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Abstract
Repetitive spatio-temporal propagation patterns are encountered infields as wide-ranging as
climatology, social communication and network science. In neuroscience, perfectly consistent
repetitions of the same global propagation pattern are called a synfire pattern. For any recording of
sequences of discrete events (in neuroscience terminology: sets of spike trains) the questions arise how
closely it resembles such a synfire pattern andwhich are the spike trains that lead/follow.Here we
address these questions and introduce an algorithmbuilt on twonew indicators, termed SPIKE-order
and spike train order, that define the synfire indicator value, which allows to sortmultiple spike trains
from leader to follower and to quantify the consistency of the temporal leader-follower relationships
for both the original and the optimized sorting.We demonstrate our new approach using artificially
generated datasets beforewe apply it to analyze the consistency of propagation patterns in two real
datasets fromneuroscience (giant depolarized potentials inmice slices) and climatology (ElNiño sea
surface temperature recordings). The new algorithm is distinguished by conceptual and practical
simplicity, low computational cost, as well asflexibility and universality.

1. Introduction

Recordings of spatio-temporal activity are ubiquitous inmany scientific disciplines. Among themost prominent
examples are large-scale electrophysiologicalmeasurements of neuronal firing patterns in experimental
neuroscience [1, 2] and sensor data acquisition in seismology [3], oceanography [4], meteorology [5], or
climatology [6]. Other examples include interaction protocols in social communication [7, 8] ormonitoring
single-node dynamics in network science [9].

In all of these fields recordings often exhibit well-defined patterns of spatio-temporal propagationwhere
some prominent featurefirst appears at a specific location and then spreads to other areas until potentially
becoming a global event. Such characteristic propagation patterns occur in phenomena such as avalanches [10],
tsunamis [11], chemical waves and diffusion processes [12], and epileptic seizures [13]. Further examples are the
epidemic transmission of diseases [14], and,more recently, the spreading ofmemes on social networks [15] or in
science [16].

Inmany cases spatio-temporal recordings can be represented as a two-dimensional plot where for each
recording site the occurrence of certain discrete events (often obtained from threshold crossings in continuous
data) are indicated by timemarkers. In neuroscience such a plot is known as a raster plot. A sequence of
stereotypical neuronal action potentials (spikes, [17]) is a spike train and a set of spike trains exhibiting perfectly
consistent repetitions of the same global propagation pattern is called a synfire pattern. In this paper we adapt this
terminology and use all of these expressions not only in the context of neuronal spikes but also for any other kind
of discrete events. However, note that our use of the term ‘synfire pattern’ differs slightly from the literature (see
e.g. [18]). Herewe define a synfire pattern as a sequence of global events inwhich all neurons fire in consistent
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order and the interval between successive events is at least twice as large as the propagation timewithin an event.
An example of a rasterplot with spike trains forming a perfect synfire pattern is shown infigure 1(a).

For any spike train set exhibiting propagation patterns the questions arise naturally whether these patterns
show any consistency, i.e., to what extent do the spike trains resemble a synfire pattern, are there spike trains that
consistently lead global events and are there other spike trains that invariably follow these leaders? Such
questions about leader-follower dynamics have been specifically investigated not only in neuroscience [19], but
also infields aswide-ranging as, e.g., climatology [20], social communication [21], and human-robot
interaction [22].

In this studywe introduce a framework consisting of two directionalmeasures (SPIKE-order and spike train
order) that allows to define a value termed synfire indicatorwhich quantifies the consistency of the leader-
follower relationships in a rigorous and automatedmanner. This synfire indicator attains itsmaximal value of 1
for a perfect synfire pattern inwhich all neurons fire repeatedly in a consistent order from leader to follower
(figure 1(a)).

The same framework also allows to sortmultiple spike trains from leader to follower, as illustrated in
figures 1(b) and (c). This ismeant purely in the sense of temporal sequence.Whereas figure 1(b) shows an
artificially created but rather realistic spike train set, infigure 1(c) the same spike trains have been sorted to
become as close as possible to a synfire pattern. Now the spike trains that tend tofire first are on topwhereas
spike trainswith predominantly trailing spikes are at the bottom.

We demonstrate the new approach using artificially generated datasets beforewe apply it to analyze the
consistency of propagation patterns in two real datasets from very differentfields of research, neuroscience and
climatology. The neurophysiological dataset consists of neuronal activity recorded frommice brain slices. These
recordings typically exhibit a sequence of global events termed giant depolarized potentials (GDPs) and one of
themain questions we investigate is whether it is possible to identify neurons that consistently lead these events
(potential hub neurons, see [23]). The climate dataset uses optimum interpolated sea surface temperature
(OISST) data provided by theNationalOceanic andAtmospheric Administration (NOAA) to follow the ElNiño
phenomenon in the central pacific region [24] over the range of 35 years, from1982 to 2016.We employ a
threshold criterion to track the ElNiño events and then quantify the consistency of the longitudinalmovement
of the propagation front.

The remainder of the article is organized as follows: in themethods (section 2)wefirst describe the
coincidence detection (section 2.1) and the symmetricmeasure SPIKE-synchronization (section 2.2).
Subsequently, we introduce the newdirectionality approach consisting of the twomeasures SPIKE-order and
spike train order (section 2.3) as well as the synfire indicator (section 2.4) beforewe discuss the use of SPIKE-
order surrogates to evaluate the statistical significance of the results in section 2.5. The results section 3 consists
of three subsections detailing applications of the new approach to artificially generated datasets (section 3.1),
neurophysiological data (section 3.2) and climate data from the ElNiño phenomenon (section 3.3). Conclusions

Figure 1.Motivation for SPIKE-order and spike train order. (a)Perfect synfire pattern. (b)Unsorted set of spike trains. (c)The same
spike trains as in B but now sorted from leader to follower.
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are drawn in section 4. Finally, both real datasets are described in the appendix, the electrophysiological
recordings in appendix A, and the ElNiño dataset in appendix B.

2.Measures

Analyzing leader-follower relationships in a spike train set requires a criterion that determines which spikes
should be compared against each other.What is needed is amatchmaker, amethodwhich pairs spikes in such a
way that each spike ismatchedwith atmost one spike in each of the other spike trains. Thismatchmaker already
exists. It is the adaptive coincidence detection first used as the fundamental ingredient for the bivariatemeasure
event synchronization [25, 26].

Event synchronization itself is symmetric and quantifies the overall level of synchrony from the number of
quasi-simultaneous appearances of spikes. It was proposed alongwith an asymmetricmeasure termed delay
asymmetrywhich evaluates the temporal order amongmatching spikes in the two spike trains.

However, unfortunately both event synchronization and delay asymmetry are defined for the bivariate case
of two spike trains only, rely on sampled time profiles, and have a very non-intuitive normalization. For the
symmetric variant we have already addressed these issues by proposing SPIKE-synchronization [27], a
renormalizedmultivariate extension of event synchronization.

The two newmeasures SPIKE-order and spike train order proposed here improve and extend the
asymmetricmeasure delay asymmetry in the sameway. In particular, instead of just quantifying bivariate
directionality they open up a completely new application, since they allow us to sort the spike trains according to
the typical relative order of their spikes and to quantify the consistency of this order using the synfire indicator.

All four approaches (bivariate/multivariate, symmetric/asymmetric) are time-resolved aswell as
parameter- and scale-free. Their calculation consists of two steps, adaptive coincidence detection followed by a
combination of normalization andwindowing. Thefirst step, adaptive coincidence detection, is the same for all
of thesemeasures.

