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Abstract. This chapter discusses a general framework for the analy-
sis of trajectories of moving objects, designed around a Trajectory Data
Warehouse (TDW). We argue that data warehouse technologies, com-
bined with geographic visual analytics tools, can play an important role
in granting very fast, accurate and understandable analysis of mobility
data. We describe how in the last decade the TDW models have changed
in order to provide the user with a more suitable model of the reality
of interest and we also cope with the challenge of semantic trajectories.
As a use case we illustrate how the framework can be instantiated for
realizing a recommender system for tourists.

1 Introduction

Recent advances in mobile network devices, sensors, and positioning technolo-
gies enabled the tracking of large amounts of moving objects: vehicles, animals,
vessels and in large part also humans. These technologies produce huge data
streams of observations, which can be stored and used to reconstruct the origi-
nal objects trajectories. These movement data represent a treasure in term of the
potential applications that can benefit from their analysis. A special interesting
aspect is the possibility of enriching the pure spatio-temporal data with suitable
knowledge bases, to semantically annotate and transform such trajectories into
more meaningful data.

In this chapter we survey a general framework for creating, analysing and
exploiting (possibly semantically enriched) trajectories that we have been devel-
oping in the last decade.

The central idea is that of a Trajectory Data Warehouse (TDW), with spatial
and temporal dimensions, which is populated, via a suitable ETL process start-
ing from raw trajectory data (essentially, spatio-temporal points or samples).
The TDW relies on a flexible conceptual model with associated spatio-temporal
dimensions and hierarchies. More specifically, the spatial domain can be struc-
tured according to the application requirements, by exploiting hierarchies of
regular grids (like in [11, 10]) or of regions with ad-hoc shapes [9]. While a hier-
archy of regular grids can be used to analyse objects that can move freely in the
space, hierarchies with ad-hoc shapes are useful for objects whose movements



are constrained, such as objects that can only move along a road network (e.g.,
cars).

The TDW is provided with an interface that allows for visual OLAP oper-
ations for the analysis of aggregate trajectory data, by integrating OLAP tools
with visual analytics [2]. This permits to overcome the limits of the usual OLAP
user interfaces. In fact, the table based representation commonly adopted by
OLAP tools makes it very difficult for the user to grasp the relationships be-
tween areas in the same neighbourhood, the evolution of spatial measures in
time, or the correlations of different measures. Visualisation is crucial: it can
be seen simultaneously as the output and end-product of a knowledge discovery
cycle and the starting point for further, interactive and visual, analysis.

The TDW, as described above, suffices to study several quantitative prop-
erties of trajectories, such as speed, traveled distance, or presence. However, in
order to analyze information concerning semantic aspects such as the kind of
places visited, the goals of the trajectories, the performed activity, transporta-
tion means, a semantic enrichment of the trajectory data is necessary. We discuss
how semantic trajectories can be constructed from the original collected sam-
ples by properly combining movement data with suitable knowledge bases. We
describe how the conceptual model of the TDW has to be modified to imple-
ment a Semantic Trajectory Data Warehouse allowing us to analyse semantic
trajectories according to the above mentioned semantic dimensions.

As a use case for semantic analysis of trajectories we discuss a touristic recom-
mendation system. We illustrate how trajectories, which have been semantically
enriched, can be used to recommend personalized tours. Specifically, we outline
the whole process, starting from the selection of a set of tourist trajectories,
the enrichment step for properly transforming and enriching the trajectories for
our purposes, and finally how the obtained semantic trajectories are exploited to
suggest personalized sightseeing tours, by modeling and maximizing user interest
and visiting time-budget.

