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Abstract

This paper focuses on the generation of stochastic models for dependability and

performability analysis, through mechanisms for the automatic replication of

template models when identity of replicas cannot be anonymous. The major

objective of this work is to support the modeler in selecting the most appropriate

replication mechanism, given the characteristics of the system under analysis.

To this purpose, three most used solutions to identity-aware replication are

considered and a formal framework to allow representing them in a consistent

way is first defined. Then, a comparison of their behavior is extensively carried

out, with focus on efficiency, both from a theoretical perspective and from a

quantitative viewpoint. For the latter, a specific implementation of the considered

replication mechanisms in the Möbius modeling environment and a case study

representative of realistic interconnected infrastructures are developed.
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1. Introduction

Stochastic model-based approaches are widely applied to assess system de-

pendability attributes [1]. A variety of modeling formalisms and model solution

techniques, typically automated in tools, have been developed since decades to

assist the modeler’s activity. Powerful software packages in this area, widely

adopted in academia as well as in industry, include GreatSPN [2], Möbius [3] and

SHARPE [4, 5]. Unfortunately, the pace at which modern and future systems

evolve in terms of largeness of components population and inherent intricacy

among them, makes the model-based analysis very challenging, especially from

state space explosion and models resolution time points of view.

Modularity and composition are widely recognized (e.g., [6, 7]) as foundational

principles to manage system complexity and largeness when applying model-based

analysis. Typically, template (also called generic) models are first defined, tailored

to represent the general behavior of system components at the desired level of

abstraction. Then, from template models, individual instances are generated

to account for the whole population of system components belonging to the

respective categories. The system model is finally obtained by aggregating the

specified submodels through properly defined composition rules. Therefore, most

of the modeling environments and tools currently available have operators to

automate the modularity and composition approach.

Replication can be addressed either in terms of anonymous identity of the

system components belonging to the category represented through a template

model (referred in the following as “anonymous replication”), or providing a

specific identity to individual instances of a template model (referred in the

following as “named replication”). When the former is assumed, faster model

resolution approaches can be exploited than in the latter case, mainly due to

the resulting symmetry and exploitation of suitable techniques, such as lumping

[8]. However, the choice between anonymous or named replication is not done

on the basis of opportunity for more efficient replication techniques, but on its

realism given the application context under analysis. While anonymity fits well
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many system scenarios, there are a number of other contexts where population of

similar (but not identical) components actually require an individual identity to

properly analyze the impact of correct/faulty behavior of individual components

on the overall system dependability, e.g. because of the position occupied by

the component in the system topology. Critical infrastructures, such as in the

transportation and electrical sectors, are examples of such systems, where a

named replication is necessary to maintain adequate accuracy when modeling

the component structure and behavior. Considering that such systems are typi-

cally large ones, with dependency relationships among constituting components,

efficiency becomes of utmost importance when adopting a solution to named

replication of template models.

In this paper, the focus is on discussing efficiency of techniques for named

replication of stochastic template models for dependability and performability

analysis. Interconnection among template instances is through state sharing,

i.e. different submodels can change the value of a shared variable according to

local actions [3]. A paired study focusing on action synchronization [9, 10], the

other alternative to manage template instances interconnections, is postponed as

future work. General approaches, implementable on top of a variety of existing

stochastic evaluation tools, are considered.

Aiming at supporting modelers in adopting template-based non-anonymous

replication, major contributions are:

• formalization of the concept of named replication of template models, and

of a context to express different approaches in a coherent format (both

existing solutions and new ones, that could be devised in the future);

• formalization of three selected solutions for named replication of template

models taken from the literature (referred as SSRep, CSRep and DARep)

and discussion tailored to help a modeler to understand their characteristics

in view of making the best mechanism selection;

• a simulation-based quantitative efficiency comparison of such selected ap-

proaches. To this purpose, implementations of SSRep, CSRep and DARep

3



are developed in the popular Möbius tool, and applied to a representative

case study. The strengths and limitations of the compared techniques in a

variety of realistic system scenarios confirm the theoretical findings.

In order to address generic, realistic contexts, such as when targeted system

components have non-Markovian behavior (e.g., due to deterministic time delays)

and thus analytical approaches are not applicable, this paper concentrates on

model replication strategies well suited to obtain simulation-based evaluations.

The paper is organized as follows. Pertinent state of the art solutions are

overviewed in Section 2. Section 3 introduces the characteristics of the targeted

systems. Section 4 provides the formal context for expressing replication mecha-

nisms, in terms of formalism and necessary modeling features. Then, in Section 5

the three selected mechanisms SSRep, CSRep and DARep for non-anonymous

modeling replication are formalized and compared in terms of efficiency on a

theoretical basis. The second part of the paper concentrates on a quantitative

comparison of a concrete implementation of SSRep, CSRep, and DARep in the

Möbius modeling environment. To this purpose, a representative case study is

introduced in Section 6, while the details of the implementations in Möbius are

in Appendix A for the sake of readability. Then, extensive comparisons in terms

of efficiency indicators of these implementations are in Section 7. Conclusions

are drawn in Section 8. Finally, a table of acronyms is included in Appendix B.

2. Related work

Modeling for dependability related analysis is a long investigated topic and the

corresponding literature covers decades of research activities. Even restricting

to the challenging issue of addressing large systems, as imposed by modern

critical application sectors and in line with the context of the presented work,

the population of existing studies is such that an extensive literature review is

unaffordable in a single paper. A plethora of techniques have been proposed,

mainly aiming at the containment of state explosion, including truncation

methods, parametric modeling, implicit representations, compositional methods.
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References [11, 12] detail examples of relevant families of such approaches. Given

these premises, to position the contribution of this paper with respect to the state

of the art, examined literature is restricted to solutions for replication of template-

based models, with ability to preserve the identity of modeled components and

adopting the state sharing approach to models interconnections.

Initial solutions mainly resorted to ad-hoc methods, as a simple way to

account for instances of a template model that show identical local behavior, but

different interactions with other components according to a specified topology.

In the past, the interest was mainly in modeling anonymous components, that

are indistinguishable both for their behavior and their interaction with other

components. Anonymous replication has been automated in tool operators, such

as the Rep operator in Möbius, and the observations that all the components

have the same number of states, and all or none of them share a state variable,

led to efficient analytical solvers, such as [8], or to enhance simulation [13].

However, as already said, there are a number of contexts where modeling

adopting anonymous replication would lead to a too inaccurate analysis. Cyber-

physical systems constitute a primary category where topology based modeling,

leading to named replication, is required. A first direction taken in addressing

named replication in state sharing interconnected models was to define a submodel

implementing the indexing of each replica to give them a specific identity, such

as in [14, 15, 16] in the context of electrical power system analysis. Another

direction resorted to manage the developed models through XML descriptors,

exploiting the specific characteristics of the system under analysis, such as in

[17, 18] in the context of sensor networks. It needs to be remarked that the

above delineated mechanisms have been adopted as ad-hoc expedients to deal

with the named replication, but without any specific focus on them or desire to

develop a general, automated schema, available to the modeler as a foundation

building block. This aim was pursued later, and is the subject of the papers

[19, 20]. More precisely, in [19], the indexing mechanism originally presented

in [14], has been formalized and generalized, originating SSRep, and a more

efficient alternative, called CSRep. Pursuing efficiency improvement, DARep has
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been then developed in [20]; to a good extent, it appears as a well structured and

generalized version of the ideas in [17]. This paper concentrates on the SSRep,

CSRep, and DARep schema because of their ability to be automated as general

and structured solutions to be employed by modeler in a wide variety of contexts.

The offered comparison study among these schema is meant to be a valuable

support to modelers in making the choice of the most appropriate solution to

adopt, given the characteristics of the system under analysis.

While the above recalled solutions work at level of replication operator, other

studies took the direction of developing methodologies for the automatic deriva-

tion of dependability models adopting model-driven engineering techniques, such

as the recent works [21] (aiming at facilitating the selection, parameterization,

and composition of predefined models from model libraries) and [22] (aiming at

integrating different model generation chains). However, these solutions depart

from the objective of this paper, which is the formalization and efficiency com-

parison of automated and generally applicable replication operators, immediately

exploitable in existing and widely used modeling tools.

3. Logical representation of the addressed system category

This paper focuses on systems composed by a large number of components, in

general grouped in different categories, in accordance to the nature and function

they perform, and organized according to well known structures (topologies, e.g.,

tree, mesh, etc..). The connection among components induces a dependency

among the state, and so in general the behavior, of the involved components.

Cyber-physical systems in critical sectors, such as transportation, electricity,

water and oil, fit well in the addressed system category. For example, an electrical

grid encompasses, among its components, a number of collection points called

buses. All buses have the same aim, that is collecting and distributing electricity,

so they belong to the same component category and their models are similar.

The main differences among them are the position occupied in the grid topology

and the number and kind of attached electrical equipments for energy production
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or consumption. Moreover, depending on the topology of the grid, dependencies

are in place among subsets of buses connected through power lines. For example,

a lightning that hits a bus can damage its equipment and, interrupting the

current flow, can also damage the equipment linked to other nearby buses.

