
f̄∈ ð2; 1.85; 1.50; 1Þ. Plots show the cofe (solid lines) para-
metrization introduced here and the adapted benchmark results
from Ref. [8] (circles). The inset shows ϵxc (cofe and benchmark)
as a function of f̄, for rs ¼ 2. Line colors indicate the value of f̄
(see inset for values).
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energies Ejκi for target states jκi [77] that obey stationary
conditions [78]. The resulting eLDA energy expression is

EeLDA
jκi ¼ Ts;jκi½njκi� þ

Z
njκiðrÞvðrÞdrþ EH;jκi½njκi�

þ
Z

njκiðrÞϵcofexc ðrs;jκiðrÞ; f̄jκiðrÞÞdr: ð46Þ

In brief, Eq. (46) follows from applying the exact weight-
derivative relationship, Ejκi ¼ ∂wκ

Ew [for any positive
weight wκ in the ensemble; see Eq. (11)], to the eLDA
energy expression, after assuming that orbitals are fixed in
the derivative [44]. Ts;jκi and EH;jκi are obtained from the
inhomogeneous system. We approximate the exchange and
state-driven correlation energy via

ϵcofexc ðrs; f̄Þ ≔ ϵcofex ðrs; f̄Þ þ ϵSD;cofec ðrs; f̄Þ ð47Þ

from the local Wigner-Seitz radius rs;jκiðrÞ and local
effective occupation factor f̄jκiðrÞ. We will discuss energy
terms in the next subsection and return to f̄ in Sec. IV B.

A. State-resolved treatment

In the state-resolved treatment, each excited state jκi is
dictated by a set of orbital occupancies and spin symmetry
(singlet, doublet, triplet, etc)—in weakly correlated wave
functions these would indicate the dominant Slater deter-
minants in a configuration expansion of the true excited
state. Both Ts;jκi and ns;jκi take their usual forms, but with

orbital occupation factors θjκii taken from the excited state.
The Hartree energy is obtained from Eq. (15) to yield

EH;jκi ≔ ∂wκ
Ew
H ≡U½njκi� þ 2

X
κ0<κ

U½ns;κκ0 �: ð48Þ

The first term is the typical ground state Hartree energy,
EH½njκi� ¼ U½njκi�, but the extra U½ns;κκ0 � terms involve the
Coulomb energy of a transition density from KS state jκsi
to a lower energy KS state jκ0si of the same symmetry, i.e.,
“deexcitations,” For the lowest-lying excitation of each
given symmetry (spatial or spin) a standard-looking pure
state problem is well defined, but complications appear
when considering higher excitations.
This work considers only the lowest energy excitation

for each allowed symmetry, and some other symmetry-
protected excited states, and thus solves Eq. (46) via
minimization. Specifically, it considers three types of
excited states, whose KS states may be fully defined via
electron promotion (P̂to

from) from the lowest energy doubly
occupied singlet state, jS0i: single excitation (promotion) to
a triplet,

jTa
i i≡ 1ffiffiffi

2
p ½P̂a↑

i↑ − P̂a↓
i↓ �jS0i;

single excitation (promotion) to a singlet,

jSai i≡ 1ffiffiffi
2

p ½P̂a↑
i↑ þ P̂a↓

i↓ �jS0i;

and double excitation (promotion) to a singlet,

jSa2i2 i≡ P̂a↑
i↑ P̂

a↓
i↓ jS0i:

Thus, once we define each state via i, a, and the nature of
the excitation, we are able to find the eLDA energy by
minimizing Eq. (46) with respect to orbitals using the
approach detailed in Sec. II of Supplemental Material [79].

Orbital self-consistent solutions fϕjκi
i g are therefore differ-

ent in each state jκi.
The xc energy approximation is detailed in Appendix D.

The exchange energy term takes the exact (for cofe gases)
form,

ϵcofex ðrs; f̄Þ ≔ ϵxðrsÞ½2=f̄�1=3; ð49Þ

while the state-driven correlation energy term may be
parametrized as

ϵSD;cofec ðrs;f̄Þ≔ ðf̄−1Þϵ0cþð2− f̄Þϵ1c
þðf̄−1Þð2− f̄Þ

�
M2ðrsÞþ

�
3

2
− f̄

�
M3ðrsÞ

�

ð50Þ

for ϵζc computed using Eq. (D4) (parameters in Table II).
Here, M2;3ðrsÞ involve weighted sums (coefficients in
Table III) over functions ϵζc.
Finally, we stress that Eq. (46) ignores density-driven

correlations entirely, i.e., setsEDD;w
c ≡ 0. This is becauseDD

correlations, like Hartree interactions (either regular or
ensemblized), are highly nonlocal quantities [see Eq. (22)]
that must not be treated via any LDA. Ignoring DD
correlation should not significantly affect our conclusions,
as supported by the close agreement between time-dependent
LDA (TDLDA) and eLDA on single particle excitations
in Sec. V.

B. Effective occupation factor

The final step toward the eLDA is to justify and derive a
local effective occupation factor. Equation (46) assumes
that exchange and state-driven correlations may be approxi-
mated locally. In fact, we know from recent works [44,45]
that excited-state physics can be modeled effectively by
reusing ground state semilocal xc approximations, because
applying combination rules [44] to existing DFAs can be
very effective in practice. Physically, this may be justified
by recognizing that exchange and state-driven correlations
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are response-based properties [49] and are thus
consistent [81] with “xc hole-based” approximations [56].
We therefore see that even the regular LDA (and

extensions) can be reused. Thus it is natural to expect that
the cofe gas—which accounts for the excited states of
jellium—can do even better. But how do we localize the
energy of the cofe gas? The first step toward an answer is to
recognize that the exact exchange energy density of
ensembles or excited states depends only on the orbitals
fϕig and their occupations ffig [49], which can be seen by
rewriting Eq. (16) as Ew

x ≔
R
nðrÞϵexactx ðr; ffwi gÞdr, where

ϵexactx ðr; ffigÞ ≔ −
1

2

X
i

finiðrÞ
nðrÞ

×

�
vU½ni�ðrÞ þ 2Re

X
i0<i

nii0 ðrÞ
niðrÞ

vU½ni0i�ðrÞ
�
;

ð51Þ

using nii0 ¼ ϕiϕ
�
i0 and vU½n� ¼

R
nðr0Þðdr0=jr − r0jÞ.

Furthermore, because combination rule ensemble DFAs
(eDFAs) are effective for x and c, and depend only
on local densities [44], we know we can use orbital
densities, ni ¼ jϕij2, instead of orbitals. Thus, ϵxcðrÞ ≈
ϵxcðfniðrÞg; ffigÞ is a viable approximation.

The second step is to consider limiting cases. The
motivation behind cofe gases (per Sec. III B) is to replace
ζ by f̄ as an interpolative variable between unpolarized and
fully polarized physics, as the simplest extension of HEGs
with minimal bias to spin physics. By construction, this
model should naturally capture two limiting cases for
eLDAs: (i) LSDA should be reproduced for the doublet
ground state xc energy of any one-electron system (where
ζ ¼ 1 and f̄ ¼ 1 are unambiguous) and (ii) LDA should be
reproduced in unpolarized ground states (where ζ ¼ 0 and
f̄ ¼ 2 are unambiguous). Another natural limiting case is
the cofe HEG itself. We can capture these limiting cases
by writing ϵxcðfniðrÞg; ffigÞ ≈ ϵcofexc (nðrÞ; f̄ðrÞ), where
f̄ðrÞ ¼ f̄ðffig; fniðrÞgÞ is a local mapping (approxima-
tion) for ground and excited states that is constrained in
form to reproduce known limits.
Thus, we make an ansatz for f̄ðffig; fniðrÞgÞ that is

correct, by construction, for limiting cases but that—as we
will show below—is also effective for inhomogeneous
systems. As anticipated at the beginning of this section, it is
convenient to switch from a state-average to a state-
resolved approach. A first natural ansatz is thus the
density-weighted average of occupation factors,

f̄jκiwoccðrÞ ≔
X
i

θjκii
θjκii niðrÞ
nðrÞ ¼

P
iðθjκii Þ2niðrÞP
iθ

jκi
i niðrÞ

; ð52Þ

expressed here for a given excited state jκi (we replace θjκii
by fwi in ensembles). Here, ni ¼ jϕij2 is the density of

orbital ϕi, and θ
jκi
i is its occupation factor in jκi. It is easily

verified that this ansatz is exact for the cofe HEG,
unpolarized and one-electron cases, so is prima facie a
reasonable extension to inhomogeneous systems. However,
testing (to be discussed below) reveals that this ansatz
can yield poor results for ground states. These errors come
from the effective spin enhancement being too great in
regions that are partly polarized [i.e., where 1 < f̄ðrÞ < 2].
Fortunately, we may exploit the fact that there are other

TABLE II. Correlation energy parameters for selected values of ζ from fits to benchmark data [8] and exact
constraints.

