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No constraint on long-term tropical land
carbon-climate feedback uncertainties
from interannual variability
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Unravelingdrivers of the interannual variability of tropical landcarboncycle is critical for understanding
land carbon-climate feedbacks. Here we utilize two generations of factorial model experiments to
show that interannual variability of tropical land carbon uptake under both present and future climate is
consistently dominated by terrestrial water availability variations in Earth system models. The
magnitude of this interannual sensitivity of tropical land carbon uptake to water availability variations
under future climate showsa large spreadacross the latest 16models (2.3 ± 1.5 PgC/yr/TtH2O),which
is constrained to 1.3 ± 0.8 PgC/yr/Tt H2O using observations and the emergent constraint
methodology. However, the long-term tropical land carbon-climate feedback uncertainties in the
latest models can no longer be directly constrained by interannual variability compared with previous
models, given that additional important processes are not well reflected in interannual variability but
could determine long-term land carbon storage. Our results highlight the limited implication of
interannual variability for long-term tropical land carbon-climate feedbacks and help isolate remaining
uncertainties with respect to water limitations on tropical land carbon sink in Earth system models.

Climate change and its variability can affect the carbon cycle, which in turn
can feedback to climate through changing carbon cycle and then radiative
forcing (carbon-climate feedbacks)1. The interannual variability (IAV) of
the land carbon cycle is mainly driven by climate variations, so under-
standing underpinning mechanisms is considered useful for quantifying
carbon-climate feedbacks2. The latest sixth Intergovernmental Panel on
ClimateChange assessment report (IPCCAR6) states that themagnitude of
carbon-climate feedbacks becomes larger but alsomore uncertain in higher
CO2 emissions scenarios (very high confidence), hindering the full assess-
ment of climate mitigation strategies3. In particular, tropical land is pro-
jected to release large amounts of carbon into the atmosphere as a result of
unprecedented warming and drought, standing out as a hotspot of positive
carbon-climate feedback globally. Although Earth system models (ESMs)
generally agree on the sign of tropical land carbon-climate feedback, the
broad range of its magnitude contributes to the reported uncertainties of
climate change projections3,4.

Tropical mean temperature has been proposed as a primary driver for
the IAV of tropical land carbon sink over past decades5–7. Based on a sig-
nificant empirical multi-model relationship between the sensitivity of the
tropical land carbon sink (proxied by atmospheric CO2 growth rate) to
tropical temperature interannual variationsduring1960–2010 and the long-
term sensitivity of tropical land carbon storage to climate warming, the
resulting emerging constraint (EC) lowers the mean and spread of tropical
land carbon-climate feedbacks across the previous ensemble of C4MIP
models by about 23% and 56%, respectively8.

However, recent research has raised questions about the mechanistic
interpretation of the empirical sensitivity of CO2 growth rate (CGR) to
tropical mean temperature on the interannual scale. This is because obser-
vations show that extreme drought events can strongly weaken the tropical
land sink9,10 andCGR is also significantly sensitive to terrestrial water storage
(TWS) anomalies on the interannual scale during 2002–201711. Using fac-
torial experiments to isolate soil moisture impacts on CGR or land carbon
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uptake in fourCMIP5ESMs,Humphrey et al.12 showed that, despite tropical
mean temperature IAV is kept unchanged, suppressing soil moisture IAV
can reduce by about 90% of land carbon uptake variability during
1960–2005. Liu et al.13 further demonstrated that droughts have an
increasing impact on tropical land carbon uptake over the past six decades.
Given the identified large influence of water limitations on tropical land
carbon cycle14–16, the research objectives of this study are twofold: i) to what
extent is tropical land carbon sink IAV related to terrestrial water in state-of-
the-art ESMs? ii) can interannual variability still be able to constrain long-
term tropical carbon-climate feedback uncertainties in state-of-the-
art ESMs?