Therefore, when abstracting the components of the reference system for

analysis purpose, for each category (e.g., the bus category) a generic component

can be assumed as representative of all the specific system components belonging

to that category (the several buses present in the grid segment under analysis).

Then, each specific component, characterized by individual peculiarities, can be

considered a named instance of such generic component, specifically distinguished

through an index. Following this approach, the logical architecture of the given

reference system can be seen as composed by:

• A large number of connected components, in general belonging to different

typologies (e.g., buses, or power lines, or substations in electrical power

systems). A generic component Cg is associated to each typology, which

represents a subset of specific components (i.e., non-anonymous replicas or

instances) denoted with Ci, where i is the index of the replica.

• One or more topologies that define the interactions among specific com-

ponents (either belonging to the same generic component or spanning

different generic components).

Without loss of generality, but for the sake of simplicity, in the following only

one Cg describing n specific components C0,. . . , Cn−1 is considered.

The definition of Cg requires that all its parameters (such as those related

to the initial state, the state changing, the random choices and times) can be

defined as a function of the parameter i, with i = 0, . . . , n− 1.

3.1. System state, component interactions and actions

The definition of a generic component is based on the abstract notion of state

variables and actions (events) as proposed in the Möbius Abstract Functional

Interface (AFI) [23] for stochastic discrete event systems. This level of abstraction
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allows to represent generic components, dependencies among specific components

and composition operators in general terms, independently from the specific

formalisms in which the underlying stochastic models are expressed.

The generic component Cg includes l template State Variables (SVs) [20]:

V 0, V 1, . . . , V l−1. Each V h represents n different SVs (replicas or instances of

V h), one for each specific component Ci, in the overall system logical structure:

V h0 , V
h
1 , . . . , V

h
n−1. Thus, the entire system state is determined by assigning

values to all the l · n SVs.

The interactions between two components are defined as the ability of one

component to modify the state of the other component. They are modeled like

in [20] through information sharing via one or more SVs. The interactions among

Ci and Cj are defined by the n× n adjacency matrices T h = [T hi,j ], representing

the topology of interactions based on individual V h. In particular, each i-th row

and each j-th column of T h represent respectively all the replicas of V h that

can be accessed by Ci and all the replicas of Cg that can access V hj . Formally, if

Ci has read/write access to V hj for j 6= i then T hi,j = 1, else T hi,j = 0. Thus, the

SVs V h can be classified into two categories:

Local state variables If V hi can be accessed by Ci only.

Dependency-aware state variables If V hj can be accessed by Cj and, de-

pending on the topology T h, by other component(s) Ci, with i 6= j.

Fixed V h in Cg, the dependency degree of Ci with respect to V h, called

δhi ∈ {1, 2, . . . , n− 1}, indicates how many replicas of V h among V h0 , . . . , V
h
n−1

can be read/written by Ci, while δ̂hj is the number of Ci that can access to V hj .

Similarly, the array of indexes j of those SVs V hj that can be accessed by Ci is

called ∆h
i and ∆h

i [k] is the k-th element of the array, k = 0, . . . , δhi −1. Formally:

δhi =
∑
j

T hi,j , δ̂hj =
∑
i

T hi,j and ∆h
i =

(
j | T hi,j = 1

)
∈ Nδi . (1)

The state changes are defined by means of actions. In particular, the

generic component Cg includes m template actions: a0, a1, . . . , am−1, where
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each template action ak represents n different actions, one for each replica of

Cg: ak0 , a
k
1 , . . . , a

k
n−1. Thus, the entire system is governed by m · n actions.

An action can be enabled according to conditions defined on SVs values.

When an enabled action completes, it can change the value of all the SVs that

are accessed by Ci. Each action can take a deterministic or random (with

arbitrary distribution) time period between its enabling and completion. Each

ak (parameters, enabling conditions and SV value changes at action completion)

is defined as a function of the parameter i, where i is the index of Ci, such that it

can naturally represent an action aki . Moreover, ak can use ∆h
i [p] to read/write

access to V hj such that j = ∆h
i [p]. An action in Ci can be defined only as a

function of SVs that Ci can read/write.

3.2. Overall Logical Component Definition

Summing up, a generic component Cg is defined by a set of template state

variables SVs, a set of template actions and a set of topologies. Formally:

Cg =
(
V 0, . . . , V l−1; a0, . . . , am−1; ∆0, . . . ,∆l−1

)
. (2)

The overall system behavior along time is represented by l · n SVs and m · n

actions. Starting from Cg, n specific components are defined by those SVs that

they can access and the set of actions they own, formally:

Ci =
(⋃

h

⋃
j∈∆h

i

V hj ; a0
i , . . . , a

m−1
i

)
. (3)

4. Modeling Preliminaries

Following the formal definition of the category of addressed systems, the aim

of this section is to present a modeling formalism for:

1. defining a template model M t to realize the generic component Cg,

2. automatically producing from M t the specific models M0,. . . , Mn−1 to

realize the specific components C0,. . . , Cn−1, respectively, and
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3. composing the specific models Mi to form the overall system model M sys.

The model M sys represents a stochastic discrete event system at level of

AFI [23]. The underlying stochastic process depends on the specific formalism

used to define M t. Let M t be a template model based on the general concepts

of SVs and actions, and Mi be an instance of such template model. In order

to model Cg with a single template model, M t has to be defined as a function

of the parameter i representing the index of Mi, as described in Section 3. In

particular, the definition of each template action ak must include read/write

access to each instance of V h listed in ∆h
i . There exists a great variety of

formalisms to define the model M t based on SVs and actions, each one with

its specificities, suitable to define Markovian, semi-Markov and non Markovian

stochastic models. Among the most popular ones, we mention:

• Performance Evaluation Process Algebra [24], which explicitly tackles

actions, while SVs are implicitly defined by composition rules among

actions. PEPAk [25] is an interesting dialect that allows a direct definition

of SVs and can easily implement the approaches described in this paper.

• The Stochastic Fault Trees family [26], where node, failure event and gates

correspond respectively to SV, action and composition of failure events.

• The Stochastic Petri Nets family [27], where each place corresponds to a

SV, and each transition corresponds to an action.

Therefore, although in principle any of the above mentioned formalisms

(and others not mentioned as well) would be a good candidate to express

template-based named replication mechanisms we are interested in this paper,

it needs to be clarified that most of them would probably require extensions in

order to be able to define the parametric template model M t. This aspect of

extensions is not addressed in this paper. We believe that modelers familiar with

a specific formalism can easily understand its current limitations and directions

for appropriate extensions. Being familiar with the Stochastic Activity Network

(SAN) formalism, we state that it can be used to define M t with minimum or no
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extension (depending on the considered approach), thanks to the powerfulness

provided by the C++ language.

In the following, since the interest is in a general presentation of the concepts

and facilities for modeling template-based named replication, a notation similar

to that adopted for the system in (2) and (3) is used.

4.1. Model Compositional Features

As already discussed when presenting the related work, in this paper we

restrict to model replication and joining operators that are state-sharing based,

as made available by popular modeling frameworks. They are the Rep and Join

operators [28], exploited in the definition of the named replication solutions of

interest in our study. Their formalization is given in the following.

The Join operator combines two or more submodels into a single composed

model, based on distinguished (or shared) SVs defined in the individual submodels

to allow communication among them. Notation adopted for the Join operator

and the resulting model are shown in the following example, where two models

M5 =
(
A,B,C; a0

5, a
1
5

)
and M7 =

(
D,E, F,G; a0

7, a
1
7

)
are joined as follows:

J
(
M5, A,B,C, ∅;

M7, ∅, D,E, F
)

=
(
A,B,C, F,G; a0

5, a
1
5, a

0
7, a

1
7

)
. (4)

A list of distinguished SVs is associated with each composing model (A,B,C

with M5 and D,E, F with M7), in a manner such that particular entries are

allowed to be empty (∅) and the cardinality of each list is the same (4). In the

joined model, all the not empty distinguished SVs corresponding to the same

position in each list are merged to form a single SV (B = D and C = E), i.e., the

SVs are shared among the submodels. Each distinguished SV is exposed to other

compositional operators, whereas undistinguished SV are local to the submodel

(G is local to M7). In the whole resulting model defined in the right-side of (4),

the occurrences (if any) of D and E in a0
7 and a1

7 (as defined in M7) are replaced

by the names B and C, respectively, used for the shared SVs.
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The Rep operator applied to a template model produces a new model obtained

joining n anonymous replicas (identical copies) of the template model, where the

distinguished SVs are shared among all the replicas. Thus, a SV can be local

to each replica or shared among all replicas (all-or-none sharing strategy). Rep

does not assign any index to the anonymous replicas.

The Rep operator can be used to automatically generate n replicas M0,. . . ,

Mn−1 of M t, where the index i of each replica is the value of a SV defined as

local to the replica. The notation adopted is shown in the following example,

where M t =
(
V 0, V 1; a0

)
is replicated sharing V 0 to obtain the replicas M0 =(

V 0
0 , V

1
0 ; a0

0

)
, . . . , Mn−1 =

(
V 0
n−1, V

1
n−1; a0

n−1

)
with V 0

0 = . . . = V 0
n−1, as follows:

Rn
(
M t, V 0

)
= J

(
M0, V

0
0 ; . . . ;Mn−1, V

0
n−1

)
=
(
V 0

0 , V
1
0 , V

1
1 , . . . , V

1
n−1; a0

0, . . . , a
0
n−1

)
. (5)

Observe that:

1. Join takes as input a set of already defined models, thus cannot be used

to automatically generate system component models.