2.1. Adaptive coincidence detection
Most coincidence detectors rely on a coincidencewindowoffixed size τ [28, 29]. However, since inmany cases it
is very difficult to judgewhether two spikes are coincident or notwithout taking the local context into account
(see figure 2(a) for an example), [25] proposed amoreflexible coincidence detection. This coincidence detection
is scale- and thus parameter-free since theminimum time lag t( )

ij
1,2 at which two spikes ( )ti

1 and ( )tj
2 of spike

trains ( )1 and ( )2 are no longer considered to be synchronous is adapted to the localfiring rates according to

t = - - - -+ - + -{ } ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )t t t t t t t tmin , , , 2. 1ij i i i i j j j j
1,2

1
1 1 1

1
1

1
2 2 2

1
2

For some applications itmight be appropriate to additionally introduce amaximum coincidencewindow
tmax as a parameter. This way additional knowledge about the data (such as typical propagation speed) can be
taken into account in order to guarantee that two coincident spikes are really part of the same propagation front.
Such amaximum coincidencewindowwill be used in the application to the ElNiño climate data in section 3.3.

2.2. SPIKE-synchronization
In normalization andwindowing SPIKE-synchronization [27] has evolved so substantially from event
synchronization that herewe refrain from going into any detail on the originalmeasure, but rather justmention
themain improvements. For a thorough introduction to event synchronization please refer to the original paper
[25], amore detailed comparison of the twomeasures can be found in [27].

Themain difference is that SPIKE-synchronization [27] results in a discrete, not a continuous, spike-timing
based profile. The coincidence criterion is quantified bymeans of a coincidence indicator

t
=

- <⎧⎨⎩
(∣ ∣) ( )( )

( ) ( ) ( )
C

t t1 if min

0 otherwise
2i

j i j ij1,2
1 2 1,2

which assigns to each spike either a one or a zero depending onwhether this spike is part of a coincidence or not.
Note that here, unlike for event synchronization, theminimum function and the ‘<’ guarantee that a spike can at
most be coincidentwith one spike (the nearest one) in the other spike train. In case a spike is right in themiddle
between two spikes from the other spike train there is no ambiguity since this spike is not coincident with either
one of them.

This unambiguity, illustrated infigure 2(b), is the essential property which allows the adaptive coincidence
detection to act as amatch-maker for the subsequent application of SPIKE-synchronization. Figure 2(c) shows
examples, onewith two coincident and onewith two non-coincident spikes.
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Amultivariate version of SPIKE-synchronization can be defined by generalizing the bivariate coincidence
detection of equation (2) to all pairs of spike trains (n,m)with = ¼n m N, 1, , andN denoting the number of
spike trains:

t
=

- <⎧⎨⎩
(∣ ∣) ( )( )

( ) ( ) ( )
C

t t1 if min

0 otherwise.
3i

n m j i
n

j
m

ij
n m

,
,

Here t( )
ij
n m, is defined equivalent to equation (1). Subsequently, for each spike of every spike train a normalized

coincidence counter

å=
- ¹

( )( ) ( )C
N

C
1

1
4i

n

m n
i
n m,

is obtained by averaging over all -N 1bivariate coincidence indicators involving the spike train n.
In order to obtain a singlemultivariate similarity profile we pool the spikes of all the spike trains aswell as

their coincidence counters:

={ } ⋃{ } ( )( )
( ( ))C C , 5k

n
i k
n k

wherewemap the spike train indices n and the spike indices i into a global spike index k denoted by themapping
i(k) and n(k).

Figure 2. (a)This example demonstrates the usefulness of an adaptive coincidence detection. Depending on context the same two
spikes (left) can appear as coincident (right, top) or as non-coincident (right, bottom). (b) Illustration of the adaptive coincidence
detection. For clarity spikes and their coincidence windows are shown alternatingly in bright and dark color. The first step assigns to
each spike ( )ti

1 of thefirst spike train a potential coincidence windowwhich does not overlapwith any other coincidencewindow:
t = - -+ -{ }( ) ( ) ( ) ( ) ( )t t t tmin , 2i i i i i

1
1

1 1 1
1

1 . Thus any spike from the second spike train can atmost be coincident with one spike from
the first spike train. Small vertical linesmark the times right in themiddle between two spikes, and a line is dashedwhen it does not
mark the edge of a coincidencewindow. (c) In the sameway a coincidence window t = - -+ -{ }( ) ( ) ( ) ( ) ( )t t t tmin , 2j j j j j

2
1

2 2 2
1

2 is

defined for spike ( )tj
2 from the second spike train. For two spikes to be coincident they both have to lie in each other’s coincidence

windowwhichmeans that their absolute time difference has to be smaller than t t t= { }( ) ( )min ,ij i j
1 2 (which is equivalent to the

shorter definition found in equation (1)). For the two spikes ( )ti
1 and ( )tj

2 on the left side this is the case, whereas the spikes on the right
side are not coincident.
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Note that in case there exist perfectly coincident spikes, k counts over all of these spikes. From this discrete
set of coincidence countersCk the SPIKE-synchronization profile ( )C tk is obtained via =( )C t Ck k. Finally,
SPIKE-synchronization is defined as the average value of this profile

å=
>

=

⎧
⎨⎪
⎩⎪

( ) ( )S M
C t M

1
if 0

1 otherwise

6C k

M
k1

with = å =
( )M Mn

N n
1 denoting the total number of spikes in the pooled spike train.

This waywe have used the same consistent framework for both the bivariate and themultivariate case. The
former is just a special case of the latter. The interpretation is very intuitive: SPIKE-synchronization quantifies
the overall fraction of coincidences. It reaches one if and only if each spike in every spike train has onematching
spike in all the other spike trains (or if there are no spikes at all), and it attains the value zero if and only if the
spike trains do not contain any coincidences. Examples for both of these extreme cases can be found in
figures 3(a) and (b) and one intermediate example (randomdistribution of spikes among spike trains) is shown
infigure 3(c). For a derivation of the expectation value for Poisson spike trains please refer to [30].

In themultivariate analysis proposed in this paper, SPIKE-synchronization can be used tofilter the input to
the algorithm. In order to focus on propagation patternswithin truly global events it is possible to set a threshold
valueCthr for the SPIKE-synchronization profile ( )C tk . This way only spikes with a coincidence value higher
than this parameterCthr are taken into account, all the other noisy background spikes are simply ignored. This
kind offilter will be used in the analysis of the neurophysiological datasets in section 3.2.

2.3. SPIKE-order and spike train order
SPIKE-synchronization assigns to each spike of a given spike train pair a bivariate coincidence indicator. These
coincidence indicators ( )Ci

n m, , which are either 0 or 1, are then averaged over spike train pairs and converted into
one overall profile ( )C tk normalized between 0 and 1. In exactly the samemanner SPIKE-order and spike train
order assign bivariate order indicators to spikes. Also these two order indicators, the asymmetric ( )Di

n m, and the

symmetric ( )Ei
n m, , which both can take the values−1, 0, or+1, are averaged over spike train pairs and converted

into two overall profiles ( )D tk and ( )E tk which are normalized between−1 and 1. The SPIKE-order profile

Figure 3. SPIKE-synchronization. Note that the profile ( )C tk is defined only at the times of the spikes but a better visualization is
achieved by connecting the individual dots. By construction the pooled spike train of all three examples is exactly the same and
consists of 10 evenly spaced bursts. The only difference is the distribution of the spikes among the individual spike trainswhich varies
frommaximum tominimumvia intermediate synchrony. SPIKE-synchronization correctly indicates these changes. (a)Maximum
reliability results in the value one over thewhole time interval. Each spike train contains one spike per firing event. (b) Synfire pattern
of bursts resulting inminimum reliability corresponding to the value zero for the whole time interval. (c)A randomdistribution of
spikes among spike trains yields intermediate values.
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( )D tk distinguishes leading and following spikes, whereas the spike train order profile ( )E tk provides
information about the order of spike trains, i.e. it allows to sort spike trains from leaders to followers.