Results
Present-to-future tropical land NBP IAV dominated by water
variations in models
To investigate the impact of terrestrial water variability on land carbon cycle
IAV, we utilize the latest Global Land-Atmosphere Climate Experiment -
Coupled Model Intercomparison Project phase 6 (GLACE-CMIP6
experiment) and extend the investigated period of present climate in a
previous GLACE-CMIP5 study12 to the future climate, i.e., until the end of
this century (Methods). Model experiment results show that, without soil
moisture IAV, present-to-future yearly tropical averaged net biome pro-
duction (NBP) variances in CMIP5 (1970–2100) and CMIP6 models
(1985–2099) are reduced by about 92 ± 8% and 84 ± 12%, respectively
(Fig. 1a, b). The spatial patterns of NBP variance reductions confirm that
tropical lands are the main region impacted by the removal of soil moisture
IAV (Fig. 1c, d). We note that removing soil moisture IAV will not only
directly remove soilmoisture limitations on the carbon cycle (e.g., less water
supply for photosynthesis) but also indirectly reduce the impacts of some
atmospheric extremes on the carbon cycle due to dampened land-
atmospheric feedbacks17,18. When decomposing NBP into the carbon
uptake (GPP, gross primary production) and carbon release (RED,
respiration and other disturbance carbon fluxes), the reduction of NBP
variance caused by soilmoisture IAV removal is largely contributed byGPP
(SupplementaryTable 1), in alignmentwith previous studies19. These results
show that CMIP6models confirm earlier results obtained fromCMIP5 and
further suggest that water-driven ecosystem processes dominating tropical

NBP IAV under present climate are evident under a climate with very high
levels of global warming in models (about 4 °C at the end of the 21st
century). Therefore, the IAV of tropical NBP can provide valuable infor-
mation on the sensitivity ofNBP towater variations on the interannual scale
(γIAV,W) under future climate in models.

Interannual sensitivity of tropical land carbon uptake to water
variations in models
Given many tropical regions with high carbon density, such as Amazonia,
Southern Africa, and Australia20, are projected to experience substantial
drying and more droughts, differences in γIAV,W among the latest CMIP6
ESMs are anticipated to contribute to uncertainties in future land carbon
sink efficiency. To investigate the spread of the interannual sensitivity of
tropical NBP to water variations (γIAV,W) under present climate and future
climate across a large ensemble of latest ESMs, we, therefore, utilize “his-
torical” and “1pctCO2-rad” experiments for which 16 CMIP6 ESMs have
relevant outputs. “1pctCO2-rad” experiments isolate the elevated CO2

effects on carbon cycle and allow to investigate long-term carbon-climate
feedbacks alone. For the present climate, we utilize 20yrs of recent data
(1995–2014) from the “historical” experiment and observations. For future
climate, we utilize the period of 35 to 140 years after the start of the
“1pctCO2-rad” simulation to represent the climate after the year 2014.
γIAV,W is approximated as the univariate linear regression slope between
tropical NBP IAV and tropical water IAV (Methods).We acknowledge that
some parts of NBP are driven by other climatic factors; however, we use this
univariate regression to avoid underestimation of γIAV,W, as the indirect
effects of water variations on NBP IAV by land-atmospheric feedbacks will
be attributed to other climatic drivers when using a multiple linear
regression12. Since year-to-year variation of tropical land carbon uptake is a
relatively “fast” flux process, mainly including photosynthesis and respira-
tion, we expect the sensitivity of tropical NBP to water variations on the
interannual scale under future climate could be driven by similar processes,
and thus be related to variation under present climate inmodels. Indeed, we
find that there is a significant emergent relationship between γIAV,W under
future climate (y variable) and γIAV,W under present climate (x variable)
across 16 CMIP6 models (R2 = 0.76) (Fig. 2). This significant emergent
relationship offers an opportunity to constrain γIAV,W under a future

Fig. 1 | Present-to-futureNBP IAV inmodel experiments.Detrended year-to-year
variations in tropical NBP from present to future in experiments with and without
soil moisture (SM) anomalies, obtained from (a) GLACE-CMIP5 and (b) GLACE-