ζQMC A α β1 β2 β3 β4

cofe parameters
0.00 0.031 091 0.1825 7.5961 3.5879 1.2666 0.4169
0.34 0.028 833 0.2249 8.1444 3.8250 1.6479 0.5279
0.66 0.023 303 0.2946 9.8903 4.5590 2.5564 0.7525
1.00 0.015 545 0.1260 14.1229 6.2011 1.6503 0.3954

rPW92 parameters
0.00 0.031 091 0.1825 7.5961 3.5879 1.2666 0.4169
0.34 0.030 096 0.1842 7.9233 3.7787 1.3510 0.4326
0.66 0.026 817 0.1804 9.0910 4.4326 1.5671 0.4610
1.00 0.015 546 0.1259 14.1225 6.2009 1.6496 0.3952

TABLE III. Weighted sum parameters for M2;3 (Appendix D)
and Z2;3 (Appendix E). For example, M2 ¼ −2ϵ0c þ 4ϵ0.66c − 2ϵ1c
and Z3 ¼ 19.86ϵ0c − 30.57ϵ0.34c þ 12.71ϵ0.66c − 2ϵ1c .

Function ϵ0c ϵ0.34c ϵ0.66c ϵ1c

cofe parameters
M2 −2.00 0.00 4.00 −2.00
M3 13.33 −22.41 11.43 −2.35

rPW92 parameters
Z2 −10.95 13.32 −1.47 −0.90
Z3 19.86 −30.57 12.71 −2.00
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choices of inhomogeneous f̄ðrÞ that yield correct limits, but
that do not hamper performance in inhomogeneous ground
states.
We therefore (see Sec. I of Supplemental Material [79]

for details) instead adopt an empirical double weighted
average,

f̄jκidwoccðrÞ ≔
P

iðθjκii Þ1=3niðrÞP
iθ

jκi
i niðrÞ

P
iðθjκii Þ8=3niðrÞP

iθ
jκi
i niðrÞ

; ð53Þ

for calculations. Here, in addition to satisfying exact limits,
Eq. (53) also approximately replicates the LSDA in general
doublet systems. Compliance with this constraint is justi-
fied by the fact that Eq. (51) is exact for spin-polarized
ground states [44], which therefore provides a norm for
general excited-state physics.
The left-hand panel of Fig. 4 illustrates the importance of

choosing f̄ appropriately. It shows the exchange enhance-
ment factor of a doublet system (density n ¼ 2ncore þ
nfrontier so that θcore ¼ 2 and θfrontier ¼ 1), for different ratios
of nfrontier=ncore, using standard spin polarization, and
ensemble enhancement with Eqs. (52) and (53). It is clear
that Eq. (52) overenhances exchange in general, relative to
LSDA. By contrast, Eq. (53) matches quite closely to the
spin-polarized enhancement of LSDA for all ratios.

V. APPLICATIONS

A. Ground states

How well does eLDAwork in practice? The next section
will address excited state energies. But, first, we need to
ensure that the eLDAdoes notmake thingsworse for ground
state energies. The right-hand panel of Fig. 4 therefore
shows the ionization potentials (IPs) of atoms—that is, the
difference in ground state energies between the atom and its
cation—computed with Eq. (45) using Eqs. (52) and (53).
IPs provide a useful test of f̄ðrÞ on ground states because
the occupation factors of atoms and ions are always different
and at least one system always involves an unpaired
electron.

Figure 4 reveals that Eq. (53) yields results that are
consistently close to standard LSDA calculations, whereas
Eq. (52) leads to much greater deviations in some cases. We
therefore see that using Eq. (53) yields good (relative to
LSDA) performance on ground states, and we use Eq. (53)
for our inhomogeneous effective occupation factor in all
subsequent calculations.
Technical details for all atomic and molecular calcula-

tions for ground and excited states are in Sec. II of
Supplemental Material [79]. For now it suffices to say that
we carry out LSDA and TDLDA calculations using
standard self-consistent field (SCF) approaches imple-
mented in PSI4 [82,83] and PYSCF [84,85], but evaluate
eLDA calculations using an orbital optimized approach
with psi4 as an “engine.” Spin and spatial symmetries are
preserved in eLDA calculations, except for atoms which are
evaluated using cylindrical spatial symmetries for consis-
tency with standard quantum chemistry codes and practice.

B. Low-lying excitations in molecules

With the eLDA established and validated on ground state
systems, we are ready to test its predictive ability for
excitations. As a first test (Fig. 5), we consider the 12
triplet-singlet gaps in biradicals of the TS12 [86] dataset.
The performance of Perdew and Wang's (PW92) HEG
parametrization [10] energy differences (referred to as
ΔSCF calculations, to differentiate from TDLDA calcula-
tions) on this dataset was explored in [87], using restricted,
unrestricted, and complex orbital Kohn-Sham theory. The
mean-signed errors (root mean squared errors) from ΔSCF
calculations are −13.7 (14.5) kcal/mol using LSDA (i.e.,
unrestricted Kohn-Sham theory) and 10.9 (11.5) kcal/mol
for restricted theory. Employing complex orbitals reduces
these LDA errors substantially, to −1.2 (2.2) kcal/mol,
albeit at the expense of nonidempotent density matrices.
Using the eLDA formalism developed here (also aΔSCF

method) to compute the gaps yields errors of −5.0 (7.4)
kcal/mol—respectable statistics and a major improvement
on LSDA, as shown in Fig. 5. Indeed, eLDA is closer in
quality to the complex orbital performance than LDA
or LSDA performance, despite eLDA being a heavily

FIG. 4. Left: doublet enhancement factor for different ratios of
core and frontier occupied orbitals from LSDA (teal) and eLDA
with effective f̄ from Eq. (52) (wocc, magenta) and Eq. (53)
(wdocc, orange). Right: ionization potentials (IPs) for atoms He-
Ar using a conventional LSDA [9] (navy), Eq. (52) (magenta),
and Eq. (53) (orange). Dashed lines indicate deviations from
experimental IPs.

FIG. 5. Triplet-singlet gaps in atoms and diatomic systems from
LSDA (navy) and eLDA (orange) calculations, compared to
experimental reference data (black with crosses). LSDA and
reference data from Ref. [87]. TDLDA gaps are too large for the
figure, so have been left out.
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constrained “restricted” theory that preserves idempotency
(unlike complex orbitals) and avoids spin-contamination
issues (unlike unrestricted KS). This is in partial contrast to
the common [88] expectation that symmetry breaking helps
DFAs to capture difficult physics. TDLDA (using VWN
correlation [9] and starting from the triplet ground states for
consistency with other results) yields enormous errors of
77.2 (88.6) kcal/mol—too large to include in the figure.
eLDA thus outperforms both ground state (LSDA) and
excited-state (TDLDA) LDA-based calculations.
Continuing on the theme of predicting difficult excita-

tions, let us consider some excitations that TDLDA cannot
predict at all: double excitations. Double excitations are
singlet excited states in which the interacting wave function
is dominated by a Slater determinant with paired orbitals,
and in which one pair is “doubly promoted” from the
dominant ground state Slater determinant (e.g., jϕ2

0ϕ
2
1ϕ

2
3i

instead of jϕ2
0ϕ

2
1ϕ

2
2i for a six-electron system). They are

impossible to predict using the adiabatic approximation that
is employed in all practical implementations of time-
dependent DFT [22,23].
Figure 6 shows the low-lying singlet spectra of some

selected molecules, computed using adiabatic TDLDA and
eLDA. We choose glyoxal, benzoquinone, and tetrazine
from the QuestDB dataset [89], as their low-lying spectra
includes difficult-to-predict double excitations for which
high-quality theoretical best estimate (TBE) results are
available. They therefore serve as good examples to
compare the eLDA approach with its TDLDA counterpart.
It is immediately clear that, for the lowest-lying excita-

tions involving single promotion of an electron (“single
excitations,” single arrows in Fig. 6), eLDA predicts similar

excitation energies to TDLDA and thus has similar per-
formance—albeit with a slight tendency to underestimate
relative to TDLDA. However, unlike TDLDA, eLDA is
also able to predict excitations involving double promotion
of electrons (“double excitations,” double arrows in Fig. 6)
with a perfomance similar to that of single excitations.
Thus, eLDA is nearly as good as TDLDA for low-lying
excitations involving single promotion of an electron, but is
also able to predict double promotions, unlike TDLDA. It
therefore offers a major advance on TDLDA.
We also compute, but do not show, ΔSCF results for

excited states, using the maximum overlap method
(MOM) [90] to converge single and double promoted excited
states within a self-consistent field framework based on
LSDA.For theMOMcalculationswe employ the occupation
factors from eLDA and promote only the ↑ electron in single
excitations. We use PW92 correlation [10] as it is most
similar to our cofe parametrization. Results for single
excitations are almost identical to eLDA, with an overall
mean absolute deviation of 1.08 eV fromMOMcompared to
1.05 eV for all single excitations shown in Fig. 6. However,
double excitations are greatly improved by eLDA, with an
mean absolute deviation of 0.67 eV using MOM being
reduced to just 0.41 eV for eLDA. Again, we see that eLDA
offers significant improvements.
Figure 6 also provides evidence that eLDA can be a

cornerstone theory for better excited-state approximations,
based on the following argument. As can be seen from the
figure, TDLDA and eLDA yield very similar energies for
most single excitations. The similarity of TDLDA and
eLDA energies suggests that all regular DFAs are likely to
yield similar energies for these excitations, whether evalu-
ated as time-dependent DFAs or eDFAs—a theoretical
justification for this argument is provided in Sec. III of
Supplemental Material [79]. Thus, the 30 years of refine-
ment of generalized gradient approximations (GGAs) and
meta-GGAs (MGGAs) that has improved the quality of
spectra predicted using TD(M)GGAs is likely to similarly
improve spectra evaluated using e(M)GGAs. But e(M)
GGAs may also exploit the extra degree of freedom enabled
by the use of cofe gas physics and effective f̄ðrÞ.
In summary, we see that TDLDA fails quite dramatically

for TS12 (Fig. 5 and related discussion) and cannot capture
double excitations (Fig. 6), in contrast to an excellent
(TS12) or impressive (double excitations) performance
from eLDA on the difficult excitations. Errors in single
excitation spectra (Fig. 6) from TDLDA and eLDA are
similar. Directly, this shows that eLDA either improves
excited-state predictions or does not make them worse.
Indirectly, it has positive implications for refinements to
eLDAs, e.g., eGGAs or eMGGAs.

