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ABSTRACT
This paper presents a corpus of deep features extracted from
the YFCC100M images considering the fc6 hidden layer ac-
tivation of the HybridNet deep convolutional neural net-
work. For a set of random selected queries we made available
k-NN results obtained sequentially scanning the entire set
features comparing both using the Euclidean and Hamming
Distance on a binarized version of the features. This set of
results is ground truth for evaluating Content-Based Image
Retrieval (CBIR) systems that use approximate similarity
search methods for efficient and scalable indexing. More-
over, we present experimental results obtained indexing this
corpus with two distinct approaches: the Metric Inverted
File and the Lucene Quantization. These two CBIR sys-
tems are public available online allowing real-time search
using both internal and external queries.
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1. INTRODUCTION
Deep learning methods are“representation-learning meth-

ods with multiple levels of representation, obtained by com-
posing simple but non-linear modules that each transform
the representation at one level (starting with the raw in-
put) into a representation at a higher, slightly more ab-
stract level” [20]. Starting from 2012 [19], Deep Convolu-
tional Neural Networks (DCCNs) have attracted enormous
interest within the Computer Vision community because of
the state-of-the-art results achieved in image classification
tasks. The relevance of the internal representation learned
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by the neural network during training have been proved by
recent works. In particular, the activation produced by an
image within the intermediate layers of a DCNN can be used
as a high-level descriptor of the image visual content [26, 10,
12, 24].

The Yahoo Flickr Creative Commons 100M (YFCC100M)
[28] dataset was created in 2014 as part of the Yahoo Web-
scope program1. The dataset consists of approximately 99.2
million photos and 0.8 million videos, all uploaded to Flickr
between 2004 and 2014 and published under a Creative Com-
mons commercial or non-commercial license. Metadata are
publicly available through the Yahoo! Webscope.

The importance of having a very large dataset of pub-
licly available features has been proven by the Content-based
Photo Image Retrieval (CoPhIR) [11] released on 2009, which
has been used by many scientists working in the field of very
large scale similarity search algorithms [16, 22, 17, 6]. The
CoPhIR dataset consists of MPEG-7 features extracted from
about 107M Flickr images. Considering that the extracted
deep features are very high dimensional, consisting of vec-
tors having 4,096 dimensions, and that the total size of the
dataset is close to one hundred million, building an index
that is able to interactively respond to similarity queries us-
ing limited computing and storage resources is a significant
challenge.

In this paper, we present: the deep features extracted from
the YFCC100M images [1] considering the fc6 hidden layer
activation of the HybridNet DCNN [29]; two sets of ground
truth k-NN results using the Euclidean distance and a simple
but effective binarization approach [4] that allows compact
representation and fast comparison using the Hamming dis-
tance; two online Content-Based Image Retrieval (CBIR)
systems indexing the whole corpus [8, 2].

The two CBIR systems use two very different approach:
the Metric Inverted File (MI-File) (Section 4.1.1) and the
Lucene Quantization (Section 4.1.2). The MI-File is a per-
mutation based method that uses inverted files for fast ap-
proximate similarity search. The Lucene Quantization (LuQ)
exploits the sparsity of the deep features using a quantiza-
tion approach to allow text encoding. In Section 4 we report
experimental results on both. The results show that MI-File

1https://webscope.sandbox.yahoo.com/
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Figure 1: Content-Based Image Retrieval Example using the presented HNfc6 features.

is more effective and efficient. However, the simplicity of
the LuQ and the use of a standard text search engine (i.e.,
Lucene) could made it preferable in many scenarios. More-
over, LuQ allows text (over the metadata) and/or content-
based image searchers.

2. RELATED WORK
Deep Convolutional Neural Networks (DCNNs) have re-

cently become state-of-the-art approach for many computer
vision task such as image classification [19, 27],image re-
trieval [15, 10, 24, 19, 27]and object recognition [15]. The
use of the activation of intermediate layers as a high-level
descriptor of the image visual content has been also proven
effective by many recent works [26, 10, 12, 24].

Rectified Linear Unit (ReLU) is part of almost all of the
DCNN models and is typically applied also for extracting
deep features from images [15, 12]. However, there are works
in which the ReLU was omitted [26, 10, 24]. The L2 Nor-
malization of the feature in order to and compare using the
Euclidean distance is a standard de-facto for deep features
[26, 12]. It is worth to mention, that the resulting ranking of
similarity search is equivalent to the cosine similarity. Prin-
cipal Component Analysis has been successfully used in [25,
10].