CMIP6 (LFMIP). Spatial distributions of the reduction of tropical NBP standard
deviation caused by suppressing SM anomalies in (c) GLACE-CMIP5 and (d)
GLACE-CMIP6 (LFMIP).
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warmer climate, if combined with observations. Combining observed CO2

growth rate (the proxy for tropical land carbon sink) and TWS during
1995–2014, the resulting emergent constraint (EC) shows that, compared
with the unconstrained ensemble of CMIP6 models (2.3 ± 1.5 PgC/yr/Tt
H2O), the mean and spread of future γIAV,W are reduced by about 41% and
44%, respectively (1.3 ± 0.8 PgC/yr/TtH2O). In addition,weuse the data for
the period of 1960–2014 to derive x variable and find that the strong linear
relationship between x and y remains robust. However, the constraint on y
variable could be less robust in this case because most of data used to
estimate x variable are not directly observed (Supplementary Fig. 1).We also
use the sum of modelled global land and ocean carbon fluxes to match
observedCO2 growth ratemore accurately, we find that it wouldworsen the
strength of the emergent relationships to some degree (R2 = 0.36) and thus
the constraint on future γIAV,W is less strict (1.8 ± 1.3 PgC/yr/Tt H2O)
(Supplementary Fig. 2). This could be expected because the physical link
between the y and x variables is most consistent when using modelled
tropical NBP. Overall, our results suggest that simulated variability in the
tropical land sink inunconstrainedESMsappears tobe too sensitive towater
variations on average on the interannual scale.

Relationships between interannual variability and long-term
sensitivity in models
Short-term (interannual scale in this study) system variability in the land
carbon cycle has been proposed as a means to constrain the long-term
system sensitivity in the context of climate-carbon cycle feedbacks21,22. We
then investigate can interannual variability still be able to constrain long-
term tropical carbon-climate feedbacks (γLT) in CMIP6 models? Following
the previous approach8,23,24, and using simulations of 16 models from the
“1pctCO2”, “1pctCO2-bgc” and “historical” experiments in CMIP6 and
observations during 1960–2014 (Methods), we first test whether a pre-
viously documentedEConγLT relying on IAVofCGRand temperature still
holds in CMIP6. We find that the strength of the emergent relationship
between γLT and γIAV,T (R

2 = 0.40) ismuchweaker thanpreviously reported
(e.g., R2 = 0.96)8, and that the resulting EC does not substantially affect the
mean and spread of γLT relative to the unconstrained ensemble across
these 16 models (− 29.1 ± 24.6 PgC/K changed to − 32.3 ± 22.3 PgC/K)
(Fig. 3a, b). In addition, if we alternatively use the sum of modelled global
land and ocean carbon fluxes, rather than modelled tropical land sink to
derive x variable (allowing more direct comparison with the atmospheric

CO2 growth rate), the EC still does not hold (Supplementary Fig. 3). Then,
we test whethermodelled present γIAV,W could be used to directly constrain
γLT.We find that the correlation here is very weak (R2 = 0.15) and using the
present-day γIAV,W as a tentative constraint on γLT yields unsatisfactory
results (Fig. 3c, d). Therefore, we find that both γIAV,T and γIAV,W alone are
not able to constrain the large spread of γLT across the latest 16 CMIP6
models. These results suggest that uncertainties in longer-term tropical
carbon-climate feedbacks across a large ensemble of CMIP6models cannot
be directly constrained from interannual variability of land carbon cycle and
climate.

Discussion and conclusion
This study utilizes the latest GLACE-CMIP6 and previous GLACE-CMIP5
experiments to demonstrate that present-to-future tropical NBP IAV is
consistently dominated by soil moisture variations in ESMs. This indicates
that tropical land carbon uptake IAV mainly reflects water availability
impacts on tropical land carbon inmodels.However,models do not capture
the increasing water-carbon coupling during the last six decades13. The
broad spread of γIAV,W also highlights large uncertainties on themagnitude
of sensitivity of land carbon fluxes to drought in latest CMIP6 ESMs. This
could be largely caused by discrepancies in their representations of water
stress on vegetation25,26. A common approach is to use an empirical
reduction factor (β) ranging from 0 to 1 to regulate plant photosynthesis
under drought conditions; however, models disagree on specific functional
relationships between β and soil moisture content and whether β should
regulate some critical parameters, e.g., the maximum carboxylation rate of
Rubisco (Vcmax)

27,28. Recently, some models begun to employ plant
hydraulics instead because it represents some key physiological processes;
however, there could be additional uncertainties due to more unvalidated
parameters. For instance, CESM2 (CLM5) directly simulates plant
hydraulics and predicts the β factor as a function of leaf water potential29.
This allows greater physiological realism (by virtue of simulating more
variability in the depth of water uptake from soils) but degrades perfor-
mance on interannual variability of land carbon cycle30. In addition, drought
could indirectly impact land carbon fluxes by triggering temperature
extremes and high vapor pressure deficit (VPD) by land-atmosphere
feedbacks12,31, suggesting that uncertainties in drought sensitivity of land
carbon fluxes across models may also originate from their differences in
plant responses to atmospheric conditions28.