VI. FUTURE PROSPECTS AND CONCLUSIONS

Ensemble density functional theory has recently ben-
efited from a surge of fundamental understanding. This has

FIG. 6. Low-lying spectra (singlets only) of glyoxal, benzo-
quinone, and tetrazine predicted using TDLDA (navy) and eLDA
(orange), compared against theoretical best estimate (TBE)
values [89]. Connections between spectrum in approximations
and TBE are shown using dotted lines, to facilitate comparisons.
TDLDA captures single excitations (indicated by single arrows
on the level line) but misses the double excitations (double
arrows) entirely, so these connections are excluded from the plot.
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led to rapid advancements in extending, to excited states,
the power of density functional theory for computing
electronic structure of ground states. Especially, EDFT
deals seamlessly with highly “quantum” states [44] (e.g.,
superpositions of Slater determinants and double excita-
tions) of relevance to solar energy applications and quan-
tum technologies.
However, despite an accumulation of successful appli-

cations, EDFT currently lacks a fully consistent framework
for improving approximations, in the sense that it borrows
density functional approximations which were originally
designed for ground states as the key building blocks of the
extended DFAs for excited states. In particular, computa-
tionally favorable modeling of singlet-singlet excitations
does not include all the relevant correlations [27].
This work takes a first step toward deriving a novel

family of DFAs specifically designed for excitations. It
presents (Secs. III B and IV) the cornerstone models: the
cofe homogeneous electron gas and the LDA for EDFT
(eLDA). The cofe HEG is developed using an unnoticed—
thus, so far, unexplored—class of nonthermal ensemble
states of the HEG. Analytic expressions of the relevant
(defined by two parameters, like LSDA) energy compo-
nents are reported in Table I. Some of these components
have no analogs in regular DFT but find home and use in
EDFT. High- and low-density limits of the correlation
energy have been found analytically.
The eLDA is derived by dividing the DFT energy

expression into terms that need to be treated using the
inhomogeneous system and those that are locally approxi-
mated using a cofe gas. Parametrizations for all terms
required by the eLDA are derived and provided. An ansatz
(consistent with one-electron, unpolarized, and cofe gas
limits) is also made for the effective occupation factor of
inhomogeneous systems, and is “normed” on doublet
systems in lieu of semiclassical results.
The novel eLDA is then tested on a suite of important

examples including ionization potentials, small triplet-
singlet gaps, and low-lying excitations. These examples
reveal that eLDA performs similarly to LSDA and/or
TDLDA on problems where standard theories are known
to work. However, it also performs very effectively on
problems where LSDA and TDLDA fail—yielding excellent
triplet-singlet gaps and impressive double excitation energies.
eLDA therefore readily offers an effective alternative to

standard polarized-gas-based theories for both ground and
excited-state problems. But we stress that its true potential
lies as the cornerstone for better models and method-
ologies. What are the next natural steps to be considered?
We finish with three suggestions.

(i) It is vital to develop a generalized gradient approxi-
mation for cofe HEGs, to yield an eGGA along the
lines of Eq. (45). The development of accurate GGAs

in the late 1980s and early 1990s greatly accelerated
interest in DFT for ground states, by giving answers
that were usefully predictive. eGGAs should do the
same for excited states. Importantly, eGGAs would
seamlessly integrate with existing hybrid-EDFT
successes [43–45] and remove reliance on combina-
tion rules that (despite working unexpectedly well)
are known to be incorrect for correlation [44]. From
there, additional steps may readily be taken up an
excited state Jacob’s ladder [17], to gain systematic
improvements in excited-state DFT modeling.

(ii) The optimal way to model f̄ðrÞ remains an open
problem, and is entangled with (I) and semiclassical
arguments. It would be useful to understand why
Eq. (53) works so much better than Eq. (52) and how
it can be improved. Exploiting exact relationships
and useful norms is likely to lead to improved
understanding and adaptation of f̄ðrÞ in inhomo-
geneous systems, and thus improvements to the
predictive ability of eLDA and any eDFAs built
on it. Improved understanding of finite yet uniform
electron gases may also help [66–69].

(iii) The cofe gas is not the only excited-state (ensemble)
HEG that we could have used. As discussed in
Sec. III B it is a logical and simple two-parameter
model that yields appropriate limits yet incorporates
excited-state physics in a way that is consistent with
known conditions. But allowing for more parameters
provides a wide scope for further generalizations and
improvements. For example, in the spirit of Samal
and Harbola [64], one might separate the density
into core (density, ncore) orbitals that are all double
occupied, and use a cofe-like treatment for the
remaining orbitals—yielding a three-parameter
HEG governed by n, ncore=n, and f̄ that includes
excited states.

The PYTHON code for studying and implementing the
theory work in this paper is provided in Ref. [91,92]. The
code to reproduce the atomic and molecular tests is
available on request.

ACKNOWLEDGMENTS

T. G. was supported by an Australian Research Council
(ARC) Discovery Project (No. DP200100033) and Future
Fellowship (No. FT210100663). Computing resources
were provided by the National Computing Merit
Application Scheme (NCMAS sp13). T. G. and S. P. would
like to thank Paola Gori-Giorgi for interesting discussions
regarding homogeneous electron gases and their low-
density limit. Useful discussions with Marco Govoni and
Gianluca Stefanucci are also acknowledged.

TIM GOULD and STEFANO PITTALIS PHYS. REV. X 14, 041045 (2024)

041045-16



APPENDIX A: EXCHANGE PROPERTIES
OF cofe HEGs

Both ϵx and Πx involve integrals of form

X2½f� ≔
Z

∞

0

Z
∞

0

fmaxðq;q0ÞAðq; q0Þ
q02dq0

2π2
q2dq
2π2

¼ 2

Z
∞

0

Z
∞

q0
fqAðq; q0Þ

q2dq
2π2

q02dq0

2π2

¼ 2

Z
∞

0

Z
∞

0

Θðq − q0ÞfqAðq; q0Þ
q02dq0

2π2
q2dq
2π2

¼
Z

∞

0

fqĀðqÞ
q2dq
2π2

; ðA1Þ

where Aðq; q0Þ ¼ Aðq0; qÞ and

ĀðqÞ ¼ 2

Z
q

0

Aðq; q0Þ q
02dq0

2π2
:

For ϵx we have Aðq; q0Þ ¼ Vðq; q0Þ, where V̄ðqÞ ¼
2
R q
0 Vðq; q0Þðq02dq0=2π2Þ ¼ ðq=πÞ R 1

0 logðj1 þ xj=j1−
xjÞxdx ¼ ðq=πÞ. We thus obtain Eq. (28) of the main
text. To compute Πx we can set Aðq; q0Þ ¼ 1, where
1̄ðqÞ ¼ 2

R q
0 ðq02dq0=2π2Þ ¼ ðq3=3π2Þ, and so we can easily

compute Πx given fq. For cofe HEGs we obtain Eqs. (29)
and (31).
The case of n2;xðRÞ is also covered by Eq. (A1), by

setting Aðq;q0;RÞ¼R
eiðq−q0Þ·Rðdq̂=4πÞðdq̂0=4πÞ. However,

this is rather painful to deal with in general. The special
case of cofe HEGs is more easily handled by recognizing
that fmaxðq;q0Þ ¼ f̄Θðk̄F − qÞΘðk̄F − q0Þ. Then,

ncofe2;x ðRÞ ¼ −f̄
Z

k̄F

0

eiq·R
dq

ð2πÞ3
Z

k̄F

0

e−iq
0·R dq0

ð2πÞ3 ðA2Þ

¼ −f̄
				 k̄

3
F

6π2
gðk̄FRÞ

				
2 ≡ −Πcofe

x Nðk̄FRÞ; ðA3Þ

where Πx ¼ −ðn2=f̄Þ, gðxÞ ¼ 3½sinðxÞ − x cosðxÞ�=x3, and
NðxÞ ¼ jgðxÞj2. Thus, we obtain Eq. (30).