Fig. 1 summarizes the overall (semantic) trajectory analysis framework dis-
cussed in this chapter. On the top of the figure we show the source data, i.e., a set
of trajectory samples represented as small colored circles. Samples for the same
trajectory are filled with the same color and connected by a gray dashed line that
represents the actual movement of the object. These samples are fed to a mod-
ule in charge of reconstructing the trajectories followed by the moving objects,
possibly using a map of the visited geographic region. Once reconstructed, the
trajectories can be processed directly by an ETL module to populate a TDW,
which allows us to perform visual OLAP analyses (Section 3). Alternatively, we
can exploit some knowledge bases, for example a set of categorized geographic
Points of Interest (PoIs), to semantically enrich and eventually transform tra-
jectories. In this last case, the ETL module is specialized to populate a semantic
TDW, with a suitably extended conceptual model (Section 4). The overall frame-
work of Fig. 1 can be instantiated for particular applications. In Section 5 we
illustrate how it can be used for building a recommender system for tourists.
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2 Preliminaries

Several works in the literature address the analysis of trajectory data [15]. Even
for the definition of a trajectory several variants exist, formalizing the general
idea of a trajectory as a representation of the spatio-temporal evolution of a
moving object. Since trajectories are usually collected by means of position-
enabled devices, the notion of trajectory has to deal with the concept of sampling
that is the action of the device to detect spatial and temporal points at given
temporal intervals. Here we call raw trajectory the discrete representation of a
trajectory as a sequence of spatio-temporal points or samples as collected by the
device.

Definition 1 (Raw Trajectory). A trajectory T is an ordered list of spatio-
temporal points or samples p1, p2, p3, . . . , pn. Each pi is a tuple (id, xi, yi, ti)
where id is the identifier of a trajectory, xi, yi are the geographical coordinates of
the sampled point, and ti is the timestamp in which the point has been collected,
with t1 < t2 < t3 < . . . < tn.

From these sampled data, according to the application requirements, we need
to reconstruct the approximation of the real trajectory, modeled as a continuous
function from time to geographic coordinates.

The possible methods for reconstruction are different, and depend on the
scenarios on which we focus on. Objects can move almost freely in the space
(e.g., vessels on the sea), or object movements can be constrained (e.g., cars
moving along a road network). In the first case, in order to reconstruct the whole
trajectory, local interpolation can be used. According to this method, objects are
assumed to move between the observed points following some rule. For instance,
a linear interpolation function models a straight movement with constant speed,
while other polynomial interpolations can represent smooth changes of direction.
If we consider the alternative scenario of cars moving along a road network, in
turn modeled as a graph embedded in the Euclidean 2D-space, we have that
the movements of objects are completely constrained, since cars are supposed
to stay on the network. So reconstruction must take into account the topology
of the road network to determine the path followed by each object between
two consecutive sampled positions in the raw data [4]. The reconstruction phase
produces a sequence of lines in a spatio-temporal space, each representing the
continuous “development” of the moving object during a time interval. Notice
that the spatial projection of these lines are segments of the road network or
portions of these segments.

3 Trajectory Data Warehouses

The motivation behind a TDW is to transform trajectories into valuable knowl-
edge that can be used for decision making purposes in ubiquitous applications,
such as Location-Based Services (LBS) or traffic control management. Intu-
itively, the high volume of raw data produced by sensing and positioning tech-
nologies, the complex nature of data stored in trajectory databases and the



specialized query processing demands, they all make extracting valuable infor-
mation from such spatio-temporal data a challenging task. For this reason, the
idea is to develop specific aggregation techniques to produce summarized trajec-
tory information and provide visual OLAP style analyses.

3.1 The conceptual model

Our first proposal [11] of TDW consists of a fact table containing keys to di-
mension tables and a number of measures expressing properties about sets of
trajectories. The dimensions of analysis are the spatial dimensions X,Y rang-
ing over spatial intervals, and the temporal dimension T ranging over temporal
intervals. A regular three-dimensional grid obtained by discretizing the corre-
sponding values of the dimensions is defined and a set-grouping hierarchy is
associated with each dimension. The measures of interest are the number of tra-
jectories inside each cell of the grids, their average, maximum/minimum speed,
the covered distance and the time spent inside the cell. Then in [14] we add a new
dimension OBJECT PROFILE DIM in order to take into account demograph-
ical information, such as gender, age, job, of moving objects. However, these
approaches suffer from a main limitation: they are restricted to freely moving
objects. Thus, they do not allow to explicitly account for constrained movements,
for example due to the presence of a road network. Moreover, they support only
spatitro-temporal hierarchies consisting of regular grids.