First of all, similar to the transition from the symmetric event synchronization to delay asymmetry, the
symmetric coincidence indicator ( )Ci

n m, of SPIKE-synchronization (equation (3)) is replaced by the asymmetric
SPIKE-order indicator

= -¢· ( ) ( )( ) ( ) ( ) ( )D C t tsign , 7i
n m

i
n m

j
m

i
n, ,

where the index ¢j is defined from theminimum in equation (2) as ¢ = -(∣ ∣)( ) ( )j t targ minj i j
1 2 .

The corresponding value ¢
( )Dj
m n, is obtained in an antisymmetricmanner as

= - = -¢ ¢ ¢· ( ) ( )( ) ( ) ( ) ( ) ( )D C t t Dsign . 8j
m n

j
m n

i
n

j
m

i
n m, , ,

Therefore, this indicator assigns to each spike either a 1 or a−1 depending onwhether the respective spike is
leading or following a coincident spike from the other spike train. The value 0 is obtained for cases inwhich there
is no coincident spike in the other spike train ( =( )C 0i

n m, ), but also in cases inwhich the times of the two

coincident spikes are absolutely identical ( =¢
( ) ( )t tj
m

i
n ).

Themultivariate profile ( )D tk obtained analogously to equation (5) is normalized between 1 and−1 and the
extreme values are obtained if a spike is either leading (+1) or following (−1) coincident spikes in all other spike
trains. It can be 0 either if a spike is not part of any coincidences or if it leads exactly asmany spikes fromother
spike trains in coincidences as it follows. From the definition in equations (7) and (8) it follows immediately that
Ck is an upper bound for the absolute value ∣ ∣Dk .

While the SPIKE-order profile can be very useful for color-coding and visualizing local spike leaders and
followers (figure 4(a)), it is not useful as an overall indicator of spike train order (figure 4(b)). The profile is
invariant under exchange of spike trains, i.e. it looks the same for all events nomatter what the order of the firing
is (in our example only the last event looks slightly different since one spike ismissing).Moreover, summing
over all profile values, which is equivalent to summing over all coincidences, necessarily leads to an average value
of 0, since for every leading spike (+1) there has to be a following spike (−1).

Figure 4. SPIKE-order profile ( )D tk and spike train order profile ( )E tk for an artificially created example dataset. (a)The rasterplot
shows 6 spike trainswhich emit spikes in nine reliable events. For the first two events spikesfire in order, for the next three events the
order is randomwhereas for the last four events the order is inverted. In the last event there is one spikemissing. Spike thickness
decodes the SPIKE-synchronization value ( )C tk (here almost constant), spike color the SPIKE-order value ( )D tk . (b), (c)The SPIKE-
synchronization profile ( )C tk and itsmirror profile (dashed black lines) act as envelope for both the SPIKE-order profile ( )D tk ((b),
red) and the spike train order profile ( )E tk ((c), black). (b)The SPIKE-order profile can not distinguish events with different firing
order and by construction the average value is alwaysD=0. (c)On the other hand, in the spike train order profile events with
different firing order can clearly be distinguished. For thefirst two correctly ordered events the value 1 is obtained. The next three
events exhibit randomorder and correspondingly the profilefluctuates rather wildly. Finally, the last four inversely ordered yield the
value−1 except for the last event for which the absoluteminimumvalue can not be obtained since one spike ismissing. The average
value, the synfire indicator F, is not 0 but negative which reflects the dominance of the inversely ordered events.
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So in order to quantify any kind of leader-follower information between spike trainswe need a second kind
of order indicator. The spike train order indicator is similar to the SPIKE-order indicator defined in
equations (7) and (8) butwith two important differences. Both spikes are assigned the same value and this value
nowdepends on the order of the spike trains:

=
- <

- >

¢

¢

⎪

⎪

⎧
⎨
⎩

·
( )

( )
( )( ) ( )

( ) ( )

( ) ( )E C
t t n m

t t n m

sign if

sign if
9i

n m
i
n m j

m
i
n

i
n

j
m

, ,

and

=¢ ( )( ) ( )E E . 10j
m n

i
n m, ,

This symmetric indicator assigns to both spikes a+1 in case the two spikes are in the correct order, i.e. the
spike from the spike trainwith the lower spike train index is leading the coincidence, and a−1 in the opposite
case. Oncemore the value 0 is obtainedwhen there is no coincident spike in the other spike train orwhen the two
coincident spikes are absolutely identical.

Themultivariate profile ( )E tk , again obtained similarly to equation (5), is also normalized between 1 and−1
and the extreme values are obtained for a coincident event covering all spike trains with all spikes emitted in the
order from first (last) to last (first) spike train, respectively (see thefirst two and the last four events infigure 4). It
can be 0 either if a spike is not a part of any coincidences or if the order is such that correctly and incorrectly
ordered spike train pairs cancel each other. Again,Ck is an upper bound for the absolute value ofEk.

2.4. Synfire indicator
In contrast to the SPIKE-order profileDk, for the spike train order profileEk it doesmake sense to define an
average value, whichwe term the synfire indicator:

å=
=

( ) ( )F
M

E t
1

. 11
k

M

k
1

The interpretation is very intuitive. The synfire indicator F quantifies towhat degree the spike trains in their
current order resemble a perfect synfire pattern. It is normalized between 1 and−1 and attains the value 1 (−1) if
the spike trains in their current order form a perfect (inverse) synfire pattern. Thismeans that all spikes are
coincident with spikes in all other spike trains and that all orders from leading (following) to following (leading)
spike consistently reflect the order of the spike trains. The synfire indicator is 0 either if the spike trains do not
contain any coincidences at all or if among all spike trains there is a complete symmetry between leading and
following spikes.

The spike train order profile ( )E tk for our example is shown infigure 4(c). In this case the order of spikes
within an event clearlymatters. The synfire indicator F is slightly negative indicating that the current order of the
spike trains is actually closer to an inverse synfire pattern.

Given a set of spike trainswe nowwould like to sort the spike trains from leader to follower such that the set
comes as close as possible to a synfire pattern. To do sowe have tomaximize the overall number of correctly
ordered coincidences and this is equivalent tomaximizing the synfire indicator F. However, it would be very
difficult to achieve thismaximization bymeans of themultivariate profile ( )E tk . Clearly, it ismore efficient to
sort the spike trains based on a pairwise analysis of the spike trains. Themost intuitive way is to use the anti-
symmetric cumulative SPIKE-ordermatrix

å= ( )( ) ( )D D 12n m

i
i
n m, ,

which sums up orders of coincidences from the respective pair of spike trains only and quantifies howmuch
spike train n is leading spike trainm (figure 5).

Hence if >( )D 0n m, spike train n is leadingm, while <( )D 0n m, meansm is leading n. If the current spike
train order is consistent with the synfire property, we thus expect that >( )D 0n m, for <n m and <( )D 0n m, for
>n m. Therefore, we construct the overall SPIKE-order as

å=<
<

( )( )D D , 13
n m

n m,

i.e. the sumover the upper right tridiagonal part of thematrix ( )D n m, .
After normalizing by the overall number of possible coincidences, we arrive at a secondmore practical

definition of the synfire indicator:
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=
-

<

( )
( )F

D

N M

2

1
. 14

The value is identical to the one of equation (11), only the temporal and the spatial summation of coincidences
(i.e., over the profile and over spike train pairs) are performed in the opposite order.