2. Join can directly address the matrix representing T h for h = 0, . . . , l − 1,

because the modeler can manually define all Mi following (3) and share

only the SVs, as defined in T h. However, this process is error prone and

does not scale at increasing of the number n of system components.

3. Using Rep it is possible (although not straightforward) to define at level

of template model an index to refer specific replicas.

4. Since a SV can be shared among all the replicas or none of them, Rep

cannot directly address T h when V h is a dependency-aware state variable.

Thus, using only the Join operator as it is, no template model M t can be

defined to represent Cg and then produce individual components models. On

the other hand, it is possible to work around the fact that Rep is natively an

anonymous replication operator and adopt it to produce named replicas and to

address the interactions among components.
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(a) (b)

Figure 1: The SSRep approach as implemented in Möbius: composed Rep model Msys (a)

and template SAN model I initializing the index of the replicas (b).

5. Named replication

In the following, the definition of the three approaches SSRep [14, 15],

CSRep [19], and DARep [20], already proposed to model automatically the

interactions among components that require named replication, is presented. To

avoid too heavy notation, but without loosing in generality, only one template

state variable V h and one template action ak are considered in M t.

5.1. The State-Sharing Replication Approach

The SSRep approach relies on n SVs, one for each replica of the template, for

each dependency-aware SV V h of Cg. SSRep has not been conceived to exploit

the dependency topology when defining the variables shared among the replicas

of the template. Thus all the instances of the dependency-aware SVs are shared

among all the replicas of the template model, independently of the topology.

The SSRep approach consists of a simple architecture, as depicted in Figure 1a:

a single template model, called M ss, is replicated n times by the Rep operator

to obtain the system model M sys, where an index is assigned to each replica.

M ss is structured in two parts: i) one defining the generic component Cg as a

function of the index of the replicas ( represented by the SV Index ∈ N), including

explicitly a SV for each instance of V h, the data structure ∆h (representing

the topology associated to V h) and ak, and ii) one that initializes the indexes

for each replica of M ss, including the SVs Count ∈ N and Start ∈ N, and the
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instantaneous action tInit, as shown in Figure 1b. Formally:

M ss =
(
V h0 , . . . , V

h
n−1, Index,Count = n,Start = 1; ak, tInit; ∆h

)
. (6)

The Rep operator generates n replicas Mi of M ss:

Mi =
(
V h0 , . . . , V

h
n−1, Indexi,Count,Starti; a

k
i , tIniti; ∆h

i

)
, (7)

that are composed through sharing the SVs V h0 , . . . , V
h
n−1 and Count, whereas

Indexi and Starti are local to Mi, to generate the overall system model:

M sys = Rn
(
M ss, V h0 , . . . , V

h
n−1,Count

)
=
(
V h0 , . . . , V

h
n−1, Index0, . . . , Indexn−1,Count,

Start0, . . . ,Startn−1; ak0 , . . . , a
k
n−1, tInit0, . . . , tInitn−1; ∆h

)
. (8)

Count is used to initialize the index of each replica Indexi at completion of

tIniti, through the following steps, in the order specified from left to right:

Count = Count− 1, Indexi = Count, Starti = 0, (9)

where tIniti is enabled if Starti == 1 and Count > 0. All the actions aki are

enabled after the initialization of all the indexes, i.e., when Count == 0.

Notice that each instance of V h, being shared among all replicas of the

template model, can be read/write accessed by each Mi, independently of ∆h
i .

Thus, SSRep assumes a complete graph of interactions among components, even

if the actual number of ones in T h is much less than n2. Obviously, the definition

of each action ak is based on the actual interactions among components, as

defined in T h, using ∆h. For example, the enabling condition of the action ak

can be given in the template model by V hj = 1 ∀j ∈ ∆h
Index. But, when an action

affecting V h fires within Mi, all the instances of ak, not only those listed in ∆h
i ,

are checked to determine their current enabling status.

5.2. The Channel-Sharing Replication Approach

The CSRep approach was the first to exploit the knowledge of the actual

topology of dependencies among the replicas of a template model. It relies on:
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Figure 2: The CSRep approach as implemented in Möbius: composed Rep model.

1. defining as local to each Mi all its dependency-aware SVs following T h,

2. using a small-sized channel composed by a small number of SVs, shared

among all theMi, to exchange (synchronize) the values of dependency-aware

SVs shared among the replicas Mi, each time they are updated.

In particular, δh local SVs W 0, . . . ,W δh−1 are defined in the template model,

with δh = maxi δ
h
i , to represent the set of δhi instances of V h listed in each ∆h

i ,

such that, in each model Mi, W
p = V hj with j = ∆h

i [p].

As for SSRep, also CSRep defines a single template model, called M cs, that

is replicated n times by the Rep operator, as depicted in Figure 2. The template

M cs is structured in three parts: 1) the model of Cg as a function of the index of

the replicas, represented by the SV Index ∈ N, including the SVs W p, the data

structure ∆h and ak, 2) the initialization of the indexes, following the description

already provided for SSRep, 3) the channel and the read/write channel operations,

including Channel ∈ N×N×DataType, ToChannel ∈ N, ReadyChannel ∈ N and

the instantaneous actions read and write, where DataType is the type of the data

to synchronize. Formally, the architecture of CSRep is:

M cs =
(
W 0, . . . ,W δh−1, Index,Count = n,Start = 1,ToChannel = 0,

ReadyChannel = 1,Channel; ak, tInit, read,write; ∆h
)
. (10)

The SV ToChannel, initialized to 0, is local to each replica and it is used to trig-

ger (ToChannel== 1) the writing on the channel each time a dependency-aware

SV modeled by W p is updated. The SV ReadyChannel, initialized to 1, is shared
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among all replicas and is used to lock the channel (ReadyChannel== 0) from

writing until the data are read by all the destination replicas.

The extended SV Channel=(index, ndest, data) is shared among all replicas

Mi and is defined by 3 fields (SVs). The SV index ∈ N represents the index j of

the updated dependency-aware SV V hj modeled by W p. The SV ndest ∈ N is the

current number of destination Mi that have not yet read the data (initialized with

the number of Mi to synchronize). The SV data ∈ DataType contains the value

of V hj to send to the Mi. The field Channel.index is used to identify whether Mi

is a destination depending on T h. The field ndest is used to unlock the channel

when all the destination Mi have read the SV data (Channel.ndest == 0).

The action ak extends the corresponding action of Ci with the assignment

ToChannel = 1, each time a local state variable W p is updated.

The Rep operator generates n replicas Mi of M cs:

Mi =
(
W 0
i , . . . ,W

δh−1
i , Indexi,Count,Starti,ToChanneli,

ReadyChannel,Channel; aki , tIniti, readi,writei; ∆h
i

)
, (11)

that are composed sharing the SVs Count, ReadyChannel and Channel, to

generate the overall system model, where none of W p is shared among replicas:

M sys = Rn
(
M cs,Count,ReadyChannel,Channel

)
(12)

=
(
W 0

0 , . . . ,W
δh−1
0 , . . . ,W 0

n−1, . . . ,W
δh−1
n−1 , Index0, . . . , Indexn−1,Count,

Start0, . . . ,Startn−1,ReadyChannel,Channel,ToChannel0, . . . ,ToChanneln−1;

ak0 , . . . , a
k
n−1, tInit0, . . . , tInitn−1, read0, . . . , readn−1,write0, . . . ,writen−1; ∆h

)
.

The actions write and read are enabled respectively by the sender replica

Ms to write the data into the channel, and by all the destination replicas Mi to

read the data from the channel. In particular, write is enabled if:

ToChannel == 1 and ReadyChannel == 1, (13)

i.e., when, respectively, there are new data to send and the channel is ready

to accept the data. At completion of write, the channel is updated and locked,
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performing the following assignments in the order specified from left to right:

Channel.index = j,Channel.ndest = δ̂hIndex,

Channel.data = W p,ToChannel = 0,ReadyChannel = 0, (14)

where W p = V hj is the value that has to be transmitted through the channel.

The action read is only enabled when the channel has been updated with

new data to send and the current replica is the destination of the data of the

channel (and it is not the sender of the data), i.e.:

ReadyChannel == 0 and ∃q|Channel.index == ∆h
i [q]. (15)

At completion of read, the following assignments are performed in order:

W q = Channel.data,Channel.ndest = Channel.ndest− 1,

if Channel.ndest == 0 then ReadyChannel = 1, (16)

i.e., the local W q and the state of the channel are updated. Then, if the replica

is the last destination of the data, the channel is unlocked.

Thus, whenever an action aks of Ms changes the value of W q
s , equal to V hj

with j = ∆h
s [q], then the action writes immediately performs the assignments

in (14). Then all the readi for which j ∈ ∆h
i perform the assignments in (16),

among them W q
i = Channel.data.

When more than one replica of one, or more than one, dependency-aware SV

are updated at the same time, a sequence of consecutive transmissions using the

same channel can be easily modeled. Alternatively, the channel can be easily

extended by adding new fields.