APPENDIX B: HARTREE PROPERTIES
OF cofe HEGs

Let us consider Eqs. (19) and (20) for the special case
of an HEG. First, we note that nκκ ¼ n for every state
and, therefore, n2;H ¼ n2 þ Δn2;H, where Δn2;Hðr; r0Þ ¼P

κ≠κ0 wmaxðκ;κ0Þnκκ0 ðrÞnκ0κðr0Þ. Furthermore, the resulting
pair density can depend only on R ¼ r − r0 while symmetry
means it depends only on R ¼ jr − r0j. Thus,

ΔϵH ¼ 1

N
ΔEH ¼ 1

n

Z
Δn2;HðRÞ

4πR2dR
2R

; ðB1Þ

where we used n2 to cancel the background charge,
N ¼ nV to cancel the integral over r, and symmetry to
simplify the remaining integral over r0 ¼ rþ R. Our goal is
therefore to determine Δn2;HðRÞ, Note that the working in
this appendix is rather involved, so we will often drop
superscripts w in working.
We are now ready to look at HEG ensembles. Consider a

finite HEG of N electrons in a volume V, with density
n ¼ N=V. The orbitals are ϕq ≈ ð1= ffiffiffiffi

V
p Þeiq·r for q on

an appropriate reciprocal space grid. Each state jκi has
density ns;κκðrÞ ¼ N=V ¼ n. The ground state is j0i ¼
jq21 � � � q2N=2i and is unpolarized. Other states may be

described using jκi ¼ P̂Qκ
j0i, where P̂ promotes Fock

orbitals in the Slater determinant and Qκ ≔
qa1 ���qap
qi1 ���qip contains

lists of from (i ≤ N=2) and to (a > N=2) orbitals, including
spin. Cross densities, when κ ≠ κ0, are ns;κκ0 ðrÞ ¼
eiΔqκκ0 ·r=V or zero. The former result occurs if and only
if Qκ and Qκ0 differ by a single orbital of the same spin,
giving Δqκκ0 ¼ q∈ κ − q∈ κ0 . We use “connected” (con) to
refer to any pair of states κ and κ0 that differ only by a single
orbital, and call Δqκκ0 the connection wave number.
Let us now consider the case that N electrons are

assigned to N=2 ≤ M ≤ N orbitals, for a mean occupation
of f ¼ ðN=MÞ. There are N T ¼ ð2MÞ!=½ð2M − NÞ!N!�
total states once spin is accounted for, each of which is
weighted by w ¼ ð1=N TÞ. Each of the N T states jκi has
N↑;↓;κ electrons of each spin, giving ζκ ¼ ðN↑;κ − N↓;κÞ=N.
State jκi is connected to Cκ other states. Since only one
orbital may change at a time, we obtain Cκ ¼
N↑;κðM−N↑;κÞþN↓;κðM−N↓;κÞ¼NM− ðN2=2Þð1þζ2κÞ,
where N↑;↓;κ ≤ M.
Our goal is to obtain useful properties of the Hartree pair

density. The pair density is defined by

Δn2;HðRÞ ¼
1

N T

X
κ;κ0 con κ

eiΔqκκ0 ·R

V2
; ðB2Þ

where we used wκ ¼ wκ0 ¼ ð1=N TÞ and r − r0 ≔ R. The
special case of r ¼ r0 (R ¼ 0) yields the “on-top” pair
density deviation, ΠH ¼ Δn2HðR ¼ 0Þ, which is relatively
straightforward to evaluate usingΔn2;H¼ð1=N TV2ÞPκCκ,
which follows from eiΔq·R ¼ 1 for all connected states and
the definition of Cκ. Using Cκ from the above paragraph
yields

ΔΠH ¼ 1

V2

�
NMþN2

2
ð1þ ζ̄2Þ

�
¼ n2

�
1

f
−
1þ ζ̄2

2

�
: ðB3Þ

where ζ̄2 ¼ ð1=N TÞ
P

κ ζ
2
κ is the ensemble averaged of the

squared spin polarization.
As an initial test, consider the above analysis for the two

special types of gases, unpolarized and fully polarized,
which have no ensemble effects and which must therefore
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yield ΔΠH ¼ 0. An unpolarized gas involves M ¼ N=2,
f̄ ¼ 2, N T ¼ 1, and ζκ ¼ 0, yielding ΔΠH¼n2ð1

2
−1

2
Þ¼0.

A fully polarized gas involvesM ¼ N, f̄ ¼ 1,N T ¼ 1, and
ζκ ¼ 1, yielding ΔΠH ¼ n2ð1

1
− 1Þ ¼ 0. Thus, both exhibit

the expected behavior. We therefore see that Eq. (B3) is
consistent with existing results.
We are now ready to generalize to constant occupation

factor ensemble (cofe) gases, with fq ¼ f̄Θðk̄F − qÞ, for
1 < f̄ < 2. As discussed in the main text, we restricted to
the special case of maximally polarized states jκi, in which
each state has the maximum spin polarization allowed by f̄.
All these states involve N↑ ¼ M and N↓ ¼ N −M giving
ζκ ¼ ½ð2M − NÞ=N� ¼ ð2=f̄Þ − 1 ¼ ζ̄. Equation (B3) then
yields

ΔΠH ¼ n2
ð2 − f̄Þðf̄ − 1Þ

f̄2
; ΠH ¼ n2

3f̄ − 2

f̄2
; ðB4Þ

for the on-top, R ¼ 0, pair density.
We are now ready to move on from the on-top hole to

consider general R ≠ 0. We first recognize that equal
waiting of states is equivalent to equal weighting of
connection wave numbers, yielding

Δn2;HðRÞ ¼ ΔΠH
1

M2

X
q

X
q0≠q

eiðq−q0Þ·R

¼ ΔΠH

�
jgðk̄FRÞj2 −

1

M

�
; ðB5Þ

where g ≔ ð1=MÞPq e
iq·R. We next impose symmetry on

the wave numbers, and approximate the sum by an integral
to obtain

gðk̄FRÞ ≈
1

M

Z ð3M=4πÞ1=3

0

sinðqkVRÞ
qkVR

4πq2dq

¼ 3½sinðk̄FRÞ − k̄FR cosðk̄FRÞ�
ðk̄FRÞ3

; ðB6Þ

where kV ¼ 2π=V1=3 is the wave number associated with
the volume V, and k̄F ¼ ð6π2M=VÞ1=3 ¼ ð6π2n=f̄Þ1=3 is
the usual Fermi wave number. gðxÞ is the same expression
found in Eq. (A3). Note that Δn2;HðRÞ integrates to zero, as
expected.
Finally, Eq. (B1) becomes ΔϵH ¼ ðΔΠH=nÞ×

fR∞
0 ½gðk̄FRÞ2=R�2πR2dR − ðf̄=2nÞð9π=2VÞ1=3g. In the

limit V → ∞ the second term vanishes, yielding

ΔϵcofeH ¼ f̄ΔΠHjϵcofex ðrs; f̄Þj ¼
CH

rs

ð2 − f̄Þðf̄ − 1Þ
f̄4=3

ðB7Þ

¼ jϵcofex ðrs; f̄Þj
ð2 − f̄Þðf̄ − 1Þ

f̄
; ðB8Þ

where we used ϵcofex ¼ −ðf̄=nÞ R∞
0

gðk̄FRÞ2
R 2πR2dR

[which follows from n2;xðRÞ ¼ −f̄gðk̄FRÞ2] and ϵcofex ¼
ð−Cx=rsÞ½2=f̄�1=3 derived in the main text, to obtain
CH ¼ 21=3Cx ¼ 0.577252. Similarly,

n2;HðRÞ ¼ n2 þ Δn2;HðRÞ ¼ n2 þ ΔΠcofe
H Nðk̄FRÞ; ðB9Þ

where ΔΠcofe
H is defined in Eq. (B4), and NðxÞ ¼ gðxÞ2 ¼

9½sinðxÞ − x cosðxÞ�2=x6 is the unitless function defined
near Eq. (30) or Eq. (A3).