The Multimedia Commons initiative is an effort to develop
and share sets of computed features and ground truth anno-
tations for the Yahoo Flickr Creative Commons 100 Million
dataset (YFCC100M), which contains around 99.2 million
images and nearly 800,000 videos from Flickr, all shared un-
der Creative Commons licenses. An in depth presentation
of the dataset is given in [28].

When we started the research work reported in this pa-
per, the deep features extracted from YFCC100M presented
in [23] were not yet available through the Multimedia Com-
mons Initiative [3]. Thus, in this paper we don’t make a

comparison. We believe that having two distinct sets of fea-
tures and the two online CBIR systems we presents in this
paper will allow comparison.

3. THE HNFC6 DEEP FEATURES
HybridNet is essentially the AlexNet [19] DCNN trained

on both the ImageNet subset used for the ILSVRC competi-
tion, and the MIT Places Database [29] commonly used for
Scene Recognition. The training set of HybridNet consists
of 3.5 million images from 1,183 categories. We extracted
the features using the trained model public available for the
popular Caffe framework [18]. Many deep neural network
models and in particular trained models are available for
this framework at2.

We chose the HybridNet for several reasons: first, its ar-
chitecture is the same as the famous AlexNet [19]; second,
the HybridNet has been trained on the ImageNet subset used
for ILSVRC competitions (as many others) and the Places
Database [29]; last, but not least, experiments conducted
on various datasets demonstrate the good transferability of
the learning [29, 12, 9]. Originally proposed in [29], Hybrid-
Net has been used in [29, 12, 9]. The results reported in
[12] show that deep features extracted from the HybridNet
outperforms various architectures trained only on ImageNet,
on both InriaHolidays and OxforBuilding benchmarks. On
the UKBench and better performance were obtained by the
VGGNet [27] while AlexNet was preferable on the Graphics
[13] benchmarks. We believe that overall the HybridNet is
a good choice for deep features because of the larger set and
diversity of training set.

We decided to use the activation of the first fully con-
nected layer (i.e., fc6 ) given the results reported in [15, 10,
12]. It is worth to mention that the activation of the second
fully connected layer (i.e., fc7 ) can be obtained from the fc6

2https://github.com/BVLC/caffe/wiki/Model-Zoo
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activation with a simple matrix operation using the weights
and biases that we made public available at [1]. In the rest
of the paper we call these features HNfc6.

Rectified Linear Unit (ReLU) is part of almost all of the
DCNN models and is typically applied also for extracting
deep features from images [15, 12]. However, there are works
in which the ReLU was omitted [26, 10, 24]. The L2 Nor-
malization of the features in order to compare by using the
Euclidean distance is a standard de-facto for deep features
[26, 12]. It is worth to mention, that the resulting ranking of
similarity search is equivalent to the cosine similarity. Prin-
cipal Component Analysis has been successfully used in [25,
10].

The deep features we present are 4,096 dimensional L2
Normalized vectors corresponding to the activation of the
neurons of the HybridNet fc6 layer after the ReLU. This
activation function, which is part of the HybridNet Convo-
lutional Neural Network, simply sets to zero all the elements
of the vectors that are negative. The distance used to com-
pare is the Euclidean (aka L2 distance). The deep features
made available through the Multimedia Commons Initiative
have been extracted after the ReLU given that this is the
standard approach. However, through our website, we also
give the values obtained without the ReLU.

3.1 Binary Features
In [4], a simple binarization of deep features was shown to

lead to a negligible performance drop for both classification
and detection. In particular, PASCAL-CLS performance
was nearly identical before and after binarization for both
fc6 and fc7 fully-connected layers. This binarization consists
in encoding the positive values of the activation as 1s, while
zeros and negative (in case values have been extracted before
ReLU) values as 0s. We evaluated k-NN results also for these
features using the Hamming distance.

We conducted our own experiments on INRIA Holidays
using both the deep features L2 Normalized and their bina-
rization. For this specific task the binary features performed
even better than their float counterpart obtaining a mAP
of 0.76 against the 0.75 obtained by the original features.