Fig. 2 | Relationship between the interannual sensitivity of tropical land carbon
to water variations under present climate and future warmer climate in CMIP6.
a Interannual sensitivity of tropical land carbon uptake to water variations (γIAV,W)
under a future warmer climate (y-axis) versus present climate (x-axis). Each symbol
represents a single ESM simulation, the grey shade represents the emergent rela-
tionship between the y variable and the x variable, the blue shade represents the

observational estimate of the x variable, and the green shade represents the resulting
emergent constraint on the y variable. The thicknesses represent ± one standard
error. The solid black line indicates the 1:1 line. b Probability distributions of
unconstrained and constrained interannual sensitivity of tropical land carbon
uptake to water variations under a future warmer climate.
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Furthermore, the interannual sensitivity of tropical land carbon to
water variations (γIAV,W) under present and future climate show a sig-
nificant emergent relationship across 16 latest CMIP6 models. This indi-
cates that models’ present biases in simulating sensitivity of tropical land
uptake to water persists into to the future. Our proposed alternative con-
straint on future γIAV,W falls into a category called ‘bias persistence’ in the
general EC framework proposed by Sanderson, et al.32, where themeasured
(x variable) and unknownquantities (y variable) are of the same nature, and
the EC results from the persistence of each model’s bias in response to a
forcing from the present into the future. This suggests that better calibration
of representations of IAV in contemporary carbon-water processes (e.g.,
using GRACE observations) in models could directly benefit future pro-
jections. At the tropical scale, combinedwith the observational constraint of
CGR and TWS, γIAV,W under future climate is estimated to have a much
smaller mean and spread compared to the unconstrained model ensemble.
However, this result does not provide a process-based or bottom-up solu-
tion for model improvements. It is recommended to coordinate compar-
isons betweenmodel simulations and accurate observations within the soil-
plant-atmosphere continuum to evaluate and improve model representa-
tions of climate-carbon coupling. For instance, new measurements of air
columns profiles by aircraft are helping to measure the response of local

carbon fluxes to drought and fire at finer temporal and spatial scales,
including the lagged effects33–37. Better representation offires, often triggered
by droughts, and their impacts on carbon cycle are also essential to improve
net land carbon uptake modelling38–40. This is anticipated to reduce uncer-
tainties in climate change projections given the projected substantial drying
and increasing frequency of droughts in tropical lands.

The IAV of tropical land carbon cycle was used to directly constrain
long-term tropical land carbon-climate feedbacks (γLT) in previous genera-
tions of ESMs8,23 and 7 CMIP6 ESMs24. However, here we find that both
γIAV,W and the previously established observational constraint (γIAV,T) donot
place an efficient EC on γLT across 16 CMIP6 ESMs. This failure of utilizing
IAV to constrain long-term tropical land carbon-climate feedback is not
unexpected. As we have shown, tropical land carbon uptake IAV is mainly
driven by soil moisture variations, while climate change at longer timescales
also includes overall warming. Warming has direct influences on leaf level
photosynthetic capacity and autotrophic/heterotrophic respiration, repre-
sentationsofwhich (inparticular,howtheyacclimateas temperatures change)
vary substantially betweenmodels28,41,42. Prediction of long-term carbon cycle
dynamics is also affected by a host of processes orthogonal to those that
control IAV, such as changes in ecosystem nutrient status43, vegetation
structure and demographic changes44–46 and rising tropical tree mortality47,48.