APPENDIX C: STATE-DRIVEN CORRELATION
OF cofe HEGs

1. State-driven correlation energy from the
random-phase approximation

The state-driven correlation energy [Eq. (41)] involves
the response function at imaginary frequencies. The imagi-
nary frequency density-density response of an unpolarized
HEG is

χ0ðq; iω; rsÞ ≔ −
kF
4π2

C
�

q
2kF

;
ω

qkF

�
; ðC1Þ

where kF ¼ 1.9191583=rs ¼ ð3π2nÞ1=3 is the Fermi wave
number of an unpolarized gas. Here,

CðQ;ΓÞ ¼ 1þ Γ2 −QþQ−

4Q
log

Q2þ þ Γ2

Q2
− þ Γ2

þ Γ
�
tan−1

Q−

Γ
− tan−1

Qþ
Γ

�
; ðC2Þ

whereQ� ¼ Q� 1. For brevity we shall useQ ¼ ðq=2kFÞ
and Γ ¼ ðω=qkFÞ to always mean unpolarized gas
quantities.
For a polarized HEG we take half of two unpolarized

systems with kF↑ ¼ kFð1þ ζÞ1=3 ≔ kFhþ and kF↓ ¼
kFð1 − ζÞ1=3 ≔ kFh−. Therefore,

χ0ðq;ω;rs;ζÞ ¼−
kF
8π2

�
hþC

�
Q
hþ

;
Γ
hþ

�
þh−C

�
Q
h−

;
Γ
h−

��
:

ðC3Þ

The cofe case of constant f̄ is easily dealt with by including
a prefactor of f̄ on χ0 and using the cofe Fermi level,
k̄F ¼ kFð2=f̄Þ1=3 ≔ kFg. It follows from f̄ ¼ 2=g3 that

χcofe0 ðq;ω; rs; f̄Þ ¼ −
kF

4π2g2
C

�
Q
g
;
Γ
g

�
: ðC4Þ

Setting ζ ¼ 0 and f̄ ¼ 2 yields h� ¼ g ¼ 1 and yields the
same response as the unpolarized gas. Similarly, setting
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ζ ¼ 1 in Eq. (C3) gives the same result as setting f̄ ¼ 1 in
Eq. (C4), as expected.
From the response function we are able to evaluate the

random-phase approximation for the correlation energy, via

ϵRPAc ¼ 1

2n

Z
∞

0

dω
π

Z
∞

0

q2dq
2π2

�
χ0

4π

q2
þ log

�
1 − χ0

4π

q2

��
:

ðC5Þ

This may be made more convenient by using n¼ðk3F=3π2Þ,
q ¼ 2kFQ, and ω ¼ qkFΓ to write

ϵRPAc ¼ 12k2F
π

IQΓ

�
π

k2FQ
2
χ0

�
; ðC6Þ

where IQΓ½f� ≔
R
∞
0 dΓ

R
∞
0 Q3dQ½−f þ logð1þ fÞ�. We

may also define ĪðPÞ ¼ IQΓ½ðP=Q2ÞCðQ;ΓÞ�.
Thus, the RPA enhancement factor for a polarized gas,

relative to an unpolarized gas at the same density, is

ξRPAc ðζÞ ¼
IQΓ½Phþ2Q2 CðQhþ ; Γ

hþ
Þ þ Ph−

2Q2 CðQh− ; Γ
h−
Þ�

IQΓ½ PQ2 CðQ;ΓÞ�

¼
h5þĪð P

2hþ
Þ þ h5−Īð P

2h−
Þ

ĪðPÞ ; ðC7Þ

where h� ¼ ð1� ζÞ1=3. The equivalent enhancement factor
of a cof ensemble HEG may be written as

ξRPA;cofec ðf̄Þ ¼
IQΓ½ P

g2Q2 CðQg ; ΓgÞ�
IQΓ½ PQ2 CðQ;ΓÞ� ¼

g5ĪðPg4Þ
ĪðPÞ ; ðC8Þ

where P ≔ ð1=2πkFÞ ¼ 0.08293rs and g ¼ ð2=f̄Þ1=3.
The RPA enhancement is expected to be accurate in the

high-density of matter kF → ∞. Figure 7 shows (state-
driven) correlation energy enhancement factors, ξRPAc ðζÞ
and ξRPA;cofec ðfÞ, as a function of the (average) occupation
factor f̄, using ζ ¼ f̂−1x-mapðf̄Þ [from Eq. (D8)] for the
effective spin polarization. It reports ξ for high
(n ¼ 106), medium (n ¼ 1), and low (n ¼ 10−6) densities.
We see that the state-driven correlation energy of cofe
HEGs is (i) virtually linear in f̄, for high densities, and
(ii) very similar to the (renormalized) on-top exchange
enhancement factor, for low densities.
The high-density (rs → 0) behavior of ξcofec can be shown

analytically, because P → 0. We may therefore Taylor
expand the log to obtain

lim
P→∞

ĪðPÞ ≈
Z

∞

0

Q3dQ
Z

∞

0

dΓ
1

2

�
P
Q2

C

�
2

; ðC9Þ

from which it follows that ξcofec ¼ g5ĪðP=g4Þ=ĪðPÞ ¼
g5ð1=g4Þ2 ¼ g−3 ¼ f̄=2 is linear in f̄. The RPA is not

appropriate for the low-density limit, although we shall
later see it is qualitatively correct.

2. State-driven correlation energies in general

We are now ready to use what we have learned about
correlation energies from the RPA and theoretical argu-
ments to obtain general expressions for the SD correlation
energies in cofe HEGs. Let us begin with the low-density
limit. The main text has shown that

lim
rs→∞

ϵcofec ðrs; f̄Þ ¼ ϵxðrsÞ
�
C∞

Cx
− fcofeHx ðf̄Þ

�
: ðC10Þ

It can also be shown that limrs→∞ ϵDD;cofec ðrs; f̄Þ →
−ΔϵcofeH ðrs; f̄Þ—this result is a specialized case of a broader
relationship to be discussed in a future work. It is thus clear
that the SD enhancement factor must capture the low-
density scaling and cancel exchange:

lim
rs→∞

ϵSD;cofec ðrs; f̄Þ → ϵxðrsÞ
�
C∞

Cx
− fcofex ðf̄Þ

�
: ðC11Þ

Surprisingly, this is consistent with the low-density behav-
ior shown in Fig. 7 and so reveals that the RPA is
qualitatively correct even in the low-density limit.
In the high-density limit, we instead obtain

lim
rs→0

ϵSD;cofec ðrs; f̄Þ → ðf̄ − 1ÞϵUc þ ð2 − f̄ÞϵPc
¼ ϵUc þ ð2 − f̄Þ½ϵPc − ϵUc �; ðC12Þ

where ϵUc ≔ ϵcðrs; 0Þ is the correlation energy of an unpo-
larized gas, ϵPc ≔ ϵcðrs; 1Þ is the correlation energy of a
fully polarized gas, and 2 − f̄ ¼ ½ξRPA;cofeðf̄Þ − ξRPAð0Þ�=
½ξRPAð1Þ − ξRPAð0Þ�. This is analogous to the known
result that

lim
rs→0

ϵcðrs; ζÞ → ϵUc þHRPAðζÞ½ϵPc − ϵUc �; ðC13Þ

FIG. 7. Correlation enhancement of spin-polarized (dash-dotted
lines) and cofe (solid lines) HEGs as a function of occupation
factor f. The cofe exchange factor (dotted lines) is also shown
after rescaling to yield the same vales for f̄ ¼ 1 and f̄ ¼ 2.
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where HRPAðζÞ ¼ −2½IðζÞ − 1� is obtained from Eq. (32)
of [93] or, equivalently, HRPAðζÞ ≔ ½ξRPAðζÞ − ξRPAð0Þ�=
½ξRPAð1Þ − ξRPAð0Þ�. We cannot say anything about the DD
correlation energy in this limit.
We thus obtain limiting behaviors for high- and low-

density HEGs. In typical polarized gases, one uses expan-
sion in both limits together with QMC data, ϵQMC

c ðrs; ζÞ, to
fill in the gaps for moderate and large densities. We do not
have QMC data for cofe gases. Thus, the final step in our
analysis of correlation energies is to show how to reuse
existing polarized gas QMC data for cofe HEGs.
As a first step, we assume that the high-density relation-

ship [Eq. (C13)] between RPA and exact results is true for
moderate and large rs. That is, we expect

ξ̄c ≔ 1þ ξcðζ ¼ 1Þ − 1

ξRPAc ðζ ¼ 1Þ − 1
½ξRPAc − 1� ≈ ξQMC

c ðC14Þ

to be approximately valid for all rs. The usefulness of this
approximation is further supported by Fig. 7, which shows
that the RPAyields an approximately linear dependence on
f̄ even for low-density HEGs where the RPA is expected to
be poor.
The second step is to recognize that, in low-density

gases, we may write ξc ¼ ðC∞=CxÞ − ξx and ξSD;cofec ¼
ðC∞=CxÞ þ ξcofex and, therefore, ϵSD;cofec ðrs → 0; f̄Þ ≈
X(ϵcofex ðrs; f̄Þ), where ϵcðrs → 0; ζÞ ≔ X(ϵxðrs; ζÞ)—here
X is a single-variable function. Figure 8 shows that a similar
result nearly holds for moderate rs and, furthermore, that
models of both cofe and polarized gases agree rather well
with QMC data from Spink et al. [8], despite the data being
for polarized gases. We therefore assume that

ϵSD;cofec (rs; f̂x-mapðζÞ) ≈ ϵQMC
c ðrs; ζÞ ðC15Þ

for moderate and large densities with viable QMC data,
where f̂x-map is defined such that ϵxðζÞ¼ϵcofex (f̄¼f̂x-mapðζÞ).
This is a rather good approximation in practice as the maxi-
mum difference between ϵSD;cofec using RPA and ϵSD;cofec

using Eq. (C15) is 1 mHa for rs ¼ 1, and is sub-mHa for
larger rs.
Thus, Eqs. (C12), (C15), and (C11) provide a set of

constraints and reference values (from existing QMC data)

for high, moderate, and low densities, respectively. These
three relationships are used in Appendix D to produce the
parametrization for the state-driven correlation energy of a
cofe HEG.
It would be very desirable to obtain QMC or similar-

quality reference data for cofe HEGs, to provide direct inputs
for parametrizations. The derivative, decofeðrs; f̄Þ=df̄jf̄¼2,
may be amenable to computation using existing techniques,
as it involves only low-lying excited states.