5.3. The Dependency-Aware Replication Approach

The DARep approach takes advantage of the topology of dependencies among

system components, by sharing subsets of the instances of each dependency-aware

SV among only those replicas Mi that need to access them.

Differently from the SSRep and CSRep approaches, DARep proposes a new

compositional operator in order to: 1) generate automatically the instances of
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the dependency-aware SV associated to each Mi, 2) share different subsets of the

instances of the dependency-aware SV among different subsets of Mi, following

T h. Thus, it merges the advantages of the Join and Rep operators.

In more details, the DARep approach is based on:

1. two functions Index() and Deps() that extend the template model to

represent, respectively, the index of the replicas of the template model and

the instances of the dependency-aware SVs occurring in each replica of the

template model, following the actual system topology,

2. a new state-sharing template-based compositional operator that, automat-

ically: i) generates the indexed replicas of the template model supporting

Index() and Deps(), and ii) generates the overall system model, by com-

posing through the Join operator the indexed replicas of the template.

The DARep approach defines a single template model, called Mdarep, that is

replicated n times by the newly defined D operator. Mdarep is defined as follows:

Mdarep =
(
V h; ak; Index(),Deps()

)
. (17)

Index() and Deps() are two functions used in the definition of the actions of the

template and supported by the D operator. Notice that ∆h is moved from the

template model (where it is replaced by the function Deps()) to the D definition.

The D operator first generates n indexed replicas Mi of Mdarep and in

particular for each Mi generates the list of δhi instances of each V h shared among

different Mi, following the topology T h associated to each V h:

Mi =
(
{V hj |j ∈ ∆h

i }, aki ; Indexi(),Depsi()
)
, (18)

where

Indexi() = i,∀i = 0, . . . , n− 1,

Depsi(h, s) = V hj |j = ∆h
i (s), for all h, s and i, (19)

i.e., Deps(h, s) is used in Mdarep to access to the s-th instance of V h automatically

generated by D in the Index()-th replica of Mdarep.
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Figure 3: The DARep approach as implemented in Möbius: the left part of the composed

Join model automatically generated from the template Mdarep for the case study described

in Section 6 with n = 100 and δ = 74.

Then D composes the generated submodels Mi, as depicted in Figure 3,

sharing all the instances of V h having the same name in different Mi, to generate

the overall system model:

M sys = D
(
Mdarep, V h,∆h

)
= J

(
M0,W

0
0 , . . . ,W

n−1
0 ; . . . ,Mn−1,W

0
n−1, . . . ,W

n−1
n−1

)
=
(
V h0 , . . . , V

h
n−1; ak0 , . . . , a

k
n−1

)
, (20)

where

W j
i =

V
h
j if j ∈ ∆h

i ,

∅ otherwise.

(21)

5.4. Considerations on the Presented Named Replication Approaches

From the descriptions above, the following features are required in order to

allow named replication of a given template model:

1. data structures to manage the parameters of the template model M t, as

a function of a generic replica index of the template, in particular the

topology associated to each dependency-aware SV, that is the array ∆h;

2. an indexing mechanism for Mi, used to access the parameters of each

replica of the template and to define the actions as a function of the index;

3. for each replica Mi of the template, constant-time read/write access to the

replicas of each dependency-aware SV V h shared among the other replicas

of the template as defined in ∆h
i ;
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4. automatic generation of Mi from the template M t, where interactions

among Mi occur through dependency-aware SVs, differently modeled in

each of the three approaches;

5. automatic generation of the final composed model joining the specific

models Mi and addressing the interactions among Mi through depen-

dency-aware SVs.

As already discussed in Section 4, feature 1) depends on the formalism

adopted to define the template model. In this paper, the SAN formalism is

adopted to define the template models for all the approaches.

With regard to the feature 2), SSRep and CSRep use the same indexing

mechanism, that relies on a SV “Index” local to each replica Mi, i.e., the index

of each replica is part of the state of the replica. Moreover, SSRep and CSRep

are based directly on the Rep operator, that supports above features 4) and 5).

DARep is based on a new operator that explicitly supports 2) and 4) and on

the Join operator that supports 5).

For all the approaches, feature 3) is obtained defining the replicas of the

dependency-aware SVs with arrays (for SSRep and CSRep at definition of the

template, while for DARep automatically when the replicas Mi are generated).

The major implications derived from how these features are used by the

different approaches are discussed in the following. They are the basis for a

theoretical comparison of the replication mechanisms, and mainly relate to:

• The ability to account for the actual dependency topology, so to avoid

unnecessary interactions among instances. Both CSRep and DARep take

into account the interactions topology, while SSRep always relies on a

complete interactions graph. In fact, SSRep is able to account for the actual

dependency topology at run time only after the start of the simulation,

when the indexes of the replicas are defined. In addition to the potential

overhead incurred by SSRep because of this extended interactions graph,

there is also the fact that erroneous accesses to SVs (i.e., accesses that do

not follow the actual system topology) cannot be automatically avoided.
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Therefore, from this perspective, SSRep has in principle disadvantages

with respect to the other two approaches;

• The ability to take into account the actual dependency topology in building

the actions connectivity lists, used by the simulator to trace the enabling

status of other actions after an action fires. Being based on the Join

operator, DARep is able to share specific SVs among specific submodels.

Thus DARep supports the creation of action connectivity lists [29] following

the interactions topology T h. Action connectivity lists can allow for a

significant reduction in the simulation time in most models [29]. Join

provides statically (at compilation time) the simulator with the information

necessary to determine which actions within a submodel may affect other

actions within other submodels based on T h. On the contrary, Rep limits

the connectivity lists optimization, such that each action that affects a

shared SV is connected to all the replicas of actions linked to (affected

by) the SV. In fact, being the distinguished SVs shared among all the

replicas, Rep cannot statically identify which specific actions of a replica

are affected by actions within other replicas as defined by the interactions

topology. Thus, SSRep works considering a complete interactions graph

also at connectivity lists generation. Also CSRep, although it exploits the

actual topology at level of operational structures, suffers from the same

limitations as SSRep for what concerns the connectivity lists, being not

able to follow the interactions topology for all the activities connected

to dependency-aware SVs and for readi, respectively. This can lead to

a significant simulation overhead in SSRep and CSRep that increases

with the number of replicas and dependency-aware SVs. Therefore, from

this perspective, the SSRep and CSRep approaches have in principle

disadvantages with respect to DARep;

• Incurred overhead due to complex structures and coordination activities.

From the point of view of model construction, SSRep is the heaviest, since

it needs more complex structures to build all the local SVs and make them
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shared among all the replicas. Instead, from the coordination activities

point of view, CSRep pays the highest price, since each change of W q
s , equal

to V hj , produces 1 new event for writej and 1 new event for each readi, for

which j ∈ ∆h
i . This implies a time overhead due to the synchronization of

the dependency-aware SVs each time they are updated.

• Modeling simplicity. From this perspective, the template model Mdarep

is simpler than those defined for SSRep and CSRep. In fact, once the

Index() and Deps() functions are made available in a certain modeling

environment, they can be used by modelers working in that environment

without requiring knowledge of the details about assignment of replica

indexes and dependency-aware SVs. This simplification is expected to be

reflected in an easier and less error-prone modeling activity.

• Compilation versus runtime overhead. A time consuming aspect is related

to the automatic management of the replicas of the template model and

the dependency topology, to correctly model the access to SVs by the

different replicas. In both SSRep and CSRep, this is accomplished at

runtime, while DARep has a compilation time management. In principle,

the different behavior shown by the approaches does not imply a systematic

advantage of one over the others in terms of efficiency, since the dimension

and dependency degree of the system under analysis have a high impact

and,depending on the specific values, could favor one behavior or another.

5.5. From the theoretical definition to a concrete implementation

Although the theoretical observations discussed in Section 5.4 are useful to

derive trends and to point out expectations from the approaches definition, the

final selection of the best solution requires knowledge of the modeling context

where the approach is going to be implemented. In fact, a theoretical advantage

shown by an approach over another could result significantly lessened due to

inefficiency of the implementation environment, and viceversa.
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To provide evidences to this claim, implementation of SSRep, CSRep and

DARep in the Möbius environment [3] and their application to a case study

are addressed. The aim is to conduct a quantitative comparison analysis in a

concrete context. The case study is introduced in 6, and the feasibility of the

proposed approaches in the Möbius framework, through their application to the

case study in a variety of scenarios, is provided in Appendix A.

6. Case Study

Although defined for illustration purposes only, the selected case study is

effective in demonstrating features, benefits and limitations of the approaches

described in Section 5, since it fully represents the logical architecture of targeted

systems described in Section 3. Moreover, it can be considered as a basis to be

easily extended and adapted to represent a great variety of real contexts.

In a cloud computing context, two different services A and B can be requested

from clients. The infrastructure is composed by n virtual machines, called here

nodes, and each can host: 1) one server for A, or 2) one server for B, or 3) two

servers, one for A and one for B. On each node i, the demand (service requests)

of service S ∈ {A,B}, at any time instant t, is DS,i(t) ≥ 0. At any time

instant t, node i has maximum capacity CS,i to satisfy service S requests, where

DS,i(t) ≤ CS,i. The matrix T S represents the topology of interactions among

servers providing service S on different nodes. ∆S
i is the list of nodes from which

the server of service S on node i depends on.