3.2 k-NN ground truth results
On [1], we report the results obtained for k-NN queries on

1,000 randomly selected images with k = 10, 001. An ex-
ample of the results available on our site is given in Figure
1. The webpage in the figure reports the results obtained
comparing the HybridNet fc6 Deep Features after the ReLU
and using the Euclidean Distance. From the website, it is
also possible to see the results comparing the features be-
fore the ReLU activation function and also considering the
binarization described before.

3.3 Statistics
In this Section, we report some statistical information for

the deep features we extracted. We first show some statistics
about the sparsity of the proposed deep features. In Figure
2, we report the cumulative distribution function and prob-
ability density function for the number of positive values.
Please note that we made available features before and af-
ter the ReLU and that these statistics are the very same for
both. In particular, the amount of positives has: min=221,
mode=919, median=972, mean=972 and max=2,201. The
results show that on average, each image has about 25%
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Figure 2: Cumulative distribution function (probability den-
sity function as dotted line with secondary vertical axes) of
positive values per deep features.
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Figure 3: Cumulative distribution function of percentage of
positives per element (single dimension) of the 4,096 dimen-
sional presented deep features.

of positive elements between the 4,096 values of the feature
vector. Thus, the ReLU-L2Norm vectors are quite sparse in
the population sparsity sense [21]. The sparsity of the fea-
tures vector is relevant for indexing using inverted files. As
an example, the LuQ approach presented in Section 4.1.2,
leverage on this. Moreover, for the binarized features (see
Section 3.1 these statistics report the distribution of one and
zeros.

In Figure 3, we consider each vector component (i.e., each
neuron in the fc6 layer) individually. We report the cumula-
tive distribution related to the percentage of positives for an
element all over the YFCC100M dataset. The graph shows
that 10% of the elements have positive values for only 5%
of the images, while 10% of elements are positive in at least
40% of the images. Thus, there are 10% of neurons that are
activated only on 5% of the images while a distinct 10% is
active in more than 40% of the images. In other words, while
population sparsity holds (has seen before), lifetime sparsity
and high dispersal [21] can’t be considered properties of this
feature.
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Figure 4: Cumulative distribution function (probability den-
sity function as dotted line with secondary vertical axes) for
both Euclidean and Hamming distances

In Figure 4, we report the cumulative and probability den-
sity functions for both the Euclidean distance applied to the
HNfc6 features (a) and the Hamming distance applied to
their binarization (b) as reported in Section 3.1. The Figures
show near Gaussian Distribution for both distances with the
Hamming even more Gaussian.

In Table 1, we report the metric space intrinsic dimen-
sionality [14] defined as µ2/(2σ2), and other information
also related to these distributions. The statistics show, as
expected, a lower intrinsic dimensionality for the binarized
features that should then be easier to index for similarity
search.

The ReLU-L2Norm features in conjunction with the Eu-
clidean distance appear to be very hard to index. The curse
of dimensionality is revealed in the graph and confirmed by
the high intrinsic dimensionality. On the contrary, the Bi-
nary features combined with the Hamming distance reveal
an intrinsic dimensionality of only 35 and the distribution is
very similar to a Gaussian.

In Figure 5, we analyze the amount of intersection be-
tween the results of the 1,000 k-NN queries we performed
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Figure 5: Intersection between Euclidean and Hamming k-
NN results varying k used for the k-NN search (with and
without the query in the dataset).

by sequentially scanning the dataset for the aim of creat-
ing the ground truths that we made public available on our
website. We compare the results obtained with the ReLU-
L2Norm and Binary features reporting the average inter-
section varying k. We also considered the cases in which
the query is between the results or is removed. The most
interesting curve is the one in which we do not consider the
query itself in the results. We obtained an intersection of
about 40% for k between 1 and 1,000.

Table 1: Distance-Related Statistics

Euclidean Hamming
Mean (µ) 1.27 1383
Standard Deviation (σ) 0.054 164.5

Intrinsic Dim. (µ2/(2σ2)) 276 35
Mode 1.28 1388
Variance 0.0029 27057

4. ONLINE CBIR SYSTEMS
We made public available online [8, 2] two distinct systems

that allow CBIR using the proposed features.
The first CBIR system is based on the Metric Inverted

File (MI-File) technique [7]. MI-File uses an inverted file
to store relationships between permutations, and many ap-
proximations and optimizations to improve both efficiency
and effectiveness. The basic idea is that entries (the lexicon)
of the inverted file are the set of permutants (or pivots) P .
The posting list associated with an entry pi ∈ P is a list of
pairs (o,Π−1

o (i)), o ∈ C, i.e. a list where each object o of
the dataset C is associated with the position of the pivot pi
in Πo.