Having such a quantification depending on the order of spike trains, we can introduce a newordering in
terms of the spike train index permutationj ( )n . The overall synfire indicator for this permutation is then
denoted as Fj. Accordingly, for the initial (unsorted) order of spike trainsju the synfire indicator is denoted
as = jF Fu u

.
The aimof the analysis is now tofind the optimal (sorted) orderjs as the one resulting in themaximal overall

synfire indicator = jF Fs s
:

j = =j
j

j{ } ( )F F F: max . 15s ss

This synfire indicator for the sorted spike trains quantifies how close spike trains can be sorted to resemble a
synfire pattern, i.e., to what extent coinciding spike pairs with correct order prevail over coinciding spike pairs
with incorrect order. Unlike the synfire indicator for the unsorted spike trains Fu, the optimized synfire indicator
Fs can only attain values between 0 and 1 (any order that yields a negative result could simply be reversed in order
to obtain the same positive value). For a perfect synfire patternwe obtain Fs= 1, while sufficiently long Poisson
spike trainswithout any synfire structure yield »F 0s .

The complexity of the problem tofind the optimal spike train order is similar to thewell-known traveling
salesman problem [31]. ForN spike trains there are !N permutationsj, so for large numbers of spike trains
finding the optimal spike train orderjs is a non-trivial problem and brute-forcemethods such as calculating the
Fj-value for all possible permutations are not feasible. Instead, one has tomake use ofmethods such as parallel
tempering [32] or simulated annealing [33] to search for the optimal order. Herewe choose simulated annealing,
a probabilistic techniquewhich approximates the global optimumof a given function in a large search space. In
our case this function is the synfire indicator Fj (whichwewould like tomaximize) and the search space is the
permutation space of all spike trains.We start with the Fu-value from the unsorted permutation and then visit
nearby permutations using the fundamentalmove of exchanging two neighboring spike trains within the
current permutation. The update of the synfire indicator when exchanging the spike trains k and +k 1 is simply
given byD = - +( )F D2 k k, 1 . Allmoves with positiveDF are acceptedwhile the likelihood of acceptingmoves
with negativeDF is decreased along theway according to a standard slow cooling scheme. The procedure is
repeated iteratively until the order of the spike trains no longer changes or until a predefined end temperature is
reached.

Infigure 6we show the complete SPIKE-order analysis including the results for the sorted spike trains. The
sorting of the spike trainsmaximizes the synfire indicator as reflected by both the normalized sumof the upper
right half of the pairwise cumulative SPIKE-ordermatrix (equation (14), figure 6(c)) and the average value of the
spike train order profile ( )E tk (equation (11),figure 6(d)). Finally, the sorted spike trains infigure 6(e) are now
ordered such that the first spike trains have predominantly high values (red) and the last spike trains
predominantly low values (blue) of ( )D tk .

The complete analysis returns results consisting of several levels of information. Time-resolved (local)
information is represented in the spike-coloring and in the profilesD andE. The pairwise information in the
SPIKE-ordermatrix reflects the leader-follower relationship between two spike trains at a time. The synfire
indicator F characterizes the closeness of the dataset as awhole to a synfire pattern, both for the unsorted (Fu)

Figure 5.Pairwise cumulative SPIKE-ordermatrixD before (left) and after (right) sorting for the example dataset fromfigure 4. The
upper triangularmatrix <( )D n m , marked in black, is used to calculate the synfire indicator F, for both the unsorted spike trains (Fu, left)
and the sorted spike trains (Fs, right). The thick black arrow in between the twomatrices indicates the sorting process.
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and for the sorted (Fs) spike trains. Finally, the sorted order of the spike trains is a very important result in itself
since it identifies the leading and the following spike trains.

2.5. Statistical significance
As a last step in the analysis we evaluate the statistical significance of the optimized synfire indicator Fs.What we
would like to estimate is the likelihood that for the given total number of coincidences the prevalence of correctly
ordered spike pairs (as quantified by the optimized synfire indicator) could have been obtained by chance. If all
coincident spike pairs would be independent, the probability distributionwould be strictly binomial andwe
could calculate this likelihood analytically. However, the pairwise spike orders in coincident events involving
multiple spike trains are not independent from each other, and so insteadwe estimate the likelihood numerically
using a set of carefully constructed spike order surrogates.

For each surrogate (figure 7(a))wemaintain the coincidence structure of the original spike trains by
preserving the SPIKE-synchronization values of every individual spike.However, we destroy the spike order
patterns by swapping the order of the two spikes in a sufficient number of randomly selected coincident spike
pairs. Note that the generation of surrogates takes place not on the level of spike times but on the level of order
values (the x-axis infigure 7(a) is labeled ‘time index’, not ‘time’). Spike trains with swapped spike timeswould
have different interspike intervals, and this would alter the results of the coincidence criterion in equation (1)
and change the value of SPIKE-synchronization. This in turnwouldmake the desired evaluation of pure spike
order effects difficult.

In the implementation, fromone spike order surrogate to the next the number of spike order swaps is set to
the number of coincident spikes in the spike train set, such that all possible spike order patterns can be reached.

Figure 6.Complete illustration of SPIKE-order using our example dataset fromfigure 4. (a)Unsorted spike trainswith the spikes
color-coded according to the value of the SPIKE-order ( )D tk . (b) Spike train order profile ( )E tk . The synfire indicator Fu for the
unsorted spike trains is slightly negative. (c)Pairwise SPIKE-ordermatrixD before and after sorting. The optimal ordermaximizes the
upper triangularmatrix. (d) Spike train order profile ( )E tk and its average values, the synfire indicator Fs for the sorted spike trains. (e)
Sorted spike trains.
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Only for thefirst surrogate, since it starts from the original spike trains, we swap twice asmany coincidences in
order to account for transients. After each swapwe take extra care that all other spike orders that are affected by
the swap are updated as well. For example, if a swap changes the order between the first and the third spike in an
ordered sequence of three spikes, we also swap both the order between the first and the second aswell as the
order between the second and the third spike.

For each spike train surrogate we repeat exactly the same optimization procedure in the spike train
permutation space that is done for the original dataset. The original synfire indicator is deemed significant if it is
higher than the synfire indicator obtained for all of the surrogate datasets (this case will bemarked by two
asterisks). Herewe use s=19 surrogates for a significance level of * = + =( )p s1 1 0.05. As a second
indicator we state the z-score, e.g., the deviation of the original value x from themeanμ of the surrogates in units
of their standard deviationσ:

m
s

=
- ( )z

x
. 16

Results of the significance analysis for our standard example are shown in the histogram infigure 7(b). In this
case the absolute value of the z-score is smaller than one and the p-value is larger than p* and the result is thus
judged as statistically non-significant.

In case the initial sorting of the spike trains is used to test a specific hypothesis there also exists a
straightforward procedure to test the statistical significance of the synfire indicator Fu for the unsorted spike
trains. In this case no optimization of the synfire indicator is required, rather the synfire indicator Fu for the
initial sorting is compared against synfire indicators obtained for randompermutations of the spike trains. This
kind of significance test will be used in section 3.2.

3. Results

In the followingwe apply our new algorithm to artificially generated datasets (section 3.1), neurophysiological
data (section 3.2) and,finally, climate data from the ElNiño phenomenon (section 3.3). For thefigures we use
the same full layout introduced infigure 6 towhichwe add the significance analysis offigure 7(b).