APPENDIX D: PARAMETRIZATIONS

The main text and previous appendixes have introduced
five terms that go into the cofe HEG energy as a function of
rs and f̄. This appendix will provide a useful parametriza-
tion of the state-driven correlation energy that will allow the
use of cofe HEGs in density functional approximations. As
explained in the main text, we propose

EeLDA
xc ≔

Z
nðrÞ½ϵxðrsÞfcofex ðf̄Þ þ ϵSD;cofec ðrs; f̄Þ�; ðD1Þ

where rsðrÞ and f̄ðrÞ depend on local properties of the
inhomogeneous system.
The exchange term involves the closed-form expression

of Eq. (29). The correlation term, ϵSD;cofec ðrs; f̄Þ, needs to be
parametrized using the following.
(1) the known high-density behavior of Eq. (42),
(2) the known low-density behavior of Eq. (43),
(3) QMC data for other densities, adapted using Eq. (44).

The high-density limit yields [to O½rs logðrsÞ� ]

ϵSD;cofec ðrs → 0; f̄Þ ≔ c0ðf̄Þ log rs − c1ðf̄Þ; ðD2Þ

where the parameters c0;1ðf̄Þ are linear in f̄ and are trivially
related to their unpolarized and fully polarized
counterparts [10]. The low-density limit yields [toOð1=r2sÞ]

ϵSD;cofec ðrs → ∞; f̄Þ ≔ −C∞ þ Cx½2=f̄�1=3
rs

þ C0
∞

r3=2s

; ðD3Þ

where C∞, Cx, and C0
∞ are universal parameters that do not

depend on f̄ [50].
Perdew and Wang [10] proposed that HEG correlation

energies lend themselves to a parametrization,

Fðrs;PÞ ≔ −2Að1þ αrsÞ log
�
1þ 1

2A
P

4
i¼1 βir

i=2
s

�
; ðD4Þ

where P ¼ ðA; α; β1; β2; β3; β4Þ is a set of parameters that
depend on ζ, f̄, or related variables. By construction,
Eq. (D4) can be made exact to leading orders for small and
large rs. The high-density limit yields

FIG. 8. ξ̄c versus ξx using RPA data for cofe HEG (orange,
dashed lines) and polarized HEG (navy, solid lines). Black dots
indicate data from Ref. [8].

TIM GOULD and STEFANO PITTALIS PHYS. REV. X 14, 041045 (2024)

041045-20



Acofe ¼ c0; βcofe1 ¼ e−c1=ð2c0Þ

2c0
βcofe2 ¼ 2Aβ21; ðD5Þ

where the coefficients are

c0ðf̄Þ ¼
0.031091f̄

2
; c1ðf̄Þ ¼ 0.00454þ 0.0421f̄

2
:

The low-density limit yields

βcofe4 ¼ α

C∞ − Cxfcofex ðf̄Þ ; βcofe3 ¼ β24C
0
∞

α
; ðD6Þ

using the parameters C∞ ≈ 1.95Cx and C0
∞ ¼ 1.33 [94]

from Sec. III B 3 and fcofex ðf̄Þ ¼ ½2=f̄�1=3 from Eq. (29).
Thus, only α is left undefined.
Our goal is to find parameters, Pðf̄Þ, that can be used in a

constant occupation factor parametrization, ϵcofec ðrs; f̄�Þ ≔
F½rs;Pcofeðf̄�Þ�, of the cofe HEG at selected values of f̄�,
and interpolated to general f̄. Our first step is to pick the
values of f̄�. We seek to adapt the high-quality QMC data
of Spink et al. [8], who provided correlation energies for
ζ� ∈ ð0; 0.34; 0.66; 1Þ using Eq. (44). We therefore seek
parametrizations at f̄� ¼ f̂−1x-mapðζ�Þ, so that the right-hand
side of Eq. (44) is known.
As a first step, we must find f̂x-map and its inverse.

Setting Eqs. (5) and (29) to be equal yields

f̂x-mapðζÞ ≈ 2 −
4

3
ζ2 þ 1

6
½1.0187ζ3 þ 0.9813ζ4�; ðD7Þ

f̂−1x-mapðf̄Þ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

4
ð2 − f̄Þ

r �
1þ

� ffiffiffi
4

3

r
− 1

�
ð2 − f̄Þ

�
; ðD8Þ

which are exact in the polarized and unpolarized limits, and
accurate to within 0.2% for all ζ and f̄. Equation (D7) gives
f̄� ∈ ð2; 1.85; 1.50; 1Þ for ζ� ∈ ð0; 0.34; 0.66; 1Þ, which are
the f̄ values we use in fits. Then, for each f̄�, we obtain
αðf̄�Þ by minimizing

min
α

X
rs ∈QMC

jϵζQMC

c;QMCðrsÞ − ϵSD;cofec ðrs; f̄�Þj; ðD9Þ

where ϵζ
QMC

c;QMCðrsÞ is correlation energy data from Ref. [8]

and ϵSD;cofec ðrs; f̄�Þ ≔ F(rs; Pðf̄�Þ) involves the five con-
strained coefficients and free αðf̄�Þ. Optimal parameters for
the four values of ζ� (called ζQMC to highlight their origin)
are reported in Table II.
The next step of our parametrization departs from PW92,

in that we approximate the correlation energy at arbitrary f̄
via cubic fits (in f̄) to the QMC data. Thus,

ϵcofec ðrs; f̄Þ≔ ðf̄− 1Þϵ0cðrsÞþ ð2− f̄Þϵ1cðrsÞ

þ ðf̄− 1Þð2− f̄Þ
�
M2ðrsÞþ

�
3

2
− f̄

�
M3ðrsÞ

�
;

ðD10Þ

where ϵζcðrsÞ ≔ Fðrs; PζÞ is computed using Eq. (D4) and
M2 and M3 involve weighted sums of ϵcðrs; f̄Þ at selected
values of f̄. This fit becomes exact in the high-density limit,
as the correlation energy is linear in f̄, and is also extremely
accurate in the low-density limit as ð2=f̄Þ1=3 for f̄∈ ½1; 2�
may be reproduced to within 0.1% by a cubic fit. A cubic fit
on f̄� ∈ ð2; 1.85; 1.50; 1Þ yields

M2ðrsÞ ≔ 2½2ϵ0.66c ðrsÞ − ϵ0cðrsÞ − ϵ1cðrsÞ�; ðD11Þ

M3ðrsÞ ≔
40

357
½102ϵ0.66c ðrsÞ − 200ϵ0.34c ðrsÞ

þ 119ϵ1cðrsÞ − 21ϵ0cðrsÞ�; ðD12Þ
where α is optimized on each of the four spin polarizations.
The same strategy may also be applied to a conventional

spin-polarized HEG. Thus, in addition to parameters for the
cofe model, Tables II and III also contain a set of
coefficients for a “revised PW92” (rPW92) model that is
an analog of the cofe model introduced here. Details are
provided in Appendix E. As it is based on similar
principles, rPW92 is more directly comparable to the cofe
parametrization provided here than the original PW92,
especially in the low-density limit.

FIG. 9. Like Fig. 3 but with the addition of polarized HEG
results from PW92 [10] (dots) and rPW92 (dash-dotted line) for
ζ∈ ð0; 0.34; 0.66; 1Þ, to show differences between cofe and
polarized gases in the high-density limit.
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APPENDIX E: REVISED PW92

The revised PW92 parametrization is designed as a
direct replacement for the original PW92 model [10]. Its
main differences are (1) the use of a cubic fit in ζ2,
analogous to the fit to f̄ used in the main text, (2) the use of
the most up-to-date understanding of the low-density limit,
per Sec. III B 3, and (3) α is found from the Spink reference
data [8]. Note that we fit to ζ2 because exchange and
correlation are quadratic for ζ → 0, but linear for f̄ → 2.
The rPW92 parametrization of correlation energies is

ϵrPW92
c ðrs; ζÞ ≔ ð1 − ζ2Þϵ0c þ ζ2ϵ1c

þ ð1 − ζ2Þζ2½Z2ðrsÞ þ ζ2Z3ðrsÞ�; ðE1Þ

where coefficients for Z2;3 are reported in Table III.
Interestingly, the values we obtain for α at ζ ¼ 0 and
ζ ¼ 1 are slightly lower than those from the original PW92
parametrization [10], most likely due to the use of more
modern QMC data.
Figure 9 shows results from Fig. 3 plus the LSDA

(rPW92) parametrized along similar lines. It also includes
results from an existing LSDA (PW92 [10]). By construc-
tion, both cofe and rPW92 do a better job of capturing the
strictly correlated electron limit, especially as PW92
incorrectly yields different low-density behaviors for differ-
ent ζ. It is important to recognize that differences (for
ζ ¼ 0.34 and 0.66) between cofe enhancement factors
and PW92 and rPW92 do not represent errors, but rather
represent different quantum physics captured by cofe and
polarized gases, which lead to different high-density
behaviors.
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M. Huix-Rotllant (Springer International Publishing, Cham,
2016), pp. 97–124.