The second CBIR system (LuQ) [5] is based on quantiza-
tion of the features. LuQ represents each deep feature as a
text document and uses a NoSQL database (Apache Lucene)
for efficiently indexing and searching purposes. The whole
Lucene 5.5 archive of LuQ approach is also available for
download from the deep features website [1]. The advan-
tage of this representation is that can be directly queried
with Lucene by simply extracting the term vectors from the
archive.
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4.1 Performance Evaluation of the indexes
The two CBIR systems use approximate similarity search

indexes, i.e., indexes that introduce some errors in the search
results, to provide very high query execution efficiency. In
the following, we evaluate the introduced approximation us-
ing the ground truth k-NN results described in Section 3.2.

4.1.1 Metric Inverted File: MI-File
MI-File [7] is a permutation based method that uses in-

verted files to perform fast approximate execution of k-NN
queries. MI-File offers the following parameters to trade
efficiency with accuracy:

• Amplification factor amp: when searching for the k-
NN the MI-File retrieves a candidate set of k′ = amp·k
objects, reorders it according to the original distance
function, and returns the top-k objects. The larger
amp, the higher the search cost, and the higher the
accuracy.

• data object permutation length ki: the permutation
representing a data object is obtained using the ki
closest reference objects out of the total set of refer-
ence objects. The value of ki determines the number of
posting lists containing a reference to the object being
inserted.

• Query permutation length ks: the permutation repre-
senting the query is obtained using the ks closest ref-
erence objects out of the total set of reference objects.
The value of ks determines the number of posting lists
accessed during a query execution.

• Maximum position difference mpd: posting lists are
scanned considering entries referring objects whose ref-
erence objects position difference in their permutation,
with respect to the query permutation, is at most mpd.
The higher mpd, the more entries are retrieved from
the posting lists.

Please see [7] for further details on the MI-File and its
parameters usage.

Each HNfc6 feature consists of 4,096 floats. If floats are
represented with 4 bytes, an uncompressed database of 100M
features requires roughly 1.5 TB of storage space. In order
to reduce the size of the database, we binarized the features,
as described in Section 3.1. In this case, given that 4,096 bits
are stored in 512 bytes, an uncompressed database of 100M
features requires roughly just 46 GB of storage space. We
used the Hamming distance to estimate similarity between
binarized features.

In our experiments, we indexed the entire binarized HNfc6
dataset, using ki = 100. The total number of reference
objects for building permutations is 20,000. The total index
size is roughly 36 GB.

The queries were executed with amp ranging from 1 to 70.
The values used for ks ranged from 1 to 50 and mpd = ks.
We executed k-NN queries with k = 100, using the 1,000
queries of the ground truth, and performance measures were
obtained as average of the measures computed for all query.
Results are shown in Figure 6.

The upper graph shows the relationships between the num-
ber of disk blocks accessed and the quality of results. Disk
block size is 4K bytes. Every plot corresponds to different
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Figure 6: Performance of the MI-File with the YFCC100M-
HNfc6 binarized features using Euclidean distance ground
truth.

setting for amp, and the amount of disk blocks accessed was
tuned by setting the ks parameter. When indexing the bi-
narized YFCC100M-HNfc6 features, MI-File reaches a recall
of 37%, with respect to the ground truth, with a number of
disk block accesses around 30,000.

The bottom graph shows the relationships between the
number of database objects accessed and the quality of the
results. Here, the index access cost is not taken into account.
In this case, 7,000 objects out of 100M total objects have to
be accessed to have a recall of almost 37%.