Fig. 3 | Relationship between the long-term tropical land carbon-climate feed-
backs and the interannual sensitivity of tropical land carbon uptake to climate
in CMIP6. a Long-term sensitivity of tropical land carbon storage to climate change
(y variable, γLT) versus interannual sensitivity of tropical land carbon uptake to
temperature variations (x variable, γIAV,T). Each symbol represents a single ESM
simulation, the grey shade represents the emergent relationship between the y

variable and the x variable, the blue shade represents the observational estimate of
the x variable, and the green shade represents the resulting emergent constraint on
the y-axis variable. The thicknesses represent ± one standard error. b Probability
distributions of unconstrained and constrained γLT. (c, d) Same as a and b, but
replacing γIAV,T with γIAV,W derived from the period of 1960–2014.
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Our results also highlight the importance of recommended out-of-
sample testing for validating previously diagnosedEC49. If the EC still works
in a new and larger ensemble of ESMs, this is useful evidence of the
robustness of EC and indicates the probability the EC emerged by chance is
very low; otherwise, this strongly suggests the EC cannot be confirmed. The
original constraint relied on the so-called ‘frequency substitution’
approach8,32, whereby the future response to a given forcing (all aspects of
long-termclimate change) is constrained using the response of the system to
a different forcing (only interannual climate variations) and using the cor-
relation in the model ensembles as the primary line of evidence for the
constraint. Sanderson, et al.32 also argued that this type of constraint is
subject to the problem if models share structural assumptions with few free
degrees of freedom, e.g., previousCMIP5models share simple temperature-
scaling assumptions for soil respiration50. Another type of ‘bias persistence’
ECusedon futureγIAV,Ware fundamentally less proneunderlying structural
assumptions of the ensemble. In addition to the γLT here, Schlund, et al.

51

found multiple ECs on equilibrium climate sensitivity diagnosed or con-
firmed in CMIP5 do not hold on in CMIP6. They also proposed a possible
explanation that multiple processes dominate the targeted y variable in the
more complex CMIP6 models, while the single process (x variable) ori-
ginally found in CMIP5 or in a smaller ensemble of models is not sufficient
in CMIP6. This also supports our previous interpretation that uncertainties
of γLT in a large ensemble of CMIP6 ESMs are determined by multiple
processes, someofwhichdonot come intoplay at the interannual time scale.

In summary, this studyunravels the climatic drivers of the tropical land
carbon cycle IAV and clarifies its limited implications for the long-term
tropical land carbon-climate feedback in ESMs. Our results demonstrate
that terrestrial water variations dominate interannual variability of tropical
land carbon cycle under both present climate and a future much warmer
climate in ESMs. The large spread on the magnitude of interannual sensi-
tivity of tropical land carbon fluxes to terrestrial water variations under
future climate in latest 16 CMIP6 ESMs could be constrained to a best
estimate of 1.3 ± 0.8 PgC/yr/Tt H2O. The IAV of tropical land carbon cycle
can no longer directly constrain future tropical land carbon-climate feed-
back uncertainties in latest ESMs. This is largely because there are additional
complex processes that are not well represented in IAV but can determine
long-term tropical carbon storage. Calibrating model process representa-
tions to a wider range of observed features of the terrestrial biosphere is
recommended to systematically improvemodeled climate-carbon coupling
and constrain long-term tropical carbon-climate feedbacks, thereby redu-
cing uncertainty in climate change projections.

Methods
Model experiments
GLACE-CMIP5 and GLACE-CMIP6 (LFMIP). GLACE-CMIP5 stands
for Global Land-Atmosphere Climate Experiment - Coupled Model
Intercomparison Project phase 552. We name here “GLACE-CMIP6” the
Land Feedback MIP (LFMIP) of the CMIP6-based Land Surface, Snow
and Soil Moisture Multimodel Intercomparison Project53. These two
generations of experiments share a similar protocol to investigate land-
atmospheric feedbacks under present and future climate. In GLACE-
CMIP5, the control experiment (CTL) is the combination of CMIP5
“historical” and “RCP 8.5” simulations. Experiment A (ExpA) imposes a
historical seasonal cycle of soil moisture, prescribed from 1971–2000
climatology from the CMIP5 “historical” simulations. ExpA uses the
same prescribed SSTs, sea ice, land use, and atmospheric CO2 con-
centrations from each model’s CTL. In GLACE-CMIP6, CTL is the
combination ofCMIP6 “historical” and “SSP585” simulations. ExpA (i.e.,
LFMIP-pdLC) controls the seasonal cycle of soil moisture prescribed as
1980–2014 climatology from CMIP6 “historical” simulations. ExpA
comprises the prescribed forcing of sea surface temperature and sea ice
derived from the CTL. Therefore, CTL and ExpA only differ in soil
moisture interannual variability (IAV), and their comparisons, therefore,
allow us to investigate impacts of soil moisture IAV on global carbon
cycle. For GLACE-CMIP5, relevant outputs are available from 4models,