3.1. Application to artificially generated data
We start with examples covering the two extreme cases of a perfect synfire pattern and a completely random
spike train set. First, infigure 8we apply the algorithm to a perfect inverse synfire pattern forwhich the spike
trains are initially sorted from follower to leader. Therefore, the synfire indicator of the unsorted spike trains
yields itsminimumvalue of = -F 1u . Sorting just reverses the order of the spike trains and in consequence the
maximumvalue of Fs= 1 is obtained. Any shuffling of spike orders necessarily destroys the synfire pattern and
thus leads tomuch lower values of the synfire indicator. Accordingly, the surrogate test (figure 8(f)) shows that
the statistical significance of the original synfire indicator is very high.

The other extreme case is Poisson spike trains (figure 9) for which the arrival times of spikes are completely
randomandwithout any preferred order. For this realization the synfire indicator Fu for the unsorted spike

Figure 7. Statistical significance: surrogate analysis for the example dataset fromfigure 4. (a) Spike order patterns for original (black)
and one randomized surrogate (red). For clarity only thefirst four events are shown. For thefirst two events the synfire-order of the
original is destroyed in the surrogates whereas for the next two events both sequences are equally unordered. (b)Histogram for 19
surrogates. Thick lines denotemean and standard deviation. Since the value for the original dataset (black) is notmaximum, the
optimally sorted spike trains do not exhibit a statistically significant synfire pattern.
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trains happens to be slightly negative indicating that the spike trains are closer to an inverse synfire pattern than
to a synfire pattern. The absolute value Fs after sorting is higher. The fact that both of these values are non-zero is
due to thefinite size effect caused by the limited number of spikes. Formore andmore spike trains and/or spikes
the expectation value even for the sorted case would converge towards zero. As expected, the surrogate test
shows that the order for the original spike trains is not statistically distinct from the order of the surrogate spike
trains (there is no preferred order that can be destroyed by the shuffling) and, accordingly, the value of the
original synfire indicator is revealed to be clearly non-significant.

The third example infigure 10 shows amixture of these two extremes, Poisson spike train interspersedwith
spike trains that contain a perfect inverse synfire pattern (plus random spikes). Sorting the spike trains restores
the correct order of the synfire pattern spike trainswithin the Poisson spike train. The synfire indicator for the
sorted spike trains Fs for thismixed example is actually almost identical to the value obtained for the Poisson
spike trains infigure 9, but this time the surrogate test reveals the value to be highly significant. These two
examples combined illustrate nicely that the synfire indicator and the surrogate analysis provide complementary
information. In themixture example offigure 10 there aremanymore randomPoisson spikes than ordered
synfire pattern spikes. According to the synfire indicator, these two types of spikes together appear to be as
ordered as the spikes of the shorter but purely randomPoisson spike trains infigure 9.However, the synfire
indicator is strongly influenced by the statistics of the dataset and thus is in itself not sufficient to reliably

Figure 8. SPIKE- and spike train order analysis for a perfect inverse synfire pattern. The plot follows the layout offigure 6with the
histogramof the surrogate test (see figure 7(b)) for statistical significance added as subplot (f). For the unsorted spike trains aminimal
synfire indicator of = -F 1u is obtained, while sorting results in themaximumvalue of Fs= 1. According to the surrogate test the
statistical significance of the result is very high.

11

New J. Phys. 19 (2017) 043028 TKreuz et al



compare two datasets withwidely different number of spike trains and spikes. The surrogate analysis, on the
other hand, can be used to compare datasets of different size since by preserving the spike numbers in the
surrogates it explicitly takes the statistics of each dataset into account.

3.2. Application to neuroscience
In order to apply the spike train order algorithm to real neurophysiological data, we analyzed data recorded via
fastmulticellular calcium imaging in acute CA3 hippocampal brain slices from juvenilemice. In the juvenile
hippocampus, the CA3 region is the origin of a stereotypical network phenomenon ofwavelike propagating
activity termed giant depolarizing potentials (GDPs [34]). In previous studies, GDPs have been used to
investigate the topology of networks and the role of hub cells [23] aswell as to reveal the deterministic and
stochastic processes underlying spontaneous, synchronous network bursts [35]. Due to the distinct architecture
and the repetitive nature of theGDPs this experimental setup offers a very suitable test case for our synfire
pattern analysis (formore background and a detailed description of the experimentalmethods refer to
appendix A).

Thefirst dataset analyzed infigure 11 includes 13GDPs over a bitmore than 6 min. Almost all GDPs involve
thewhole network.Here, as for all other neurophysiological datasets analyzed, initially the spike trains are sorted
according to their firing rate such that the sparsely spiking neurons are on top and themost active neurons at the
bottom (figure 11(a)). This specific sorting allows us to test the hypothesis that the neuronswhich fire almost
exclusively within theGDPs and are very sparse on background activitymight have a stronger role in initiating

Figure 9. SPIKE- and spike train order analysis for 20 Poisson spike trains. Since the number of spike trains is too large to label the
spike trains in the top and in the bottom subplot with numbers we use color coding at the left side to label them. Both before and after
sorting the synfire indicator is very close to zero. The surrogate analysis reveals the result to be non-significant.
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GDPs and tend to lead, whereas themore regularly spiking neuronsmight tend to follow. If this would be the
case onewould expect a very high value for the initial synfire indicator Fu. However, according tofigure 11(b) the
actual value is very close to zero and actually slightly negative. A statistical significance test using random
permutations of spike trains (see section 2.5) indeed proves the synfire indicator of the unsorted spike trains Fu
to be non-significant (result not shown). A further indicator for this is the fact that the order of the sorted spike
trains is very different from the initial order, as can be seen by comparing the color bars on the left offigures 11(a)
and (e). The color-coding of theGDPs exhibits typically a slightly noisy transition from leader (red) to follower
(blue). The synfire indicator for the sorted spike trains Fs is alsomuch higher (figure 11(d)). Finally, the surrogate
analysis (figure 11(f)) shows this result to be highly significant.

However, the spiking infigure 11 consists not only of theGDPs.Most neurons exhibit at least to some extent
spontaneous background activity, the ones at the top of the initial sorting less than the ones at the bottom. The
spikes in this background activity are typically coincident with only few other spikes and do not take part in any
propagation patterns (note their green color which indicates SPIKE-order values close to zero). So in the context
of our synfire pattern analysis this is just noise that leads to a decrease of the synfire indicator. There is a
straightforwardway to disregard these background spikes by setting a threshold valueCthr for the SPIKE-
synchronization profile ( )C tk . Only spikes with a coincidence value higher thanCthr are taken into account, all
other spikes are simply ignored. The result of this background correction can be seen infigure 12 for the same
dataset already used infigure 11. Focusing the analysis on the reliable GDPs leads to an increase of the synfire
indicator from0.284 to 0.438.

Figure 10. SPIKE- and spike train order analysis for Poisson spike train interspersedwith spike trains that contain random spikes but
also a perfect inverse synfire pattern. The order containedwithin the synfire pattern spike train is distinct enough tomake the synfire
indicator for the sorted spike trains statistically significant.
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As alreadymentioned before, one of themain results of our analysis is the sorted order of the spike trains
itself. For these neurophysiological data it allows to identify the leading and the following neurons in the
network and to project this information back on the recording setup. This is shown infigure 13wherewe have
color-coded the optimized spike train order obtained infigure 12within a 2D-plot of the neurons recorded from
the hippocampal slice. For this example there appears to be a clear overall propagation from right to left but
there is also a considerable degree of variability whichmight be due to a non-trivial connectivity within the
network.