However, as observed in Section 3.1, some works in lit-
erature [4], and experiments carried out by ourselves, have
shown that the binarized features are comparable and some-
times more effective than float deep features, in multimedia
information retrieval and classification tasks. The evalua-
tion above was obtained by comparing the results of the
approximate similarity search algorithms on the binarized
features against the ground truth created using the float fea-
tures and the Euclidean distance. To have a more objective
estimation of the performance of the MI-File, we compared
the obtained results with a new ground truth obtained us-
ing directly the binary features and the Hamming distance.
The process for creating this ground truth, is the same that
described above for the float feature ground truth, with the
difference that binary features and Hamming distance are
used. In particular, the 1,000 queries are the same in both
cases. Results of this additional evaluation are reported in
Figure 7. We can see that, in this case, the recall arrives up
to 75%, with the same query execution cost than before. The
approximation introduced by the index, is therefore negligi-
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Figure 7: Performance of the MI-File with the YFCC100M-
HNfc6 binarized features, using the Hamming distance over
binarized features ground truth.

ble and most of the recall drop was due to the fact that
comparison was made against the float ground truth.

It is also worth mentioning that, in this evaluation, preci-
sion is always equal to recall. In fact the denominator, in the
precision and recall definitions, is equal to the total number
of retrieved objects, which is k = 100 both for approximate
and exact search, and the numerator is always the number
of correct objects retrieved.

4.1.2 Lucene Quantization: LuQ
A convenient way of representing the HNfc6 features to

encode them in text form and use a text retrieval engine
to perform image similarity search. This approach, called
LuQ, has been presented in [5]. It exploits the quantization
of the vector components of the deep features, in which each
real-valued vector component xi is transformed in a natural
number ni given by bQxic; where bc denotes the floor func-
tion and Q is a multiplication factor > 1 that works as a
quantization factor. ni are then used as term frequencies for
the “term-components” of the text document representing
the feature vectors.

To employ this idea, in LuQ, we provide a text encod-
ing for the DCNN feature vectors that guarantees the di-
rect proportionality between the feature components and
the term frequencies. Let w = (w1, . . . , wm) denote the
L2-normalized DCNN vector of m dimensions. Firstly, we
associated each of its component wi with a unique alphanu-
meric term τi (for instance, the prefix ’f’ followed by the
numeric values corresponding to the index i). The text en-
coding doc(w) corresponding to the vector w is given by:

doc(w) =

m⋃
i=1

bQwic⋃
j=1

τi

Where bc denotes the floor function and Q is a multipli-
cation factor > 1 that works as a quantization factor3.

Therefore, we form the text encoding of wi by repeating
the term τi for the non-zero components a number of times
directly proportional to wi. This process introduces a quan-
tization error due to the representation of float components
in integers. However, as we will see, this error does not affect
the retrieval effectiveness. The accuracy of this approxima-
tion depends on the factor Q, used to transform the vector
w. For instance, if we fix Q = 2, for wi < 0.5, bQwic = 0,
while for wi ≥ 0.5, bQwic ≥ 1. In contrast, the smaller we
set Q the smaller the inverted index will be. This is be-
cause the floor function will set to zero more entries of the
posting lists. Hence, we have to find a good trade-off be-
tween the effectiveness of the retrieval system and its space
occupation.

For instance, if we fix Q = 2, for wi < 0.5, bQwic = 0,
while for wi ≥ 0.5, bQwic ≥ 1. In contrast, the smaller we
set Q the smaller the inverted index will be. This is because
the floor function will set to zero more entries of the posting
lists. Hence, we have to find a good trade-off between the
effectiveness of the retrieval system and its space occupation.

For example, if we set Q = 30 and we have for instance a
feature vector with just three components w = (.01, .15, .09)
the corresponding integer-representation of the vector will
be (0, 4, 2) and its text encoding will be: doc(w) =“f2 f2 f2
f2 f3 f3”.

Since on average the 25% of the DCNN features are non-
zero (in our specific case the fc6 layer), the size of their cor-
responding text encoding will have a small fraction of the
unique terms present in the whole dictionary (composed of
4,096 terms). In our case, on average a document contains
about 275 unique terms, which is about 6.7% of the dic-
tionary because of quantization that set to zero the feature
components smaller than 1/Q.

When we have to process similarity search, therefore the
search engine has to treat query of that size. These unusual
long queries, however, can affect the response time if the
inverted index contains millions of items.

A quite intuitive way to overcome this issue is to reduce
the size of the query by exploiting the knowledge of the tf*idf
(i.e., term frequency * inverse document frequency) statistic
of the text encoding, which comes for free in standard full-
text retrieval engines. We can retain the elements of the
query that exhibit greater values of tf*idf and eliminate the
others. For instance, for a query of about 275 unique term
on average, we can take the first ten terms that exhibits the
highest tf*idf, we obtain a query time reduction of about
96%.