including: ECHAM6, GFDL, IPSL, CCSM4. For GLACE-CMIP6, rele-
vant outputs are available from 4 models, including: CESM2, IPSL-
CM6A-LR, MPI-ESM1-2-LR, CMCC-ESM2.

1pctCO2, 1pctCO2-rad, 1pctCO2-bgc. “1pctCO2”means atmospheric
CO2 concentration increases at a rate of 1%per year from its preindustrial
level (~ 285 ppm) until it quadruples over a 140-yr period, which is the
combination of “1pctCO2-rad” and “1pctCO2-bgc”. “1pctCO2-rad”
means increasing atmospheric CO2 affects the radiative transfer pro-
cesses in the atmosphere and hence climate but not the biogeochemical
processes directly over land and ocean, for which the preindustrial value
of atmospheric CO2 concentration is prescribed. As a result, the
dynamics of terrestrial carbon fluxes are directly driven by climate
change. “1pctCO2-bgc” means increasing atmospheric CO2 directly
affects biogeochemical processes over land and ocean, while the radiative
transfer processes in the atmosphere is forced by the preindustrial value
of atmospheric CO2 concentration. As a result, the dynamics of terrestrial
carbonfluxes are directly driven by increasingCO2, despite there could be
some climatic changes caused by vegetation changes or plant physiolo-
gical responses to increasing CO2

4. Therefore, these experiments can be
utilized to investigate carbon-concentration and carbon-climate feed-
backs, separately4.

historical. “historical” experiment is driven by all historical forcings,
such as anthropogenic greenhouse gas emission, land use change, etc.
Therefore, it can be used to analyze historical interannual carbon-climate
relationships in models.

In this study, we analyze the monthly tropical land carbon uptake,
global land carbon uptake, global ocean carbon uptake, total soil moisture,
snow, air temperature outputs from these simulations.

Observations
CO2 growth rate. Interannual variations of CO2 growth rate (CGR)
are shown to be dominated by tropical land sink19. We use annual
global atmospheric CO2 growth rate from the Greenhouse Gas Marine
Boundary Layer Reference of the National Oceanic and Atmospheric
Administration (NOAA/ESRL).

Land climate. For observational terrestrial water availability records, we
use Gravity Recovery and Climate Experiment (GRACE) satellite
observations of terrestrial water storage (TWS) anomaly, which provides
monthly data from 2002 to now with a spatial resolution of 3° × 3°54. We
also use 7 years of GRACE reconstruction spanning from 1995 to 200155

to complement a 20-yr dataset to represent present climate. For near-
surface air temperature, we use the Climate Research Unit (CRU) TS4.01
temperature dataset, which provides monthly data from 1901 to 2018
with a spatial resolution of 0.5° × 0.5°.

Diagnostics of carbon-climate relationships
To derive the IAV of land carbon cycle and climate, we detrend data under
the present climate linearly due to short time periods (20-yr) but detrend
data under future climate ( > 100-yr) with a 11-yr running mean to avoid
non-linear trends, with the residuals defining the IAV. The interannual
sensitivity of carbon cycle to temperature variations (γIAV ;T ) is estimated as
the univariate linear regression slope between tropical NBP IAV and tro-
pical land temperature IAV. Similarly, the interannual sensitivity of the
carbon cycle to variations in water (γIAV;W) is approximated as the uni-
variate linear regression slope between tropical NBP IAV and tropical water
IAV. Whether ‘water’ refers to soil moisture or terrestrial water storage
depends on the specific case. For present climate, the years following the
eruption ofMountAgung (1962,1963), El Chichón (1982,1983) andMount
Pinatubo (1991,1992) are also excluded from analyses to avoid potential
radiation-driven perturbations of carbon flux anomalies56.