Demand DS,i(t) can increase or decrease due to:

• Random interaction with clients: the demand of service S follows a Marko-

vian stochastic process so that, after an exponentially distributed period of

time, the demand increases or decreases, depending on the demand trend.

• Interaction with neighbors: whenever DS,i(t) > CS,i or the server reboots

or recovers, the server of service S on node i tries to dispatch the exceeding

demand respectively DS,i(t)− CS,i or DS,i(t) (for reboot or recovery) to

other working servers of the same service on nodes in ∆S
i .
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The exceeding demand of service S on node i is divided in δSi equal parts

ES,i(t) = (DS,i(t) − CS,i)/δSi . For each working neighbor j ∈ ∆S
i , ES,i(t) is

sent to node j, if ES,i(t) ≤ CS,j −DS,j(t), decreasing DS,i(t) and incrementing

DS,j(t) by ES,i(t). Otherwise, if the server on node j cannot satisfy all the

demand ES,i(t), i.e., ES,i(t) > CS,j −DS,j(t), then only a part of ES,i(t) equal

to CS,j −DS,j(t) is sent to j, decreasing DS,i(t) by CS,j −DS,j(t) and increasing

DS,j(t) to the maximum capacity CS,j . Of course, if the node j is down or it

does not host a server for service S, then ES,i(t) is not sent to j. Thus, it is not

guaranteed that all DS,i(t)− CS,i > 0 can be redispatched.

To resemble more realistic application scenarios, if the total time T overcS,i (t)

in which DS,i(t) ≥ CS,i overcomes a pre-set threshold T thresholdS,i , for at least

one service S, then the state of node i is switched from working to down and a

reboot is performed. The reboot takes a deterministic amount of time and has

success with probability c. In case it fails, or after a given number of reboots

nrcv, a recovery process is launched on node i. The recovery operation can

take considerably longer time with respect to reboot, but guarantees a complete

reset of node i. During reboot and recovery, all demand DS,i(t), for each service

S, is not satisfied. In addition to overload conditions, after an exponentially

distributed period of time, with rate depending on the value of the current

demand, each node also experiences a failure, which requires a recovery action.

This case study is more complex than the one exercised in [19, 20], since: i)

the number of shared variables, kept to 1 in the previous publications, becomes

3, and ii) 2 read/write access topologies instead of 1 are introduced. This leads

to more realistic and challenging system scenarios from the replication point of

view. The SAN models for this case study are described in Appendix A.5.

To compare the replication approaches, the above described system has been

evaluated in terms of expected: unsatisfied demand on node i for the server

providing service S, unsatisfied demand on node i and global unsatisfied demand.

Since the goal is to compare the performance of the three replication approaches,

the obtained results for these dependability measures are not shown in Section 7.
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7. Numerical Comparison of the Approaches

A comparison of the performance results of the Möbius implementations of

SSRep, CSRep and DARep when applied to the case study described in Section 6

has been conducted. The characteristics of the system under analysis (in terms of

the size and dependency degree), as well as the accuracy requested to the analysis

output, have been varied to explore a variety of scenarios. The terminating

Möbius simulator [3] has been used to evaluate the dependability related measures

described in Section 6. As a form of validation of the developed models, for some

sample models, it has been verified that the number of stable states obtained

with all the approaches is the same and it is equal to the theoretical prediction.

In addition, the computed measures resulted in the same values for all the

approaches. Different reward structures [30, 31] over different set of markings

have a different impact on simulation times. Thus, to improve accuracy and

fairness of the comparison, a high number of reward variables (around 40) has

been considered in the study. However, since here the analysis focuses on the

comparison of the performance of the approaches, details on these measures and

the obtained results are out of the scope of this paper.

Each execution of the terminating Möbius simulator is defined for a specific

setting of all the parameters of the considered models. Each execution of the

terminating simulator starts initializing the data structures, then runs k batches

(independent model simulations in Möbius terminology) with k ≥ 1.

7.1. Efficiency Metrics

For the comparison, the following performance measures have been considered,

relative to one execution of the Möbius simulator that runs k batches (k ≥ 1):

• τ(k): Total amount of CPU time, in seconds, used by the Möbius simulator.

It includes the initialization time and the time necessary to run k batches.

• τinit or τ(0): The amount of CPU time, in seconds, used by the Möbius

simulator to initialize its data structures. This is the CPU time used by

the simulator to output the string “SIMULATOR::Preparing to run()”.
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The definition of τinit as a function of τ(k) is: τinit = τ(1)−(τ(2)−τ(1)) =

2τ(1) − τ(2), where τ(2) − τ(1) is the total amount of CPU, in seconds,

used by the Möbius simulator to run a batch.

• ∆τ(k): Difference between the total CPU time to run k batches and the

initialization time:

∆τ(k) = τ(k)− τinit.

• D
S Cτ(k): Compared simulation performance (dimensionless ratio) between

DARep and SSRep, defined as follows:

D
S Cτ(k) =

τDARep(k)

τSSRep(k)
. (22)

• C
S Cτ(k): Compared simulation performance (dimensionless ratio) between

CSRep and SSRep, defined as follows:

C
S Cτ(k) =

τCSRep(k)

τSSRep(k)
. (23)

• D
CCτ(k): Compared simulation performance (dimensionless ratio) between

DARep and CSRep, defined as follows:

D
CCτ(k) =

τDARep(k)

τCSRep(k)
. (24)

The considered CPU time includes both user and system CPU times.

7.2. Simulation Settings

The following topologies T A and T B , having the same structure but involving

different indexes, are chosen for the case study. The first three quarts of the

virtual machines host a server for service A, i.e., i = 0, . . . , nA − 1 with nA =

d0.75·ne, the last three quarts host a server for service B, i.e., i = nB−1, . . . , n−1

with nB = d0.25 ·ne (notice that virtual machines in the intersection host servers

for both service A and service B). The degree of interaction δ is the same for

all i, i.e., δ = δAi = δBi , where δhi is defined in (1). The demand re-dispatching

follows a cyclic graph, i.e., ∆S
i = {i, (i+ 1) mod nS , . . . , (i+ δ) mod nS}.

To exercise the approaches in a variety of relevant contexts, scenarios gener-

ated as combinations of the following values for n, δ and k, have been considered:
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• number of batches k varying from 1 to 1000. The value of k impacts on

the precision of the obtained results, and 1000 has been selected to assure

convergence with confidence interval width lower than 10−5,

• number n of replicas ranging from 10 to 1000,

• dependency degree δ varying from 1 (minimum connectivity) to 148.

Simulations were sequentially performed on Intel(R) Core(TM) i7-5960X with

fixed 3.50 GHz CPU, 20M cache and 32GB RAM, and an up to date GNU/Linux

Operating System. Each τ(k) has been evaluated 10 times and the arithmetic

mean is taken as final result. It is important to notice that, for the SSRep and

CSRep approaches, models compilation times are negligible, being constituted

by a few single atomic SANs and one composed model, while for the DARep

approach component models compilation time can be relevant. In particular, if

n ≤ 100 then atomic SANs compilation times and composed model compilation

time can take few minutes, while, for n = 1000 and δ = 148, composed model

compilation time can grow up to about 10 hours. However, it is important

to notice that recompilation is required only if the structure of the template

model or the topology of interdependencies are changed. Thus, changing all the

other model parameters, such as failure rates or service request rates, as well as

changing the measures under evaluation, do not impact on compilation time. In

addition, investigations are currently in progress to understand how to promote

parallel models compilation to improve on compilation time.

7.3. Comparison Results

First, the results relative to the τinit indicator for the three approaches are

presented in Table 1, Tables 2 and 3, respectively.

From the inspection of Table 1 two important conclusions can be drawn: for

SSRep, the initialization phase time is almost independent from the dependency

degree δ, but strongly correlated with the system size n. This confirms the already

predicted behavior, as discussed when presenting this approach in Section 5.1.

Instead, Tables 2 and 3 show that both CSRep and DARep initialization times
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Table 1: Initialization time τinit (seconds) for the SSRep approach.

δ

1 7 74 148

n

101 0.019 0.013

102 3.556 3.806 3.623

103 29637.500 29723.400 29623.600 29673.200

Table 2: Initialization time τinit (seconds) for the CSRep approach.

δ

1 7 74 148

n

101 0.015 0.018

102 0.118 0.142 0.438

103 4.789 5.592 12.251 22.452

are almost linear in n and differently correlated with δ, with τinit of DARep

growing faster than CSRep at increasing δ. Again, these results are in line with

what already predicted in Sections 5.2 and 5.3, by observations regarding the

behavior of these approaches. It is important to notice that the presence of two

read/write access topologies, T A and T B, drastically impacts on the SSRep

initialization phase performance, well beyond the predicted O(n2) (see Section 5.1

and Appendix A.2). Also, there are insights that the numbers presented in

Table 1 suffer from implementation issues concerning the model construction

operated by Rep in Möbius [32].

Table 3: Initialization time τinit (seconds) for the DARep approach.