Infigure 14we apply the SPIKE-order analysis to a second dataset recorded from a different slice, again
focusing on the order within the global events only. Herewe also added one new feature, themean value of the
spike train order ( )E tk for each global event (weuse themaxima andminima of the SPIKE order profile ( )D tk to
delineate theGDPs). This again emphasizes the time-resolved nature of the SPIKE order and the spike train
order indicators.

Overall, we have analyzed neurophysiological datasets from four hippocampal slices exhibiting an average of
7.75GDPs.We obtained an average value for SPIKE-synchronization of 0.59 before focusing on theGDPs (as in
figure 11) and 0.92 after (as infigure 12).With orwithout this focus the synfire indicator for the initial spike train
sorting Fuwas very close to zero and in all cases proved to be non-significant when tested against synfire
indicators obtained for randompermutations of the spike train order. Since the initial sortingwas based on

Figure 11. SPIKE-order for real data recorded in an acute hippocampal slice from a juvenilemouse. Note how the color-coding of the
spikes according to their SPIKE-orderD helps to overcome the low temporal resolution of thefigure and to resolve the spike order
within theGDPs. (a) Initially the spike trains are sorted according to theirfiring rate starting with themost sparse spike trains. The
messy color-patterns reveal that this is completely uncorrelated to the spike order within theGDPs. (f)After sorting, there is a fairly
consistent transition from spike trains with predominantly leading spikes (red) in theGDPs to spike trains with predominantly
following spikes (blue).
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Figure 12. SPIKE-order for the real data already analyzed in figure 11 but this time the analysis of SPIKE-order was restricted to spikes
with a SPIKE-synchronization value of at least 0.7. This simple thresholding allows to focus the analysis on the reliable events and to
disregard all spikes between the events (these are not colored and thus remain black). This results in an increase of the overall value of
SPIKE-order from0.284 to 0.438.

Figure 13.Projection of the optimized spike train order on the 2D-photo of the hippocampal slice. The regions of interest (ROIs)
which denotefilled and identified cells in theCA3 region are color-coded from leader (index 1, red) to follower (index 163, blue) using
the optimized spike train order offigure 12. The very first leader (lower right) and the very last follower (upper left) aremarked by
filled contours.

15

New J. Phys. 19 (2017) 043028 TKreuz et al



overallfiring rate of the neurons, this signifies that the hypothesis that the low-firing neuronswhich are basically
only active during theGDPsmight have a stronger role in initiatingGDPs can be rejected. For the sorted spike
trains the synfire indicator Fswas 0.20 for all spikes and 0.42 for the spikes within theGDPs only. Suppressing the
effect of the noisy background spikes in the analysis thus leads to an average increase of the synfire indicator by
about110%. Finally, according to the surrogate analysis described in section 2.5 the synfire indicator for the
sorted spike trains Fs yielded a statistically significant result for all datasets analyzed.

So overall we can conclude that theGDPs recorded in brain slices from juvenilemice are distinguished by a
very high consistency of their spatio-temporal propagation patterns. However, it is interesting to note that this
consistency does not holdwhen comparing different slices. In the datasets analyzed in this paperwe find
examples of both propagation in the direction of CA2 aswell as propagation towards the dentate gyrus. This is
consistent with results reported in [35].

3.3. Application to climate data
Although being developedmainly for neuroscientific data (spike train recordings), the spike train order
approach presented in this paper can be applied inmany other contexts as well. One particular fieldwhere event-
based analysis is employed very frequently is climate science, see e.g. [20, 36].

In the followingwewill use the new spike train ordermethod to analyze the sea surface temperature (SST) in
the central and eastern tropical PacificOcean to identify the propagation patterns connectedwith thewarm
phase of the ElNiño SouthernOscillation (ENSO). Predicting the occurrence and strength of ElNiños is very

Figure 14. SPIKE-order for a second dataset forwhich again the analysis of SPIKE-order was restricted to spikes with a SPIKE-
synchronization value of at least 0.7. In this case the focus on theGDPs let the synfire indicator increase from0.296 (result not shown)
to 0.389. In addition, here we also calculated one average spike train order value per GDP (green points)which illustrates oncemore
the time-resolved nature of themethod.
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important due to the vast ecological and economical effects[37] and therefore this phenomenon has been
studied extensively in terms of both intensity (e.g. [38, 39]) and frequency (e.g. [40, 41]). However, here wewill
not discuss ElNiño prediction, but focus on the longitudinal propagation pattern of the ElNiño events within
the PacificOcean[24, 42]. The region used here to analyze the SST is depicted infigure 15 (dashed line), and an
examplary smoothed time profile for the center of the analyzed region (215 °E) is shown infigure 16. Further
details on the region, the dataset and data preprocessing (smoothing) is outlined in appendix B.

Starting from the smoothed SST profiles, we performed an event detection by identifying the onset of the
SST anomaly connectedwith an ElNiño in terms of an upward crossing of the smoothed time series with a
temperature anomaly thresholdDTth. Aswe are interested in the initial propagation front for each ElNiño
event, we additionally introduce an artificial refractory period of 11months, whichmeans threshold crossings
occurringwithin 11months after previous event are disregarded. Figure 16 depicts this procedure for a
threshold valueD =T 2.5th °C leading to the identification of three events in this example (vertical lines in
figure 16). From this, wefinally arrive atN=140 discrete event series corresponding to the onsets of ElNiño
SST anomaly elevations at the different longitudinal locations along the dashed line infigure 15. The resulting
spike trains are depicted infigure 17 on the left for four different threshold valuesD =T 1.5th °C–3.0 °C (step
size of 0.5). Thefirst thing to note is that this event detection procedure is able to correctly identify the ElNiño
occurrences as seen from the horizontal event structure in accordance with the ElNiño years (labeled on the x-
axis in the raster plots (a)–(d)) aswell as the consistently high SPIKE-synchronization valuesC for all threshold
values.With increasing temperature threshold, however, only the three strongest ElNiño events are being
captured (1983, 1998 and 2016, bold labels infigure 17) as seen from figures 17(c) and (d).

To quantify the consistency of the propagation patterns, we perform a spike train order analysis on these
event sequences. The results are also presented infigure 17. As a central observation, we found that for the three
strong ElNiño events (1983, 1998, 2016), there is a clear consistent propagation of the SST anomaly elevation at
the equator from east towest as confirmed by a synfire indicator of =-F 0.5e w for the east-to-west sorting
(D =T 2.5th °C, figure 17(c)). Furthermore, optimizing the synfire indicator by changing the sorting only leads
tominor improvements ( =F 0.53s ) and the resulting optimal order is very close to the original east-to-west
sorting indicated infigure 17(g). Finally, this observation is also confirmed by the SPIKE-order based color
coding in the raster plots (c) of the spike trains. For each of the threemajor ElNiño events (1983, 1998, 2016)we
see a clear tendency of leader (red) to follower (blue) going from east (top) towest (bottom) for all three
threshold values. Further increase of the threshold temperature (figures 17(d) and (h)) leads to essentially the

Figure 15.ElNiño 3.4 region (rectangle) and the small strip around the equator used for the analysis in this work (dashed line). Color
coding represents daily SST anomaly (in °C) on 11November 2015.