In [9] we define a framework relying on a more flexible conceptual model
with associated spatio-temporal dimensions and hierarchies. More specifically,
the spatial domain can be structured according to the application requirements,
by exploiting hierarchies of regular grids (like in [11, 14]) or of regions with ad-
hoc shapes. While a hierarchy of regular grids can be used to analyse objects that
can move freely in the space, hierarchies with ad-hoc shapes are useful for objects
whose movements are constrained, such as objects that can only move along a
road network (e.g., cars). Furthermore, Voronoi tessellation can be employed in
order to build hierarchies of regions based on the actual distribution of the points
forming the trajectories. This kind of partitioning turns out to be particularly
suited for highlighting the directions of the trajectory movement.

The resulting model is presented in Fig. 2. We distinguish two classes of facts,
namely intra-granule and inter-granule facts. Intuitively, intra-granule
facts express properties related to trajectories inside a single granule whereas
inter-granule facts describe properties concerning the movement of trajectories
between two granules. We recall that a base granule is obtained by partitioning
both the spatial and temporal dimensions and this partition is the finest one.
From this base granularity other coarser partitions can be defined by merging to-
gether spatial regions and temporal intervals, respectively. Informally, a granule
can be defined as a contiguous spatial region during a given time interval.

More specifically, the intra-granule facts model events that are related to
a single base granule concerning a certain object group. For a given object group
U and a granule g, the measures are:
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Fig. 2. TDW Conceptual model [9]

– visits: the number of trajectories belonging to group U which start from or
enter into granule g;

– start/end : the number of trajectories belonging to group U starting/ending
in granule g;

– travel time/distance: the time spent/distance travelled by all trajectories
belonging to group U while moving inside granule g;

– speed : the average speed of trajectories belonging to group U traversing
granule g.

The inter-granule facts model events that are related to pairs of granules
and are concerned with a specific object group. For a given group U and pair of
granules g and g′, a measure of interest is

– cross: number of times the border from g to g′ has been traversed by trajec-
tories belonging to group U .

Note that the measure cross is interesting only for adjacent granules (for non-
adjacent granules it is invariably 0). However, in general, inter-granule facts can
model events which are meaningful for all pairs of granules. An example could
be the origin-destination measure, which, for any pair of granules, represents
the number of trajectories starting from the first and ending into the second
granule.

Clearly, the presented measures are not an exhaustive collection, but they
correspond to a set of common measures which we found interesting and useful
in different scenarios.

The TDW provides efficient OLAP roll-up operations since for all the defined
measures, values at a coarser granularity can be computed by using values at a
finer granularity. In particular, for the measures start, end, travel time, distance



and cross, we use the distributive function sum as aggregate function whereas for
visits and speed we use algebraic aggregate functions. The aggregate function for
speed is computed as the ratio between the measures distance and travel time,
as expected. On the other hand, for the measure visits we use the auxiliary
measure cross. To give an intuition, let us consider a granule g composed by two
finer granules g1 and g2. Hence the number of visits in the granule g is obtained
by summing up the visits in g1 and g2, subtracting the number of trajectories
crossing the border between g1 and g2. This is motivated by the fact that the
border between two finer granules, g1 and g2 composing g, is completely inside
g. Hence trajectories moving from g1 to g2 (or vice versa) increase the number
of visits in g1 (or g2) but they should not be counted as visits in the coarser
granule g because the movement is completely inside g, i.e., they do not enter g.
We refer the reader to [9] for a formal definition of such aggregate functions.

It is worth noting that measure visits can provide an accurate approximation
of measure presence, which counts the number of distinct trajectories occurring
in a spatio-temporal granule. The aggregate function for presence is holistic: the
raw data are needed to compute the exact result at all granularities. This is due to
the fact that trajectories might span multiple granules. Hence in the aggregation
phase we have to cope with the so called distinct count problem [17]: if an object
remains in the query region for several timestamps during the query interval,
one should avoid to count it multiple times in the result. Holistic functions
represent a big issue for data warehouse technology. In [9] we discussed about
the computation of measure presence and we showed that the proposed solution,
i.e., the use of measure visits, is a more precise approximation with respect to
some common approaches [17, 12] facing the same problem.