To derive the long-term tropical carbon-climate feedbacks in CMIP6
ESMs, we follow the linear feedback approach1 by utilizing experiments of
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1pctCO2 and 1pctCO2-bgc to calculate γLT , which is the long-term tropical
land carbon-climate feedback, indicating changes in tropical land carbon
storage per unit increase (1 °C) of tropical temperature.

γLT ¼ ΔCCOU
LT � ΔCBGC

LT

4TCOU
LT �4TBGC

LT

ð1Þ

Where4CCOU
LT is the change in tropical land carbon storage from year 35 to

year 140 in the 1pctCO2 experiment, where the simulation is fully coupled
(both biogeochemically and radiatively);4CBGC

LT is the change in tropical land
carbonstorage fromyear35 toyear140 in the1pctCO2-bgcexperiment,where
the simulation is biogeochemically coupled;4TCOU

LT and4TBGC
LT represent the

corresponding changes in average tropical landnear-surface temperature.The
tropical land here spans from 30°S to 30°N, following Cox, et al.8.

Emergent constraint
The emergent constraint (EC) is a method developed over the past two
decades to constrain future quantities of interest projected by ESMs49,57. The
basic concept is that elements of present and future climate (x and y,
respectively) can be significantly correlated across an ensemble of ESMs
because of their consistent underpinning physical relationships. The dif-
ference inx andyamongESMs couldbe large;however, if x canbemeasured
with observations, the spread of y inESMs can, under some circumstances32,
be “constrained” based on the emergent relationship between x and y.

In this study, x could be the interannual sensitivity of tropical land
carbon uptake to either water or temperature variations under present cli-
mate, y is either the interannual sensitivity of tropical land carbon uptake to
water under future climate, or long-term tropical land carbon-climate
feedbacks under future climate. We note that, since only TWS rather than
total soil moisture is available from observations, and not all ESMs have
output of TWS, to keep consistency betweenmodels and observations in the
water proxy, we followWu, et al.58 to sum up all water bodies on land from
model output (mainly total soil moisture and snow) as the proxy for TWS.
In this situation, there could be some potential small biases in the com-
parisons between observation and models and we suggest next generations
of ESMs, where possible, provide TWS as outputs. For the unconstrained
ensemble of models, we assume all models are equal and calculate prob-
ability density functions (PDFs) of the future climate element (y) using a
Gaussiandistribution.After applying our emergent constraints,we calculate
constrained PDFs of y following the methodology8,22. The PDFs of the
observational constraints under present climate (x) are defined as:

P xð Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffi

2πσ2x
p exp

ðx � �xÞ2
2σ2x

� �

ð2Þ

Where �x is the least-squares linear regression coefficient of tropical NBP or
CGR against tropical temperature or water and σx is the corresponding
standard error.

The “prediction error” of the emergent multi-model linear regression
(σ f ðxÞ) defines contours of equal probability density around themulti-model
linear regression, which indicate the probability density of y given x:

P yjx� � ¼ 1
ffiffiffiffiffiffiffiffiffiffi

2πσ2f
q exp

ðx � f ðxÞÞ2
2σ2f

( )

ð3Þ

Where σ f ¼ σ f ðxÞ.
Given the PDFs of P yjx� �

and P xf g, the observationally constrained
PDF for y is:

P y
� � ¼

Z þ1

�1
P yjx� �

P xð Þdx ð4Þ

Data availability
All the datasets used here are publicly available. Atmospheric CO2 obser-
vations are available at https://gml.noaa.gov/ccgg/; GRACE observations of
terrestrial water storage are available at https://grace.jpl.nasa.gov/data/get-
data/monthly-mass-grids-land/; GRACE-REC terrestrial water storage are
available at https://doi.org/10.6084/m9.figshare.7670849; Climate model
simulations are publicly available from Earth System Grid Federation:
https://esgf-node.llnl.gov/search/cmip6/.

Code availability
Codes are available through Zenodo at https://doi.org/10.5281/zenodo.
10435247.
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