Figure 16.Exemplary time series of the SST anomaly at 215 °Ebefore (red) and after (black)Gaussian smoothing. The horizontal
dashed line corresponds to a temperature threshold ofD =T 2.5th °Cused for event detection and the vertical lines are the resulting
events identified fromupward threshold crossings of the smoothed time series.
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Figure 17. Spike train order analysis for propagation pattern of daily sea surface temperature anomalies within the equatorial strip
(0.5 °S–0.5 °N, 170 °E–250 °E) smoothed in time using aGaussian kernel withwidth of 2 weeks. Events are defined as initial
threshold crossings of the smoothed temperature time series (see text). From top to bottom four different threshold values have been
used:D =T 1.5th °C–3.0 °C. The left graphs (a)–(d) show the event raster plots withwith SPIKE-order value in color coding using an
east-to-west ordering. The years shown on the x-axis (representing 1st January of the indicated year) denote themoderate and strong
(bold face)ElNiño events. On the right (e)–(h), the optimal leader-follower order compared to an initial east-to-west sorting is shown
(circles: spike trains with at least 2 spikes, triangles: spike trains with less than two spikes). Additionally, the SPIKE-synchronizationC
as well as the synfire indicator for the original (east-to-west) -Fe w , and the optimal sorting Fs are reported.
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same observation, but parts of the longitudinal propagationmight bemissed as the SST anomalymaxima stay
below threshold.

Moderate ElNiño events (1992, 2003, 2010), on the other hand, seem to propagate in eastwards direction, as
seen by opposite directed coloring for those years infigure 17(b) (D =T 2.0th ). Consequently, the synfire
indicator for the east-to-west sorting is very low, =-F 0.12e w , as some of the propagation events aremoving in
the opposite directionwhich reduces the synfire indicator. Therefore, it is also not possible tofind a correct
ordering, as indicated by a rather low optimized synfire indicator of =F 0.31s in this case. This is evenmore
pronounced for the smallest threshold temperatureD =T 1.5th , shown infigure 17(b). There, essentially all
moderate ElNiños are captured andmost of those exhibit an eastwards propagation, opposed to the strong El
Niños that propagate westwards. Therefore, the initial synfire indicator for the east-to-west sorting is negative,

= --F 0.11e w and the optimal sorting shows the sign of awest-to-east propagation (figure 17(e))
with =F 0.38s .

To better understand the dependency of the spike train order analysis on the temperature threshold, we
computed the synfire indicator for the initial east-to-west ordering as well as the value for optimal ordering Fs for
varying thresholdsD =T 1.5 ... 3.5th (figure 18). Additionally, figure 18 also shows the SPIKE-synchronization
values for these parameters. One first observes that the SPIKE-synchronization remains rather constant over the
whole range of threshold values, indicating a consistently good identification of the ElNiño events. The synfire
indicator for the original east-to-west sorting -Fe w on the other hand shows a clear increase saturating in a
plateau for a threshold value of aroundD =T 2.5th °C,where it is then also very close to the optimal value Fs.
This is easily understood by the fact that at temperature thresholds above 2.5 °C, only the three strong ElNiños
are captured that show a consistent westwards propagation, while for values below alsoweaker ElNiños that
exhibit eastward propagation enter the analysis.

In summary, we showed that the newly proposed spike train ordermethod is also readily applicable to
climate data and is able to identify propagation patterns in recurring events such as the ElNiño.Our results
indicate that close to the equator, strong ElNiño events exhibit a clear westward propagation of an SST front,
while formoderate ElNiñoswe found indications for an eastward front propagation. Interestingly, previous
results based on zonal current velocity within the ElNiño 3.4 region found eastward propagation for the extreme
ElNiño events in 1983 and 1998[24], while herewe foundwest-ward propagation (figure 17). This discrepancy
ismost likely due to the different regions (ElNiño 3.4 versus equatorial strip) andmethodology (average
warming/cooling rates versus front propagation).

4.Discussion

Over the last years awide variety ofmeasures to quantify the synchrony between spike trains have been
introduced. Three recent proposals, ISI-distance [43, 44], SPIKE-distance [45, 46], and SPIKE-synchronization
[27, 30], share the desirable property of being time-resolved and parameter-free (time-scale independent).
However, their bivariate versions are symmetric and in consequence theirmultivariate versions are invariant to
changes in the order of spike trains. None of thesemeasures is designed to provide information about the
directionality of the propagation patterns.

In the present studywe address this issue. First we use an adaptive coincidence detection asmatchmaker in
order to identify pairs of coincident spikes. Thenwe define twomeasures, the asymmetric SPIKE-order D and
the symmetric spike train order E, which are particularly useful in a bivariate representation (pairwisematrix)
and as a time-resolvedmultivariate profile, respectively. From these twomeasures we can derive the synfire
indicator F, a condensed scalar value that quantifies the overall consistency of the spatio-temporal propagation

Figure 18. SPIKE-synchronizationC and synfire indicator for the original sorting (east-to-west) -Fe w and the optimal sorting Fs in
dependence of the temperature thresholdDTth.
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patterns in a rigorous and automatedway. Itsmaximization allows to sortmultiple spike trains from leader to
follower. This ismeant purely in the sense of temporal sequence of the spikes. The question asked is: for which
spike trains do spikes tend to occurfirst and forwhich do they tend to occur last?We use simulated annealing to
search among all permutations of spike trains for the sorting that resembles as closely as possible a synfire
pattern, a perfectly consistent repetition of the same global propagation pattern. In afinal stepwe evaluate the
statistical significance of the optimized permutation using a set of carefully constructed spike train surrogates.

Wefirst illustrate themerits of our new approach using artificially generated datasets and then apply it to real
datasets from two very different fields of research, neuroscience and climatology. In the neurophysiological
dataset we analyzeGDPs recorded frommice brain slices in order to search for potential hub neurons [23],
whereas in the climate applicationwe quantify the consistency of the longitudinalmovement of the propagation
front of ElNiño events [24].

The new algorithm is conceptually simple, of low computational cost and comeswith an intuitive and
straightforward visualization, including a color-coded rasterplot. It substantially improves on all the bivariate
functionalities of its predecessor directionalmeasure delay asymmetry (no need for sampled profiles,more
intuitive normalization etc) and could thus also be used in the context of the pairwisematrices, both normalized
or cumulative, used in complex network theory [20, 47]. However, one of themain advantages of the new
algorithm is itsmultivariate naturewhich opens up completely new kinds of application such as spike train
sorting.

One important advantage that themethod shares with other techniques of spike train analysis is the high
flexibility in the definition of events. For example, when looking at the synchronization of neuronal bursts
instead of individual spikes one can define the events as the onset, the center or the offset of the activity (e.g., the
first, themiddle or the last spike of each burst). In cases inwhich a burst of spikes is considered to be equivalent
to a single spike one could introduce some kind ofmeta-events and then look at coincidences between these
meta-events.

The application of ourmeasures is also not restricted to truly discrete data. Continuously sampled data can
be reduced to a spike trainwhere the only informationmaintained is the timing of the individual events. Often
these event times are obtained in amanner similar to how the neuronal spike times are extracted from
recordings of neuronalmembrane potentials (usually done via some kind of thresholding). Examples of sampled
data towhichmeasures of spike train synchrony have been applied include EEGdata [25, 46, 48] and, outside of
neuroscience, stockmarket velocity [49]—and rainfall events [47].

The algorithm is particularly suited for datasets with a high value of SPIKE-synchronization. According to
the coincidence criterion (equation (1)) these are spike trains that include sequences of global events for which
the interval between successive events is at least twice as large as the propagation timewithin an event. For these
datasets the synfire indicator evaluates the consistency of the order within thesewell separated global events. The
universality of the phenomenon, repetitive propagation patterns,makes our new algorithm applicable in awide
array offields such asmedical sciences, seismology, oceanography,meteorology or climatology. For example,
the duration of an epileptic seizure is typicallymuch shorter than the interval between two successive seizures.
Also the time it takes a storm front to cross a specific region is typicallymuch smaller than the time to the next
storm.Many other repetitive propagation phenomena exhibit similar ratios of characteristic time scales.