3.2 Visual OLAP

In the analysis of spatial and spatio-temporal data, the use of suitable, interac-
tive, visualization tools is of paramount importance to help the analytic user in
effectively grasping the information hidden in those complex data. For this rea-
son, we have provided the TDW with an interface that allows for OLAP visual
operations, based on V-Analytics [1, 2], an interactive visual analytics system
running on the Java R© Virtual Machine. This system permits a user to view
georeferenced data over a map and run analyses on them, for example to find
clusters or to tessellate the space. It also offers functionalities to handle temporal
data, by using graphs or animations, according to the type of data to analyse.

In the following we report some examples that highlight several kinds of
OLAP analyses on different scenarios. A first one, illustrated in Fig. 3(a), shows
the fishing effort index in the Northern Adriatic Sea during 2007, at the base
spatial granularity. The fishing effort index is a value indicating how much a
given area has been exploited by the boats fishing in it. The space is partitioned
into a regular grid and granules in darker colours are the most exploited. By using
a drill-down operation on the temporal dimension, we can inspect the situation
at a higher level of detail. For instance, Fig. 3(b) shows the fishing effort in
the trimester July-September of 2007. The fact that it is sensibly reduced with



(a) January-September 2007 (b) July-September 2007

Fig. 3. Fishing effort distribution [9].

respect to effort in the whole period is somehow expected due to a law which
prevents most fishing activities during August.

The flexibility in the definition of the spatio-temporal hierarchy offered by the
presented TDW model allows the user to adopt a suitable model of the reality,
thus obtaining a much more meaningful visual representation of the information
contained in the TDW. The images in Fig. 4 are relative to a different example
that concerns trajectories of cars moving in the city of Milan. Specifically, they
visually represent the number of visits to spatial granules during the time interval
corresponding to a particular temporal granule. Each image corresponds to a
different spatial granularity: in Fig. 4(a) granules are cells of a regular grid,
whereas in Fig. 4(b) and in Fig. 4(c) granules are respectively street segments
and city districts. The results obtained with a regular grid may be suited for
getting an initial overview of the data. However, a more detailed exploration is
complicated since the cells do not bear any semantics and do not correspond
to the real geographic and topographic properties of the data. This is why it
is important to have also streets and district for the analyses. For example, by
using the streets we can detect which are the most busy roads and how the traffic
flows.

4 Semantic Trajectory Data Warehouse

The concept of semantic trajectory has been proposed as a way to overcome
the lack of semantics characterizing raw trajectories. A well known definition of
semantic trajectory relies on the “stop and move” approach: a trajectory is seg-
mented into parts where the object is stopped (the “stop”) and the parts where
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Fig. 4. (a) Grid based spatial dimension, and (b) street segment based spatial dimen-
sion with (c) dimensional attribute having polygon spatial type. [9]

the object is changing his/her position (the “move”) [16]. This approach evolved
to the more general definition of episodes to represent segments of a trajectory
complying to some predicate representing the semantics of that segment, like the
transportation mean, the goal or activity [13]. A further evolution towards this
direction brought to the definition of a conceptual model for semantic trajecto-
ries as proposed in [3] where several contextual aspects contribute to create the
concept of semantic trajectory.

Definition 2 (Semantic Trajectory). A semantic trajectory is a trajectory
that has been enhanced with annotations and/or one or several complementary
segmentations.

Note that, according to the specific requirements of applications, such se-
mantic trajectories can be transformed and abstracted so to adhere to a model,
e.g., the “stop and move” one. Therefore, while semantics enrichment can add
meaningful information to trajectories, the obtained semantic trajectory can ac-
tually lose some of the information contained in the original one, by keeping only
that useful for the specific application goal.