[35] A. Pribram-Jones, Z.-h. Yang, J. R. Trail, K. Burke, R. J.
Needs, and C. A. Ullrich, Excitations and benchmark
ensemble density functional theory for two electrons,
J. Chem. Phys. 140, 18A541 (2014).

[36] Z.-H. Yang, J. R. Trail, A. Pribram-Jones, K. Burke, R. J.
Needs, and C. A. Ullrich, Exact and approximate Kohn-
Sham potentials in ensemble density-functional theory,
Phys. Rev. A 90, 042501 (2014).

[37] Z.-H. Yang, A. Pribram-Jones, K. Burke, and C. A. Ullrich,
Direct extraction of excitation energies from ensemble
density-functional theory, Phys. Rev. Lett. 119, 033003
(2017).

[38] T. Gould, L. Kronik, and S. Pittalis, Charge transfer
excitations from exact and approximate ensemble Kohn-
Sham theory, J. Chem. Phys. 148, 174101 (2018).

[39] F. Sagredo and K. Burke, Accurate double excitations from
ensemble density functional calculations, J. Chem. Phys.
149, 134103 (2018).

[40] K. Deur and E. Fromager, Ground and excited energy levels
can be extracted exactly from a single ensemble density-
functional theory calculation, J. Chem. Phys. 150, 094106
(2019).

[41] P.-F. Loos and E. Fromager, A weight-dependent local
correlation density-functional approximation for ensem-
bles, J. Chem. Phys., 152, 214101 (2020).

[42] C. Marut, B. Senjean, E. Fromager, and P.-F. Loos, Weight
dependence of local exchange-correlation functionals in
ensemble density-functional theory: Double excitations in
two-electron systems, Faraday Discuss. 224, 402 (2020).

[43] T. Gould, Approximately self-consistent ensemble density
functional theory with all correlations, J. Phys. Chem. Lett.
11, 9907 (2020).

[44] T. Gould, L. Kronik, and S. Pittalis, Double excitations in
molecules from ensemble density functionals: Theory and
approximations, Phys. Rev. A 104, 022803 (2021).

[45] T. Gould, Z. Hashimi, L. Kronik, and S. G. Dale, Single
excitation energies obtained from the ensemble “HOMO–
LUMO gap”: Exact results and approximations, J. Phys.
Chem. Lett. 13, 2452 (2022).

[46] T. Gould and S. Pittalis, Hartree and exchange in ensemble
density functional theory: Avoiding the nonuniqueness
disaster, Phys. Rev. Lett. 119, 243001 (2017).

[47] T. Gould and S. Pittalis, Density-driven correlations in
many-electron ensembles: Theory and application for
excited states, Phys. Rev. Lett. 123, 016401 (2019).

[48] E. Fromager, Individual correlations in ensemble density-
functional theory: State-driven/density-driven decomposi-
tions without additional Kohn-Sham systems, Phys. Rev.
Lett. 124, 243001 (2020).

[49] T. Gould, G. Stefanucci, and S. Pittalis, Ensemble density
functional theory: Insight from the fluctuation-dissipation
theorem, Phys. Rev. Lett. 125, 233001 (2020).

[50] T. Gould, D. P. Kooi, P. Gori-Giorgi, and S. Pittalis,
Electronic excited states in extreme limits via ensemble
density functionals, Phys. Rev. Lett. 130, 106401 (2023).

[51] J. Kirkpatrick, B. McMorrow, D. H. P. Turban, A. L. Gaunt,
J. S. Spencer, A. G. D. G. Matthews, A. Obika, L. Thiry, M.
Fortunato, D. Pfau, L. R. Castellanos, S. Petersen, A.W. R.
Nelson, P. Kohli, P. Mori-Sánchez, D. Hassabis, and A. J.
Cohen,Pushing the frontiers of density functionals by solving
the fractional electron problem, Science 374, 1385 (2021).

[52] M. Levy, Universal variational functionals of electron
densities, first-order density matrices, and natural spin-
orbitals and solution of the v-representability problem,
Proc. Natl. Acad. Sci. U.S.A. 76, 6062 (1979).

[53] E. H. Lieb, Density functionals for Coulomb systems, Int. J.
Quantum Chem. 24, 243 (1983).

[54] U. von Barth and L. Hedin, A local exchange-correlation
potential for the spin polarized case. I, J. Phys. C 5, 1629
(1972).

[55] Note that here we mean “exact” in the sense that of the exact
form, not the functional obtained at the exact density and
orbitals.

[56] A. Pribram-Jones, D. A. Gross, and K. Burke, DFT: A
theory full of holes?, Annu. Rev. Phys. Chem. 66, 283
(2015).

[57] E. H. Lieb and S. Oxford, Improved lower bound on the
indirect Coulomb energy, Int. J. Quantum Chem. 19, 427
(1981).

[58] O. Gunnarsson and B. I. Lundqvist, Exchange and corre-
lation in atoms, molecules, and solids by the spin-density-
functional formalism, Phys. Rev. B 13, 4274 (1976).

[59] C.-L. Cheng, Q. Wu, and T. Van Voorhis, Rydberg energies
using excited state density functional theory, J. Chem. Phys.
129, 124112 (2008).

[60] G. Levi, A. V. Ivanov, and H. Jónsson, Variational density
functional calculations of excited states via direct optimi-
zation, J. Chem. Theory Comput. 16, 6968 (2020).

[61] W. Kohn, Density-functional theory for excited states in a
quasi-local-density approximation, Phys. Rev. A 34, 737
(1986).

[62] L. N. Oliveira, E. K. U. Gross, and W. Kohn, Density-
functional theory for ensembles of fractionally occupied
states. II. Application to the He atom, Phys. Rev. A 37, 2821
(1988).

[63] A. K. Theophilou and P. G. Papaconstantinou, Local spin-
density approximation for spin eigenspaces and its appli-
cation to the excited states of atoms, Phys. Rev. A 61,
022502 (2000).

[64] P. Samal and M. K. Harbola, Local-density approximation
for the exchange energy functional in excited-state density
functional theory, J. Phys. B 38, 3765 (2005).

LOCAL DENSITY APPROXIMATION FOR EXCITED STATES PHYS. REV. X 14, 041045 (2024)

041045-23

https://doi.org/10.1103/PhysRevA.37.2805
https://doi.org/10.1103/PhysRevA.37.2809
https://doi.org/10.1063/1.4866998
https://doi.org/10.1063/1.4919773
https://doi.org/10.1063/1.4872255
https://doi.org/10.1103/PhysRevA.90.042501
https://doi.org/10.1103/PhysRevLett.119.033003
https://doi.org/10.1103/PhysRevLett.119.033003
https://doi.org/10.1063/1.5022832
https://doi.org/10.1063/1.5043411
https://doi.org/10.1063/1.5043411
https://doi.org/10.1063/1.5084312
https://doi.org/10.1063/1.5084312
https://doi.org/10.1063/5.0007388
https://doi.org/10.1039/D0FD00059K
https://doi.org/10.1021/acs.jpclett.0c02894
https://doi.org/10.1021/acs.jpclett.0c02894
https://doi.org/10.1103/PhysRevA.104.022803
https://doi.org/10.1021/acs.jpclett.2c00042
https://doi.org/10.1021/acs.jpclett.2c00042
https://doi.org/10.1103/PhysRevLett.119.243001
https://doi.org/10.1103/PhysRevLett.123.016401
https://doi.org/10.1103/PhysRevLett.124.243001
https://doi.org/10.1103/PhysRevLett.124.243001
https://doi.org/10.1103/PhysRevLett.125.233001
https://doi.org/10.1103/PhysRevLett.130.106401
https://doi.org/10.1126/science.abj6511
https://doi.org/10.1073/pnas.76.12.6062
https://doi.org/10.1002/qua.560240302
https://doi.org/10.1002/qua.560240302
https://doi.org/10.1088/0022-3719/5/13/012
https://doi.org/10.1088/0022-3719/5/13/012
https://doi.org/10.1146/annurev-physchem-040214-121420
https://doi.org/10.1146/annurev-physchem-040214-121420
https://doi.org/10.1002/qua.560190306
https://doi.org/10.1002/qua.560190306
https://doi.org/10.1103/PhysRevB.13.4274
https://doi.org/10.1063/1.2977989
https://doi.org/10.1063/1.2977989
https://doi.org/10.1021/acs.jctc.0c00597
https://doi.org/10.1103/PhysRevA.34.737
https://doi.org/10.1103/PhysRevA.34.737
https://doi.org/10.1103/PhysRevA.37.2821
https://doi.org/10.1103/PhysRevA.37.2821
https://doi.org/10.1103/PhysRevA.61.022502
https://doi.org/10.1103/PhysRevA.61.022502
https://doi.org/10.1088/0953-4075/38/20/011


[65] M. Hemanadhan, M. Shamim, and M. K. Harbola, Test-
ing an excited-state energy density functional and the
associated potential with the ionization potential theorem,
J. Phys. B 47, 115005 (2014).