This query reduction comes, however, with a price: it de-
creases the precision of results. To attenuate this problem,
for a top-k query, we reorder the results using the cosine sim-
ilarity between the original query (i.e., the one without re-
duction) and the first Cr×k candidate documents retrieved.
Where Cr is the amplification factor introduced above for
MI-File.

3By abuse of notation, we denote the space-separated con-
catenation of keywords with the union operator ∪.
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Figure 8: Performance of LuQ with the YFCC100M-HNfc6
binarized features.

In order to calculate the cosine similarity of the original
query and the Cr × k candidates, we have to reconstruct
the quantized features by accessing to the posting list of
the document returned by the search engine. This approach
does not affect significantly the efficiency of the query but
can offer great improvements in terms of effectiveness.

In Figure 8, we have reported the relationships between
the number of disk blocks accessed and the quality of re-
sults as recall and the average search time of 100 queries
of the ground truth for k=100. In both experiments, we
test the impact of the query length Lq (ranging from 10 to
50 terms) and the amplification factor Cr (ranging from 0
to 10) while Q was set to 30. When the implication factor
assumes the conventional value Cr = 0, we mean that no
reordering was used. The recall grows rapidly as the query
length Lq increases and reaches about 45% independently to
Cr. Obviously, Lq also affects the performance in terms of
block disks and consequently the query time, which is prac-
tically not influenced by Cr as the second graph show. The
query times have been obtained in an Intel Core i7 computer
equipped with a SSD disk using Lucene 5.5.0.

4.2 Discussion
The two CBIR systems that we made available are very

different. While MI-File is a permutation based method that
uses inverted files, LuQ exploits the sparsity of the deep fea-
tures using a quantization approach to allow text encoding.
Considering that both methods are approximate methods,
we have to compare the trade-off between effectiveness and
efficiency of the two approaches. The overall best perfor-
mance have been obtained with MI-File. MI-File was able
to achieve better approximation (more accurate results) for

the same number of total disk blocks accessed with respect
to LuQ. It also was able to achieve the same accuracy of
LuQ if we compare the two approaches fixing the number of
accessed blocks.

However, LuQ is simpler and use of standard text search
engine (i.e., Lucene). The overall goal of the systems we
made public available is allowing online searching of the
YFCC100M images using content-base image retrieval. The
LuQ CBIR system also allows searching using text in the
metadata and combining text and deep features. It is worth
to mention that the offline indexing is cheaper for LuQ. In
fact, the quantization is trivial, while MI-File has to com-
pare each image feature against all the permutants during
the indexing phase.

The effectiveness of the search was evaluated comparing
the results obtained by the two systems with the ones we
obtained sequentially scanning the entire corpus. In partic-
ular, we compared with the ground truth obtained with both
the binarized features (used for efficiency) and the ReLU L2
Normalized ones that is considered the standard approach
for comparing deep features. No users were involved in the
evaluation of the results. Thus, while the quality measures
we reported are useful to understand the approximation in-
troduced by the indexing methods, they can’t be considered
the overall quality perceived by the users.

5. CONCLUSIONS
In this paper, we presented the deep features extracted

from the YFCC100M images [1] considering the fc6 hidden
layer activation of the HybridNet DCNN [29]. Ground truth
k-NN results using the Euclidean distance and a simple but
effective binarization approach were also given. Moreover,
we evaluated different implementation strategies to index
deep features for large-scale CBIR datasets as YFCC100M.

The first approach, MI-File, is a native metric access meth-
ods based on permutations, which exhibits excellent perfor-
mance. The second approach, LuQ, exploits quantization of
the sparse deep feature vector for text encoding. Then, an
off-the-shelf IR engine (Lucene) is used for indexing. LuQ
has the advantage of providing multi-field search that can
be used for multimodal retrieval combining image similarity
and text (comments, tags, etc.). The two CBIR systems are
public available online at [8] and [2]. The experimental re-
sults show that MI-File outperforms LuQ. However, the sim-
plicity of the LuQ approach and the fact that it constructs
textual representation for the deep features allows the use
of standard text search engines and multimodal (text plus
images) searching.

As future work, we plan to index also the HNfc7 and VGG
features allowing direct comparison.
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