4.1 The Semantic TDW conceptual model

This section introduces the Mob-Warehouse model [18] which is organized around
the notion of semantic trajectory where different aspects contribute to describe
the context. The model is based on the so called 5W1H (Who, Where, When,
What, Why, How) framework [19], recurrently used by journalists as a guide for
narrating a fact.

To semantically enrich a trajectory, each narrative question of the 5W1H
model is mapped to a specific trajectory feature. In this way, we describe the
moving object (Who) moving by a transportation means and/or having a certain
behavior (How), performing an activity (What), for a certain reason (Why),
at a given time (When) and place (Where). The increased level of semantic
information into our model trajectory allows us to perform more meaningful
queries about moving object habits.
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The resulting semantic TDW conceptual model consists of six dimensions,
as illustrated in Fig. 5. It reflects the semantic structure of trajectories and in
the fact table we store detailed information, no more aggregate properties about
trajectories as in the model presented in Section 3. Specifically, the dimensions
Space and Time essentially correspond to the previous model dimensions and
they represent respectively the Where and When questions of the 5W1H Model.
It is worth noting that the spatial domain can be structured according to the
application requirements, providing the user with a great flexibility. The third
dimension named object group in Fig. 2 representing features of the objects under
analysis, here it is called dimension Trajectory, as it becomes a central compo-
nent of our model and it is used to represent the trajectory of the moving objects.
At the base granularity it represents a single sample (id, x, y, t) belonging to the
trajectory identified by id. The hierarchy having Sample as a root mixes together
semantic and geometric features. A sample belongs to an episode, which can be
classified according to its Type (e.g., a stop or a move) and it is grouped into a
Trajectory. Each Trajectory is associated not only with the Moving object but
also to a Goal, which is the main objective of such a trajectory. This dimension
allows one to model Who is performing the action (the moving object) and the
attribute goal answers the question Why. A fourth dimension, called Activity,
states the activity the object is doing in a certain sample. This allows one to
describe in a very detailed manner What is going on at the different samples of
a trajectory. We can build a hierarchy of activities which classifies properly the
variety of tasks an object can perform. Usually this hierarchy is application de-
pendent hence in the general model it is not specified and should be instantiated
case by case depending on the application requirements. Then the dimension
Means of Transportation represents which transportation means the object is
using for the movement. The last dimension, called Pattern, collects the pat-
terns mined from the data under analysis. In this way we can directly relate
trajectories to the patterns they belong to. The latter two dimensions express
the concept of How the movement is performed.



The fact table stores measures about the samples of the trajectories. Un-
like [10, 14, 9] where at the minimum granularity data were already aggregated,
in this model we record the most detailed information. This gives the user the
ability to analyze the behavior according to various points of view: at the mini-
mum granularity we store information related to a single sample of a trajectory,
specifying the kind of activity is doing, the means of transportation is using,
the patterns, the space and time it belongs to. Then by aggregating according
to the described hierarchies we can recover also properties concerning the whole
trajectory or groups of trajectories satisfying certain conditions.

In the fact table we store measures related to a given sample s = 〈id, x, y, t〉

– Repr Points is a spatio-temporal measure containing the spatial and tempo-
ral component of the sample, i.e., (id, x, y, t);

– Duration is the time spent to reach the sample from the previous point of
the same trajectory in the same granule. It is set to 0, if this is the first point
of the trajectory in such a granule;

– Distance is the traveled distance from the previous point to the sample of
the trajectory in the same granule. It is set to 0, if this is the first point of
the trajectory in such a granule.

As far as the aggregate functions are concerned, for the measures Duration
and Distance, we use the distributive function sum: super-aggregates are com-
puted by summing up the sub-aggregates at finer granularities. On the other
hand, the aggregate function for the measure Repr points can be defined in dif-
ferent ways according to the application requirements. The simplest way is to
use the union operator to join together the points satisfying given conditions.
Differently one can return a bounding box enclosing all the points or compress
the points removing the ones which are spatio-temporally similar.