δ

1 7 74 148

n

101 0.015 0.012

102 0.021 0.033 1.746

103 0.309 0.746 23.414 137.610
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Table 4: Batch time ∆τ(1000) (seconds) for the SSRep approach.

δ

1 7 74 148

n

101 0.412 0.437

102 48.873 48.476 50.306

103 5382.400 5216.000 5373.300 5455.600

Table 5: Batch time ∆τ(1000) (seconds) for the CSRep approach.

δ

1 7 74 148

n

101 0.838 2.580

102 74.272 272.091 2455.352

103 9273.481 24185.708 216642.749 NaN

The results obtained for the next performance indicator under analysis, the

batch time ∆τ(k), are presented for each approach in Table 4, Table 5 and

Table 6, respectively. In detail, Table 4 shows the batch time ∆τ(1000) for

SSRep. The evaluation of batches during the simulation, as can be inferred from

the considerations in Section 5.1, has a time complexity of O(n2) and it is almost

independent from δ.

For the two approaches CSRep and DARep, the results are shown in Table 5

and Table 6, respectively. Not surprisingly, since they have been defined with

the purpose to exploit the real dependency topology among system components,

their batches execution times depend on both n and δ. In particular, it can be

observed how CSRep batches time explodes at increasing of δ. In fact, ∆τ(1000)

for n = 1000 and δ = 148 has not been reported because the total execution

time exceeds a fixed upper limit.

Comparing SSRep and CSRep values, an interesting phenomenon can be

highlighted. Summing up τinit and ∆τ(1000) for the case n = 1000, if δ ≤ 7

then τinit + ∆τ(1000) for SSRep is greater than τinit + ∆τ(1000) for CSRep,
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Table 6: Batch time ∆τ(1000) (seconds) for the DARep approach.

δ

1 7 74 148

n

101 0.164 0.204

102 6.786 8.067 17.513

103 1185.831 1292.934 1536.186 2482.280

whereas for higher values of δ it is clear that τinit + ∆τ(1000) for CSRep is

greater than τinit + ∆τ(1000) for SSRep. Thus, from the point of view of the

modeler, if the target is to optimize the total simulation time, it is the value of

δ that determines which approach is more convenient to adopt between SSRep

and CSRep. If system components are loosely interconnected, i.e., δ is small,

then CSRep performs better, otherwise SSRep outperforms CSRep.

Of course, also DARep fully exploits the topologies of read/write accesses,

thus outperforming SSRep, and, having no time overhead due to the special

SVs management (the channel), is always better than CSRep. Thus, without

considering compilation times, DARep is the best choice for complex systems

whatever the value of δ is.

Table 7: Compared performance D
S Cτ(k) (dimensionless ratio) between the DARep and SSRep.

δ = 10
k

1 10 100 1000 10000

n
102 0.0168 0.0378 0.104 0.156 0.195

103 0.0001 0.0005 0.004 0.042 0.223

Table 8: Compared performance C
S Cτ(k) (dimensionless ratio) between the CSRep and SSRep.

δ = 10
k

1 10 100 1000 10000

n
102 0.139 0.975 4.141 7.195 7.905

103 0.002 0.016 0.118 1.052 6.696
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Table 9: Compared performance D
C Cτ(k) (dimensionless ratio) between the DARep and CSRep.

δ = 10
k

1 10 100 1000 10000

n
102 0.121 0.039 0.025 0.022 0.025

103 0.043 0.030 0.038 0.040 0.033

The final part of the comparison is carried out in terms of the Cτ(k) indicator,

for different values of k. Varying the number of batches k has an impact on the

accuracy of the simulation results, so it is a parameter to be cautiously selected,

in accordance with the criticality of the system under analysis and of the purpose

of the analysis itself. Tables 7, 8 and 9 show the results of DS Cτ(k), CS Cτ(k) and

D
CCτ(k), respectively, keeping δ fixed at 10. From Table 7, it can be immediately

concluded that the DARep approach is always better than SSRep. From Table 8,

a similar trend already observed between CSRep and SSRep at varying δ is

shown also at varying k. In fact, at increasing k, CSRep initially outperforms

SSRep (also depending on the value of n), but then it is the reverse. Actually,

the assumed value for the dependency degree (δ = 10) in this evaluation is

already rather high for having CSRep really competitive with respect to SSRep.

Last, Table 9 shows values of DARep always much better than those of CSRep

(between 30 and 40 times better for the highest values of k and n).

7.4. Final Discussion

Some final remarks on the conducted comparison study are drawn in the

following. The performance of all the three approaches is affected by the size

of the system and by the number of simulation batches: not surprisingly, the

obtained values degrade at increasing of both n and k. With respect to the

other considered parameter, namely the topology of interaction that is a key

aspect of complex systems, the behavior among the three replication solutions

is diversified. The SSRep approach is insensitive to δ, which results in high

values of the initialization time τinit and in quite high values of the batch

simulation time: that grow higher than 8 hours and about an hour and a half,
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respectively, when n is 1000 and k is 1000. CSRep exploits not only the topology

of interactions but also the fine grained topology of read/write accesses with the

channel mechanism. The benefits on the initialization time τinit are great (just

22 seconds for the highest considered values for δ and n), but correspondingly

the overhead required to manage the channel grows significantly (up to around

60 hours when δ is 74 and n is 1000). Therefore, CSRep outperforms SSRep

when the dependency degree is low (which is however not uncommon in relevant

application sectors, such as in power grid systems, as already discussed in [19]).

Applying a totally different idea as done by the DARep approach, which relies

on an external Perl program in its implementation in Möbius, the performance

is greatly improved: DARep is always the best in all the Tables showing the

evaluation results, whichever be the values of δ, n and k. However, it might suffer

from long compilation times, although it has to be reminded that a recompilation

is needed only when there are changes in the structure of the template model

and/or in the interdependency topology.

From this study, we believe useful insights are provided to modelers facing

model-based reliability/dependability evaluation of large, interconnected systems.

On the basis of the characteristics of the system under analysis, the choice of the

most appropriate modeling replication approach can be performed, so to make

the assessment more efficient and affordable at the requested degree of accuracy.

The gained knowledge is also useful to reflect on the opportunity of performing

modifications to the Möbius implementation that could bring benefits to (all or

some of) the considered replication approaches. For example, as already observed

in Section 7.3, the current implementation of the Rep operator in Möbius shows

inefficiencies [32], with negative impact especially on those approaches that make

heavy use of Rep. This is an aspect on which the Möbius developers are planning

to improve in a next release of the tool, but from this study they could find

inspiration also for other enhancements.

Finally, this study is an helpful guideline to reproduce a similar investigation

in a modeling environment different from Möbius, but still amenable to realize

implementations of SSRep, CSRep, and DARep. The expectation is that the
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major theoretical observations presented in Section 5.4 will be equally confirmed.

Of course, it is likely that the results of performance indicators will differ; e.g.,

the values combination of system size and dependency degree which lead SSRep

to outperform CSRep could be different, as well as the extent of the variation in

efficiency among the three approaches.

8. Conclusion

This paper addressed template-based non-anonymous replication in systems

composed by large populations of interconnected components, when simula-

tion-based solvers are used. Since the demand for non-anonymous replication

comes from a variety of key sectors for our society and economy, it is very

important to understand the efficiency of the available solutions when copying

with real-size systems, so to make the most appropriate choice.

Specifically, the study focused on the major solutions currently available,

which are the State-Sharing Replication (SSRep), Channel-Sharing Replication

(CSRep) and Dependency-Aware Replication (DARep) approaches. These are

general mechanisms, applicable to any modeling and evaluation environment

that supports automatic replication and composition of submodels based on

sharing state variables. First, a rigorous formalization framework has been

proposed, which embeds the concepts at the basis of modeling non-anonymous

replication, suitable to express in a coherent format the adopted replication

approaches. Then, a comparison among the approaches has been performed to

better understand their peculiarities and expected performance. Both theoretical

reasoning, based on the definition of the approaches, and a quantitative evaluation

based on an implementation of the three solutions in the Möbius modeling

environment has=ve been carried out. Indicators representative of the execution

and initialization time of the Möbius terminating simulator have been computed

on a generic client-server application.

Several scenarios, characterized by different values of the number of replicas,

the dependency degree and the number of simulation batches, have been analyzed.
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From the simulation results, strengths and weaknesses of the compared

approaches are highlighted. The SSRep and CSRep approaches have peculiar

trends: when the system size is large but the dependency degree is small, CSRep

performs much better, but the situation reverses at increasing the dependency

degree. DARep shows the best performance, although its compilation time needs

to be accounted for, as discussed in Section 7.

This study can inspire work in several directions.

Implementing SSRep, CSRep and DARep in a modeling environment different

from Möbius would bring further feedback on the implications of the underlying

technological choices provided by the adopted tool. Although Möbius is a widely

used framework for dependability and performance analysis, it is not the only

one; thus, extending the proposed replication mechanisms to other stochastic

model-based frameworks would enlarge the population of modelers who would

take advantage of them. One example can be GreatSPN [33, 2].

A more long term objective would be to define and making native in the

adopted evaluation tool the auxiliary functions Index() and Deps() and the

operator D. This is expected to improve the efficiency with respect to solutions

built on top of the tool operators/features, as done so far. Compared to DARep,

such a smart replicator operator would avoid resorting to the many files now

needed, which require increasing (and possibly prohibitive) compilation time at

increasing the number of replicas and their dependency degree.