[66] P.-F. Loos and P. M.W. Gill, Exact wave functions of two-
electron quantum rings, Phys. Rev. Lett. 108, 083002
(2012).

[67] P.-F. Loos and P. M.W. Gill, Uniform electron gases. I.
Electrons on a ring, J. Chem. Phys. 138, 164124 (2013).

[68] P.-F. Loos, C. J. Ball, and P. M.W. Gill, Uniform electron
gases. II. The generalized local density approximation in
one dimension, J. Chem. Phys. 140, 18A524 (2014).

[69] P.-F. Loos, Generalized local-density approximation and
one-dimensional finite uniform electron gases, Phys. Rev. A
89, 052523 (2014).

[70] J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz, Density-
functional theory for fractional particle number: Derivative
discontinuities of the energy, Phys. Rev. Lett. 49, 1691
(1982).

[71] “‘cofe” is pronounced like coffee by the authors.
[72] E. Wigner, On the interaction of electrons in metals, Phys.

Rev. 46, 1002 (1934).
[73] E. Wigner, Effects of the electron interaction on the energy

levels of electrons in metals, Trans. Faraday Soc. 34, 678
(1938).

[74] S. Azadi and N. D. Drummond, Low-density phase diagram
of the three-dimensional electron gas, Phys. Rev. B 105,
245135 (2022).

[75] E. Alves, G. L. Bendazzoli, S. Evangelisti, and J. A. Berger,
Accurate ground-state energies of Wigner crystals from a
simple real-space approach, Phys. Rev. B 103, 245125
(2021).

[76] S. Śmiga, F. D. Sala, P. Gori-Giorgi, and E. Fabiano, Self-
consistent implementation of Kohn–Sham adiabatic con-
nection models with improved treatment of the strong-
interaction limit, J. Chem. Theory Comput. 18, 5936
(2022).

[77] Or level specific contributions, in case of degeneracies. To
keep notation and illustrations simple, as done also before,
we shall not explicate all the details.

[78] T. Gould, Stationary conditions for excited states: The
surprising impact of density-driven correlations, arXiv:
2404.12593.

[79] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevX.14.041045 for (i) addi-
tional theory about effective occupation factors; (ii) addi-
tional theory and technical details about the calculations;
and (iii) Additional theoretical analysis of similarities in
TDLDA and eLDA, which includes Ref. [80].

[80] G. Levi, A. V. Ivanov, and H. Jónsson, Variational calcu-
lations of excited states via direct optimization of the
orbitals in DFT, Faraday Discuss. 224, 448 (2020).

[81] This relationship follows from the fluctuation-dissipation
theory for DFT, as it relates xc pair densities (and thus xc
holes) to frequency integrals over density-density response
functions [49].

[82] R. M. Parrish, L. A. Burns, D. G. A. Smith, A. C.
Simmonett, A. E. DePrince, E. G. Hohenstein, U.
Bozkaya, A. Y. Sokolov, R. D. Remigio, R. M. Richard
et al., PSI4 1.1: An open-source electronic structure pro-
gram emphasizing automation, advanced libraries, and
interoperability, J. Chem. Theory Comput. 13, 3185 (2017).

[83] D. G. A. Smith, L. A. Burns, D. A. Sirianni, D. R.
Nascimento, A. Kumar, A. M. James, J. B. Schriber, T.
Zhang, B. Zhang, A. S. Abbott et al., PSI4NUMPY: An
interactive quantum chemistry programming environment
for reference implementations and rapid development,
J. Chem. Theory Comput. 14, 3504 (2018).

[84] Q. Sun, T. C. Berkelbach, N. S. Blunt, G. H. Booth, S. Guo,
Z. Li, J. Liu, J. D. McClain, E. R. Sayfutyarova, S. Sharma,
S. Wouters, and G. K.-L. Chan, PYSCF: The PYTHON-based
simulations of chemistry framework, WIREs Comput. Mol.
Sci. 8, e1340 (2017).

[85] Q. Sun, X. Zhang, S. Banerjee, P. Bao, M. Barbry, N. S.
Blunt, N. A. Bogdanov, G. H. Booth, J. Chen, Z.-H. Cui
et al., Recent developments in the PYSCF program package,
J. Chem. Phys. 153, 024109 (2020).

[86] J. Lee and M. Head-Gordon, Two single-reference ap-
proaches to singlet biradicaloid problems: Complex, re-
stricted orbitals and approximate spin-projection combined
with regularized orbital-optimized Møller-Plesset pertur-
bation theory, J. Chem. Phys. 150, 244106 (2019).

[87] J. Lee, L. W. Bertels, D. W. Small, and M. Head-Gordon,
Kohn-Sham density functional theory with complex, spin-
restricted orbitals: Accessing a new class of densities
without the symmetry dilemma, Phys. Rev. Lett. 123,
113001 (2019).

[88] J. P. Perdew, A. Ruzsinszky, J. Sun, N. K. Nepal, and A. D.
Kaplan, Interpretations of ground-state symmetry breaking
and strong correlation in wavefunction and density func-
tional theories, Proc. Natl. Acad. Sci. U.S.A. 118,
e2017850118 (2021).

[89] M. Véril, A. Scemama, M. Caffarel, F. Lipparini, M.
Boggio-Pasqua, D. Jacquemin, and P.-F. Loos, QUESTDB:
A database of highly accurate excitation energies for the
electronic structure community, WIREs Comput. Mol. Sci.
11, e1517 (2021).

[90] A. T. B. Gilbert, N. A. Besley, and P. M.W. Gill, Self-
consistent field calculations of excited states using the
maximum overlap method (MOM), J. Phys. Chem. A
112, 13164 (2008).

[91] https://github.com/gambort/cofHEG.
[92] T. Gould, Supporting code and data for the paper “Local

Density Approximation for Excited State”, Zenodo (2024),
10.5281/zenodo.13927864.

[93] Y. Wang and J. P. Perdew, Correlation hole of the spin-
polarized electron gas, with exact small-wave-vector and
high-density scaling, Phys. Rev. B 44, 13298 (1991).

[94] M. Seidl, S. Giarrusso, S. Vuckovic, E. Fabiano, and P.
Gori-Giorgi, Communication: Strong-interaction limit of an
adiabatic connection in Hartree-Fock theory, J. Chem.
Phys. 149, 241101 (2018).

TIM GOULD and STEFANO PITTALIS PHYS. REV. X 14, 041045 (2024)

041045-24

https://doi.org/10.1088/0953-4075/47/11/115005
https://doi.org/10.1103/PhysRevLett.108.083002
https://doi.org/10.1103/PhysRevLett.108.083002
https://doi.org/10.1063/1.4802589
https://doi.org/10.1063/1.4867910
https://doi.org/10.1103/PhysRevA.89.052523
https://doi.org/10.1103/PhysRevA.89.052523
https://doi.org/10.1103/PhysRevLett.49.1691
https://doi.org/10.1103/PhysRevLett.49.1691
https://doi.org/10.1103/PhysRev.46.1002
https://doi.org/10.1103/PhysRev.46.1002
https://doi.org/10.1039/tf9383400678
https://doi.org/10.1039/tf9383400678
https://doi.org/10.1103/PhysRevB.105.245135
https://doi.org/10.1103/PhysRevB.105.245135
https://doi.org/10.1103/PhysRevB.103.245125
https://doi.org/10.1103/PhysRevB.103.245125
https://doi.org/10.1021/acs.jctc.2c00352
https://doi.org/10.1021/acs.jctc.2c00352
https://arXiv.org/abs/2404.12593
https://arXiv.org/abs/2404.12593
http://link.aps.org/supplemental/10.1103/PhysRevX.14.041045
http://link.aps.org/supplemental/10.1103/PhysRevX.14.041045
http://link.aps.org/supplemental/10.1103/PhysRevX.14.041045
http://link.aps.org/supplemental/10.1103/PhysRevX.14.041045
http://link.aps.org/supplemental/10.1103/PhysRevX.14.041045
http://link.aps.org/supplemental/10.1103/PhysRevX.14.041045
http://link.aps.org/supplemental/10.1103/PhysRevX.14.041045
https://doi.org/10.1039/D0FD00064G
https://doi.org/10.1021/acs.jctc.7b00174
https://doi.org/10.1021/acs.jctc.8b00286
https://doi.org/10.1002/wcms.1340
https://doi.org/10.1002/wcms.1340
https://doi.org/10.1063/5.0006074
https://doi.org/10.1063/1.5097613
https://doi.org/10.1103/PhysRevLett.123.113001
https://doi.org/10.1103/PhysRevLett.123.113001
https://doi.org/10.1073/pnas.2017850118
https://doi.org/10.1073/pnas.2017850118
https://doi.org/10.1002/wcms.1517
https://doi.org/10.1002/wcms.1517
https://doi.org/10.1021/jp801738f
https://doi.org/10.1021/jp801738f
https://github.com/gambort/cofHEG
https://github.com/gambort/cofHEG
https://doi.org/10.5281/zenodo.13927864
https://doi.org/10.1103/PhysRevB.44.13298
https://doi.org/10.1063/1.5078565
https://doi.org/10.1063/1.5078565