5 Use Case: Trip Planning Recommender for Tourists

Planning a travel itinerary is a difficult and time-consuming task for tourists
approaching their destination for the first time. Different sources of information
such as travel guides, maps, on-line institutional sites and travel blogs are con-
sulted in order to devise the right blend of Points of Interest (PoIs) that best
covers the subjectively interesting attractions and can be visited within the lim-
ited time planned for the travel. However, the user still need to guess how much
time is needed to visit each single attraction, and to devise a smart strategy to
schedule them moving from one attraction to the next one. Furthermore, tourist
guides, and even blogs, reflect the point of view of their authors, and they may
result to be not authoritative sources of information when the tourist preferences
diverge from the most popular flow.

We show how, relying on our framework, we can build a personalized plan of
visit by exploiting the wisdom-of-the-crowds by past tourists. First of all we have
to select and/or create the Knowledge bases (see Fig. 1) that can be used both
for the Semantic Enrichment and during the ETL phase. In order to suggest



interesting itineraries, we have to identify the set of PoIs in the geographical
region that tourists would like to visit. Given the bounding box BBcity con-
taining the city of interest, we download all the geo-referenced Wikipedia pages
falling within this region. We assume each geo-referenced Wikipedia named en-
tity, whose geographical coordinates falls into BBcity, to be a fine-grained Point
of Interest. For each PoI, we retrieve its descriptive label, its geographic coordi-
nates as reported in the Wikipedia page, and the set of categories which the PoI
belongs to. Categories are reported at the bottom of the Wikipedia page, and
are used to link articles under a common topic. They form a hierarchy, although
sub-categories may be a member of more than one category. By considering the
set C of categories associated with all the PoIs, we generate the normalized
relevance vector of each PoI.

We then perform a density-based clustering to group in a single PoI sightsee-
ing entities which are very close one to each other3. Clustering very close PoIs
is important since a tourist in a given place can enjoy all the attractions in the
surroundings even if she does not take photos to all of them. Moreover, it aims
at reducing the sparsity that might affect trajectory data. Finally, we obtain the
relevance vector for the clustered PoIs by considering the occurrences of each
category in the members of the clusters and by normalizing the resulting vector.
The final result is a knowledge base consisting of a set of PoIs P = {p1, . . . , pN}
and each POI is associated with the relevance vector vp ∈ [0, 1]|C|.

Now we need a method for collecting users U and the long-term itineraries
crossing the discovered PoIs. We query Flickr to retrieve the metadata (user
id, timestamp, tags, geographic coordinates, etc.) of the photos taken in the
given area BBcity. The assumption we are making is that photo albums made
by Flickr users implicitly represent sightseeing itineraries within the city. To
strengthen the accuracy of our method, we retrieve only the photos having the
highest geo-referenced accuracy given by Flickr4. This process thus collects a
large set of geo-tagged photo albums taken by different users within BBcity. We
preliminary discard photo albums containing only one photo and the resulting
set represents the set of Raw Trajectories in Fig. 1.

Then, we apply a Semantic Enrichment step. We spatially match the photos
in the raw trajectories against the set of PoIs previously collected. We associate
a photo with a PoI when it has been taken within a circular buffer of a given
radius having the PoI as its center. Note that in order to deal with clustered
PoIs, we consider the distance of the photo from all constituent members: in the
case the photo falls within the circular region of at least one of the members, it
is assigned to the clustered PoI. Moreover, since several photos by the same user
are usually taken close to the same PoI, we consider the timestamps associated
with the first and last of these photos as the starting and ending time of the user
visit to the PoI. At the end of this step we have a set of semantic trajectories

3 E.g., the beautiful marble statues in the Loggia dei Lanzi in Florence are only a few
meters far one from each other but have a distinct dedicated page in Wikipedia.

4 http://www.flickr.com/services/api/flickr.photos.search.html



consisting of sequences of PoIs belonging to P and each PoI is annotated also
with the time the user is assumed to enter and to exit from such a PoI.