Finally, the knowledge gained from the detailed inspection of the considered

replication approaches and the related comparison study could trigger the

definition of new solutions, in the attempt to further mitigate weak behaviors.

The formal context has the ingredients to express other formulations of replication

techniques based on composition and state-sharing features

Appendix A. Named Replication in Möbius

In this Appendix, the feasibility of the proposed approaches is illustrated,

resorting to the SAN formalism and the Möbius framework. Using the case

34



study in Section 6 for n = 100 and δ = δSi = 74, the general steps each approach

consists of are first detailed. Then, the models for the case study are described.

Appendix A.1. Overview of the Möbius Modeling Framework

The Möbius modeling framework and its supporting tool Möbius [3] are briefly

recalled in the following. Our models are defined using the SAN formalism [28],

a stochastic extension of Petri nets based on the following primitives: plain and

extended places (blue and orange circles) represent SVs, timed and instantaneous

activities (hollow and solid vertical bars) with linked input and output gates

(triangles pointing left or right) represent actions. Extended places represent

complex data types (like int, float, double, structures and arrays). Input gates

control when an activity is enabled. The delay between enabling and completing

of timed activities is a generally distributed random variable, whereas enabling

and completing of instantaneous activities take place at the same time. SVs

changes occur when an activity completes, as defined by the input and output

gates. The SAN primitives are defined by C++ statements, supporting external

C++ data structures and the linking to external C++ libraries.

In Möbius, the Join and Rep state-sharing compositional operators [28] are

supported at level of AFI [23, 3] as already described in Section 4. The auxiliary

functions Index() and Deps(), and the operator D are implemented through a

Perl program [34, 20] which manipulates the xml files describing the models

defined in Möbius.

Appendix A.2. State-Sharing Replication Implementation

The SSRep approach can be implemented in the Möbius framework by

defining the composed model M sys as depicted in Figure 1a, where:

• The Rep operator automatically constructs the overall system model M sys,

composed by the indexed replicas Mi of the template M ss, as in (8).

• The template M ss is defined by the Join operator as in (6) composing

the atomic SAN M, which represents Cg, and the atomic SAN I, which

initializes the place Index shared among the M and I but local to M ss.
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Independent from case study

Dependency-related SV

Figure A.4: The SSRep approach: template SAN model M defining the generic component for

the case study described in Section 6.

The action tInit of (6) and the steps in (9) are implemented by the activity t

and the output gate Init, as shown in Figure 1b. When t completes, one token is

removed from the places Start (local to M ss) and Count (shared among replicas),

and the C++ code of Init is executed: Index–>Mark() = Count–>Mark().

The SVs V h0 , . . . , V
h
n−1 listed in (8), are automatically implemented by an

n-sized array-type extended place W defined in the model M and shared among

all Mi, such that the i-th entry of W , obtained with W–>Index(i)–>Mark(),

corresponds to V hi . In M shown in Figure A.4, there are two n-sized array-type

extended places Demand A and Up, representing the dependency-aware SVs.

Each action bk in (6) is implemented by an activity and the linked gates.

The place Index can be used to define parameters of activities and gates. For

example, one of the 5 actions in Figure A.4 is implemented by the activity

TUpdD A, with rate defined as a function LambdaDA(Index–>Mark()) of the

place Index, and the gates is A, Go, IncrD A and DecrD A.

The topology T is modeled by C++ constant data structures defined

at compilation time, e.g., ∆h is a C++ array of n different-sized arrays of

short. Thus, for example, in M shown in Figure A.4, the entries of the

place Up that are accessed by a replica of M are obtained by scanning the

array ∆h[Index–>Mark()], i.e., by Up –>Index(∆h[i][k]) –>Mark() for k =

0, . . . , δhi − 1, with i = Index–>Mark().
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Independent from
case study

Dependency-related SV

Figure A.5: The CSRep approach: template SAN model M defining the generic component

for the case study described in Section 6.

Appendix A.3. Channel-Sharing Replication Implementation

The CSRep approach can be implemented in the Möbius framework by

defining the composed model M sys as depicted in Figure 2, where:

• Like for the SSRep approach, the Rep operator automatically generates

the overall model M sys, composed by the replicas Mi of M cs, as in (12).

• The template M cs is defined by the Join operator as in (10) composing

three models: M, which represents Cg, I, which initializes the the place

Index (local to M cs), and the composed model CHANNEL, which models

the channel and the related read and write operations.

• The model CHANNEL is defined by the Join operator composing the

atomic SAN models WRITECHANNEL and READCHANNEL that are

used, respectively, by the sender replica to write the data into the channel

and by all the destination replicas to read the data from the channel.

The δh local SVs necessary to represent ∆h
i , as listed in (12), are automat-

ically implemented by an δh-sized array-type extended place W defined in M

and local to each Mi. Therefore, the r-th entry of W on Mi, obtained with

W–>Index(r)–>Mark(), corresponds to V hj with j = ∆h
i [r], as defined in (10).

For example, in Figure A.5, Demand Aj and Up Aj are two local δh-sized

array-type extended places representing the dependency-aware SVs. Moreover M

also includes, as defined in (10), the place ToChannel, which is local to M cs and
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(a)

Independent from case study

Dependency-related SV

(b)

Figure A.6: The CSRep approach: SAN models WRITECHANNEL (a) and READCHAN-

NEL (b) used respectively to write and to read the shared data into the channel.

shared with the model CHANNEL. At completion of the activity TUpdD A when

the output gate DecrD A updates one of the entries of Demand Aj, then it also

sets the place ToChannelToChannel–>Mark() = 1, triggering the activation of

the model WRITECHANNEL.

The composed model CHANNEL is used to send the values of the depen-

dency-aware SVs of a replica of M to other replicas. Each time a depen-

dency-aware SV is updated, the following steps are performed:

1. the model WRITECHANNEL writes the new values (the data) in the

channel and locks the channel (the channel is busy),

2. the model READCHANNEL of each destination replica updates the SVs

of the replica with the data received from the channel,

3. the model READCHANNEL of the last destination replica that received

the data unlocks the channel, which can be used to transmit new data.

Figure A.6a and A.6b depict respectively WRITECHANNEL and READ-

CHANNEL, when two dependency-aware SVs Demand Aj and Up Aj are con-

sidered for the case study described in Section 6. The place Channel implements

an extended version of the channel given in (11). Thus, the values of both

Demand Aj and Up Aj can be synchronized at the same time.

The activity tw and the output gate wChannel implement the action write

in (10), in particular the enabling condition defined in (13) and the SV changes
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in (14), which update and lock the channel. The activity tupd with the ouptut

gates Read and Upd implement the action read in (10), in particular in Read the

enabling condition defined in (15) and in Upd the SV changes defined in (16).

Appendix A.4. Dependency-Aware Replication Implementation

The DARep approach can be implemented in the Möbius framework through

the following steps, listed in order of execution:

1. Manual or automatic definition of the dependency topology associated to

each dependency-aware SV, as in (1), and of the parameters of the system.

2. Automatic generation, based on the dependency topology and on the

parameters of the system, of the C++ user defined library of Möbius.

3. Manual definition of the template atomic SAN model Mdarep that repre-

sents the generic component, as in (17).

4. Automatic generation of the atomic models Mi, as in (18) and (20).

5. Automatic generation of the list J shared of the replicas of the depen-

dency-aware SVs shared among Mi, as in (20) and (21).

6. Automatic definition, using the outputs of the steps 4 and 5, of the

composed model obtained through the operator Join, as in (20).

In [20], where DARep was initially proposed, the above automatic steps 2, 4, 5

and 6 were implemented through a XQuery script and run on the XQilla tool.

However, since efficiency is of utmost relevance given the high numbers of files

involved, in this paper a new Perl script, denoted by Dperl, is proposed to

implement such steps. We verified that the new script is faster than the XQilla

one by around one order of magnitude.

Using the results of step 1, step 2 implements ∆h
i , for each i, h with a different

C++ constant array of short and the other system parameters with C++ data

structures, like arrays, records and plain types. These C++ data structures,

statically defined at compilation time, are automatically generated and included
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in the user defined library supported by Möbius, and then they can be used

in each model defined in the tool. Steps 4, 5 and 6 implement the function D,

as in (20). Each model generated at steps 4 and 6 is defined in an XML file,

automatically generated with XML::LibXML, a Perl Binding for libxml2, using

the dependency topology described with an XML input file defined at step 1.

Each time the template SAN model undergoes updates at steps 1 or 3,

implying changes either in the dependency topology or in the number of replicas

n, steps 4, 5 and 6 must be repeated, to update the resulting XML files and

C++ files. Consequently the overall model must be compiled again.

Figure 3 depicts the left part (the overall picture is omitted for the sake

of space) of the composed model M sys automatically generated at step 6, as

in (20), for the case study described in Section 6, for n = 100 and δ = 74.

The SAN models SANSANDARep0, . . . ,SANSANDARep99 (their names are

obtained merging the name SAN of the template, the string SANDARep and

the index of the replica) are the models automatically generated at step 4,

corresponding to the replicas Mi, i = 1, . . . , n− 1, as in (18) and (20).