In order to understand the scope of our proposed algorithm it is important to understandwhat it is not
designed to achieve. Themethod deals purely with relative order, it does not consider the length of absolute
delays.Moreover, while the instantaneous coincidence criterionmakes themethod time-scale independent,
parameter-free and easy to use, it also renders it insensitive to patterns involving spikes that are not immediately
adjacent.Many other, typicallymore complicated,methods have been designed to characterize the detailed
spatio-temporal structure in large neuronal networks [50, 51] or to detect hierarchically structured spike-train
communities [52, 53]. Themethod is also not designed to detect neuronal synfire chains (in the strict sense of the
word) inmassively parallel data. For this task other statisticalmethods based on some forms of pattern detection
have been developed [54, 55].

Another caveat concerns causality.While a significant value of the synfire indicator Fs in our algorithm
clearly shows the presence of a preferred temporal order of some signals with respect to others, it does not
necessarily prove a driver-responder relationship. There are othermethods that have been developed for this
kind of systemdynamics analysis (e.g., [56]). But even for suchmethods causality is always a strong claim. In fact,
the two signalsmight be driven by a commonhidden source and a consistent leader (follower) could just indicate
a drivewith a smaller (larger) delay. Similarly, internal delay loops in one of the two systems can also fool the
interpretation.

There are a number of possible directions for future research, both from amethods and froma data point of
view. Regarding the algorithm, for the coincidence detection it would be straightforward to limit the range of
allowed time lags by incorporating information about the expected speed of propagation [47]. One could
introduce aminimum time lag in order to ensure causality and/or limit themaximally allowed time lag in order
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to focus onmeaningful propagation of activity. In principle the range of allowed time lags could even be selected
individually for each pair of spike trains depending on the knownproperties of the connectivity between the
respective two neurons. Importantly, evenwith such type of time lag restrictions in place, it has still to be
guaranteed that each spike can be part of atmost one coincidence.

A follow-up task for our neurophysiological data would be to investigate towhat extent the neurons that are
identified as leading by our analysis are identical to the so-called hub neurons [23], i.e. neuronswith amuch
higher than average degree of connectivity within the network. Regarding the ElNiño analysis, the difference in
propagation directions observed for the strong andweak ElNiño events remains an open question.
Furthermore, expanding the analysis towider regions, i.e. 5°S–5 °Nand verifying the consistency of the
observed propagation patterns is an interesting topic for future research. Finally, the relation to results based on
averagewarming/cooling rates[24] requires further investigations.

The algorithmwill be readily applicable for everyone since, together with the existing symmetricmeasures
ISI-distance, SPIKE-distance, and SPIKE-synchronization, SPIKE-order is implemented in in three publicly
available software packages, theMatlab-based graphical user interface SPIKY5 [27], cSPIKE6 (Matlab command
linewithMEX-files), and the Python library PySpike7 [57].
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AppendixA.Neurophysiological dataset

The neurophysiological data analyzed in section 3.2were recorded via fastmulticellular calcium imaging in
acute CA3hippocampal slices from juvenilemice. TheCA3 region has a strong recurrent excitatory connectivity
[58]. This distinct feature is suggested to be crucial formemory encoding and pattern completion and thus
memory retrieval [59]. Duringmemory retrieval in rodents, population bursts of the CA3 lead to high frequency
stimulation of the efferent regions, so called sharpwave ripples [60]. In the juvenile hippocampus, due to a
higher chloride reversal potential in theCA3 pyramidal cells, theGABA-ergic system is excitatory [34]. GABA-
ergic interneurons have been shown to serve as so called hub neurons that trigger theGDPs [23].

The recordings were performed by the group ofHeinz Beck at theDepartment of Epileptology, University of
Bonn, Germany, prior to and independently from the design of this study. Transversal acute brain slices
( m300 m thick)were prepared from5 to 10 day old (P5-P10)C57BL/6mice (Charles River, n= 19 slices). Slice
preparation, calcium imaging and data analysis were performed as previously described in [61]. For AM-loading
of brain slices withOGB1-AMwe used a protocolmodified from [62].Multicellular calcium imagingwas done
using a homemade single planar illuminationmicroscopemodified from [63].Movies were recorded at a frame
rate of 200 Hz over aminimal length of 5 min up to 30 min to record a sufficient amount of spontaneous activity.
Time points of cell activity from the imaging datawere defined as the onsets of Ca2 events influorescence traces
of all individual cells using themaximumof the second derivative of each event [64].

In order to test the spike train order algorithm, datasets were chosen that exhibited at least three global GDPs
during the recording (n = 5). For one dataset the surrogate analysis described in section 2.5 proved to be
unfeasible due to its excessive density of spontaneous activity. Therefore this dataset was discarded from further
analysis, so thefinal number of datasets analyzedwas n=4.

5
http://fi.isc.cnr.it/users/thomas.kreuz/Source-Code/SPIKY.html

6
http://fi.isc.cnr.it/users/thomas.kreuz/Source-Code/cSPIKE.html

7
http://pyspike.de
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Appendix B. ElNiño dataset

The data analyzed in section 3.3 describe one of themost well-known global climate effects, the so called ElNiño,
thewarmphase of the ENSO. It is usually characterized by an increased SST in the central and eastern tropical
PacificOcean typically during themonths September–February[65]. According to theUSNOAA, an ElNiño
event is identified by an increased three-monthmoving average SST by 0.5 °Cover at least sixmonths. ElNiños
can last fromninemonths up to two years and typically occur in irregular intervals of two to seven years.

The analysis presented in section 3.3 uses theOISST data provided byNOAA. These data result from a high-
resolution blended analysis (spatial resolution of 0.25°) of daily SST and ice constructed by combining
observations fromdifferent platforms (satellites, ships, buoys) on a regular global gridwith a time range from
1981 to 2016[66]. The daily SST data is centralized by the long-termdailymean resulting in daily SST anomaly
data (deviations from long-termmean) that form the basis of this analysis.

The area used to define ElNiño events, the ElNiño 3.4 region, stretches from5 °S to 5 °N in latitude and
190 °E to 240 °E in longitude, as shown infigure 15.However, for the latitudinal directionwe here focused only
on a small central strip around the equator, i.e. from0.5 °S to 0.5 °Nover a longitudinal stretch consistent with
the ElNiño region, i.e. from180 °E to 250 °E (dashed line infigure 15). Note, that this focus on the small region
around the equator is themain difference tomost previous works that studied the propagation of SST anomalies
averaged over amuch larger latitudinal extent, e.g. 5 °S–5 °N in [24, 42]. In latitudinal direction, we average over
thewhole strip (four grid points), while in longitudinal direction an averaging over two grid points is performed
resulting in 0.5° of spatial resolution and a total ofN=140 time series of daily SST anomalies.We disregard
short-termfluctuation by applying aGaussian smoothingwithwidthσ=14 days. Infigure 16we show the time
series resulting from this procedure exemplarily for the center of the observed region, 215 °E.

For the SST datawe use a threshold criterion to identify themoving high temperature fronts of the ElNiño
events. The threshold determines the signal-to-noise ratio of the data: for small values evenweaker events have
an effect on the result, whereas for higher values the analysis is focused on the strongest ElNiño events only. Due
to the variability of the propagation patterns itmight happen that in successive years the threshold is surpassed in
different regions. However, since the aimof the analysis is to look at the propagation of individual (seasonal)
fronts we suppress coincidences between threshold crossings fromdifferent years.We still use the adaptive
coincidence detection from equation (1) but define amaximumcoincidence window tmax which in this case is
set to 9months.
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