It is worth noting that in this case semantic trajectories are sequences of
stops since the selected dataset does not provide any information about the
movements of the user from one stop to the following. For the purpose of our
application, in the ETL phase the moves are computed as the shortest path
between two consecutive stops by using Googlemaps. Moreover, the set of PoIs
is further annotated with the visiting time and the popularity index. The visiting
time for a PoI p is the time spent by users in p and it is computed as the average
of the durations of the visits to p. The popularity of each PoI is computed as
the number of distinct users that take at least one photo in its circular region.
The set of PoIs is used to build the spatial dimension of the Semantic TDW.

Finally, it is possible to associate a preference vector with each user by sum-
ming up and normalizing the relevance vectors of all the PoIs occurring in the
semantic trajectories of such a user.

The general Semantic TDW model of Fig. 5 when instantiated to this use case
includes only the dimensions Space, Time and Trajectory, since the raw data do
not provide any specific information on means of transportation, activities and
patterns. It is important to highlight that this data warehouse can support anal-
yses at different levels of abstraction: from very detailed data involving samples
to semantic trajectories modeled as sequences of stops and moves.

The Trip Planning Recommendation [5–7] is an example of analysis that can
be performed on top of the Semantic TDW. The aim is to generate visiting plans
made up of actual touristic itineraries that are the most tailored to the specific
preferences and the temporal constraints of the tourist. The Trip Planning Rec-
ommendation is defined as a set cover problem, formulated as an instance of the
Generalised Maximum Coverage (GMC) problem [8]. We model each visiting
pattern by means of the PoIs and the associated Wikipedia categories, and the
GMC profit function by considering PoIs popularity and the actual user prefer-
ences over the same Wikipedia categories. The cost function is instead built by
considering the average visiting time for the PoIs in the patterns plus the time
needed to move from one PoI to the next one.

Given a tourist, the Trip Planning Recommendation problem can be thus
solved by looking at the set of semantic trajectories fitting the available time
budget and covering the PoIs, that maximises the user interests. Determining
an exact solution for the Trip Planning Recommendation problem is NP-hard.
We solve it by employing the efficient greedy approximation algorithm proposed
in [8]. Trajectories are then scheduled and provided to the user as an agenda
of activities to be performed in the city. An example of the recommendation
produced for the city of Pisa is shown in Fig. 6.

6 Conclusion

This chapter surveyed some research results obtained by the authors in the field
of trajectory data analysis. Our achievements are discussed by referring to a



Fig. 6. An example of trip plan recommendation [5, 7, 6].

general framework that encompasses many steps, from semantic enrichment of
trajectories, in turn reconstructed from sequences of samples, to Data Ware-
housing.

The central part of this chapter refers to a general conceptual model for
TDW presented in [9], with associated spatio-temporal dimensions, where the
spatial domain can be structured according to the application requirements and
it is no longer restricted to consist of simple regular grids as in previous works.
Moreover, the TDW is provided with a set of spatial and temporal visualisation
techniques, supporting OLAP analysis of movement data, which permits a user
to view geo-referenced data over a map and run insightful analyses on them.

An extension of the TDW model for semantically enriched trajectories is
also discussed, by presenting the Mob-Warehouse model [18]. In this case, the
most notable contribution is the semantic conceptual TDW model based on
the so called 5W1H (Who, Where, When, What, Why, How) framework. Each
narrative question of the 5W1H model is mapped to a specific trajectory feature.
In this way, we describe an object (Who) moving by a transportation means
and/or having a certain behavior (How), performing an activity (What), for a
certain reason (Why), at a given time (When) and place (Where).

We finally illustrated a trip planning recommender in the context of a tourism
scenario [5–7]. We analyzed its various steps to eventually recommend a trip
plan to a user, where her profile and time budget is known, on the basis of a
recommendation model extracted from past trajectories of tourists.
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6. I. Ramalho Brilhante, J. A. F. de Macêdo, F. M. Nardini, R. Perego, and C. Renso.
Where Shall We Go Today? Planning Touristic Tours with TripBuilder. In Qi He,
Arun Iyengar, Wolfgang Nejdl, Jian Pei, and Rajeev Rastogi, editors, Proc. of
CIKM, pages 757–762. ACM, 2013.
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