At step 4, a place is automatically generated in each Mi for each entry of

the array ∆h
i associated to V h. The name of each place V hDRSVDARepj is

obtained merging the name V h, the string DRSVDARep and the index j of the

replica V hj that the place represents. Thus, these places model only the replicas

of each dependency-aware SV that are accessed by Mi, as defined in ∆h. These

places are also shared among the replicas Mi by the Join operator, as defined in

the list J shared automatically generated at step 5.

Figure A.7 shows the SAN model SANSANDARep0 generated for the 0-th

replica M0. The bottom of the figure is omitted for the sake of space. Thus, only

Demand ADRSVDARep0 and Up ADRSVDARep0 are shown of the 75 replicas of

the SVs Demand A and Up A that are accessed by the model SANSANDARep0.

The template model Mdarep defined at step 3 is an atomic SAN model, where

either plain or extended places are used to represent dependency-aware SVs.

The functions Index() and Deps() are implemented by two C++ functions,
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Figure A.7: The DARep approach: upper part of the SAN model SANSANDAREP0 cor-

responding to the 0-th replica M0 generated from the template Mdarep defining the generic

component for the case study described in Section 6 with n = 100 and δ = 74.

that can be only used in the SAN template model, as follows:

SANSANDARep::Mdarep::Index(),

SANSANDARep::Mdarep::V h–>Deps(s), (A.1)

where the strings SANDARep and Mdarep are C++ namespaces introduced to

avoid names conflicting with Möbius C++ code.

The C++ statement SANSANDARep::Mdarep::Index() is replaced in each

atomic SAN generated at step 4 by the actual index of the modeled replica.

The C++ statement SANSANDARep::Mdarep::V h –>Deps(s) refers to the

place ∆h(s), as defined in (19). Without the index s, this statement can be used

to pass to each user defined C++ function the list of references to all the places

of ∆h for the current replica of Mdarep, to access the values of these places.

In each atomic SAN model Mi generated at step 4, the statement SANSAN-

DARep::Mdarep::V h –>Deps(s) is replaced by

SANDARep::Mdarep::rep(s).V h(), (A.2)

where the C++ object rep calls the actual method that returns the reference to

the place V hDRSVDARepj |j = ∆h
i (s), automatically defined in the generated

SAN Mi. Moreover, in each SAN primitive where this statement is used (e.g., in

the enabling condition of an input gate), all the actual names of the automatically

generated places modeling ∆h
i are included in the primitive through a call to a

dummy empty function having all these names as arguments. This is needed
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because the links among SAN primitives (e.g, the activities) and places in the

Möbius tool are statically defined when the C++ code describing the model is

generated, based on the names of the places. Thus, for example, an enabling

condition defined by a statement that accesses a place by reference, like the

statement in (A.2) generated by DARep, is checked at each update of the place

only if the enabling condition includes also the name of the place.

The C++ code (definition of classes and initialization of objects and constants)

used to implement the method called by rep() in (A.2) and that relies on the

dependency topology, is automatically generated and included in each submodel

at step 4. In particular, the code to initialize the object resulting from rep()

with the array of the pointers to the places modeling the array ∆h
i , is included

in the field “Custom Initialization” of each SAN; thus, the C++ data structures

are set before the model simulation starts.

Finally, notice that the Perl-based implementation of DARep introduces a

time overhead at generation time of the atomic and composed models (steps 4, 5

and 6) and at compilation time, due to the number n of the atomic models and

to the size of the composed model. In particular, for very large values of n and

δi, the time required for the generation and compilation of the composed model

could have a relevant impact on the efficiency of the model evaluation.

Appendix A.5. SAN Models Representing the Case Study

For each approach SSRep, CSRep and DARep, the SAN model representing

the generic component is composed by two parts, one for the service A and one

for B. For the sake of brevity, only the part modeling the service A is described.

The part modeling the service B is obtained duplicating all the primitives ending

with “ A” (and the related arcs) and replacing the occurrence of “ A” with “ B”

at the end of each string.

As shown in Figure A.4, A.5 and A.7, the template SAN models defined for

all the considered replication approaches have a similar structure (excluding the

SAN models used for the channel in the CSRep approach). They mainly differ in

the definition of the index and of the dependency-aware SVs, and in the channel
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used for the CSRep approach. In particular, the demand DS,i(t) and the state

(working or down) associated to the generic node i are modeled in the template

SAN by the following dependency-aware SVs:

• the extended places Demand A (n-sized array of double) and Up (n-sized

array of short), that are shared among all the replicas, for SSRep,

• the extended places Demand Aj (δh-sized array of double) and Up Aj

(δh-sized array of short), that are local to all the replicas, for CSRep,

• the double-type extended place Demand A and the place Up A, that replace

V h in (A.1), for DARep.

The double-type local extended place TTR models the value T thresholdS,i −

T overcS,i (t), used to set the deterministic time to reboot, represented by the activity

TTRBT, when the demand overcomes a pre-set threshold. The double-type local

extended place Te models the instant of time when the demand overcomes a

pre-set threshold, used to evaluate the new value for TTR when the demand

returns below the threshold.

The activity TUpdD A and the associated cases model respectively the ran-

dom time to update the demand DS,i(t) and the probability Pincr (upper case

0), depending on the value of the local place Trend A (if it is 1 the demand

trend is increasing). The output gate DecrD A updates the demand each time

it decreases and also updates the value of TTR to TTR–>Mark()- BaseMod-

elClass::LastActionTime+Te–>Mark() (the current value of TTR minus the

current time plus the time when TTRBT has been enabled), if the demand

returned below the threshold for both services. The activity TTRCV, enabled

when the service A on the node is working, models the random time to failure

of the node. The rate of this activity is marking depending, being a function of

the demand DS,i(t). At completion of TTRCV, when a failure occurs, 1 token is

added to the place Rcv to enable the activity TRCV that models the duration

of the recovery. The activity TRBT models the duration of the reboot. At

completion of TRBT the reboot ends successfully with probability c associated
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to the lower case 2, when one token is added to the short-type place NRBT

counting the number of successfully reboots, otherwise the reboot is considered

failed, and 1 token is added to the place Rcv to enable the recovery action. The

recovery is also enabled, selecting case 1, when at completion of TRBT the

value of NRBT is greater than nrcv. The place React is used to reactivate the

activity TTRCV each time the demand DS,i(t) is updated. Finally, with the

CSRep approach, the places isUp, isDem A, isTransDem A and TransDem A,

shared among the SAN models shown in Figure A.6a and A.5, are used to set

the information that has to be transferred with the channel (for example, isUp

is equal to 1, if the place Up Aj has been updated).

Appendix B. Acronyms and Symbols

AFI Abstract Functional Interface 7

SAN Stochastic Activity Network 10

SV State Variable 8

aki Specific component action, defined in Section 3.1 9

ak Generic component action, defined in Section 3.1 8

C
S Cτ(k) Compared simulation performance between CSRep and SSRep with k

batches, defined in (23) 26

D
CCτ(k) Compared simulation performance between DARep and CSRep with k

batches, defined in (24) 26

D
S Cτ(k) Compared simulation performance between DARep and SSRep with k

batches, defined in (22) 26

Cg Generic component of the system, defined in (2) 7

Ci i-th specific component of the system, defined in (3) 7

CSRep Channel-Sharing Replication 3

DARep Dependency-Aware Replication 3

D DARep operator 18

δh Maximum dependency degree for V h, defined in Section 5.2 15

δ̂hi Number of Ci that can access to V hj , defined in (1) 8
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δhi Dependency degree of component i for V hi , defined in (1) 8

∆h
i List of components j from which the component i can read/write V hj ,

defined in (1) 8

∆τ(k) Amount of CPU time to run k batches of the Möbius simulator 26

Deps() Auxiliary function used in DARep 18

Index() Auxiliary function used in DARep 18

Join Join operator, example in (4) 11

J shared List of shared SVs used in DARep 39

M cs Template model for the CSRep approach, defined in (10) 15

Mdarep Template model for the DARep approach, defined in (17) 18

Mi i-th specific model representing Ci 9

M ss Template model for the SSRep approach, defined in (6) 13

M sys Overall system model 10

M t Template model to represent a generic component 9

n Number of system components 7

nS Number of virtual machines hosting a server for service S 26

Rep Replication operator, example in (5) 11

SSRep State-Sharing Replication 3

τinit Amount of CPU time to initialize the Möbius simulator 25

τ(k) τinit + ∆τ(k) 25

T h Adjacency matrix representing the topology of interactions based on

V h, defined in Section 3.1 8

V h Generic template SV, defined in Section 3.1 8

V hi Specific template SV, defined in Section 3.1 8
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level abstract functional interface, in: T. Field, P. G. Harrison, J. Bradley,

U. Harder (Eds.), Computer Performance Evaluation: Modelling Techniques

and Tools, Springer, Berlin, Heidelberg, 2002, pp. 31–50.

[24] J. Hillston, A Compositional Approach to Performance Modelling, Cam-

bridge University Press, New York, NY, USA, 1996.

[25] G. Clark, W. H. Sanders, Implementing a stochastic process algebra within
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