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ABSTRACT: Mitochondria dysfunctions are typical hallmarks of cardiac
disorders (CDs). The multiple tasks of this energy-producing organelle are
well documented, but its pathophysiologic involvement in several
manifestations of heart diseases, such as altered electromechanical
coupling, excitability, and arrhythmias, is still under investigation. The
human 18 kDa translocator protein (TSPO) is a protein located on the
outer mitochondrial membrane whose expression is altered in different
pathological conditions, including CDs, making it an attractive therapeutic
and diagnostic target. Currently, only a few TSPO ligands are employed in
CDs and cardiac imaging. In this Perspective, we report an overview of the
emerging role of TSPO at the heart level, focusing on the recent literature
concerning the development of TSPO ligands used for fighting and imaging
heart-related disease conditions. Accordingly, targeting TSPO might
represent a successful strategy to achieve novel therapeutic and diagnostic strategies to unravel the fundamental mechanisms and
to provide solutions to still unanswered questions in CDs.

1. INTRODUCTION
Despite significant advances in the treatment of cardiovascular
diseases (CVDs), the latter remain the leading causes of
morbidity, disability, and death, with very high social and
economic impact. CVDs are estimated to affect 471 million
people worldwide with approximately 17.6 million deaths per
year (32% of all global deaths), a trend that will increase to 24
million by 2030, which means 66 000 deaths per day.1 In
Europe, according to data from the fifth edition of the European
Cardiovascular Disease Statistics, CVDs affect more than 80
million people (48% men and 52% women) and are responsible
for 3.9 million deaths per year (45% of all causes of death).
Among CVDs, heart failure (HF) is the leading cause of
hospitalization in people over 65 and has very high mortality
rates: 1 in 25 patients does not survive the first admission, 10%
die within 30 days, and 30% die within a year of admission.
Accordingly, it is always a challenge and a relevant priority to
discover new diagnostic and therapeutic targets for cardiac
disorders (CDs). Among them, the translocator protein (18
kDa), TSPO, is an attractive emerging candidate. TSPO is an
integral membrane protein of 169 amino acids that is composed
of five transmembrane α-helical domains. In most tissues, it is
predominantly expressed in mitochondria, more specifically at
the contact site between the outer mitochondrial membrane
(OMM) and the inner mitochondrial membrane (IMM).2 The

participation of mitochondrial TSPO in a multimeric complex
known as mitochondrial permeability transition pore (mPTP)
along with other proteins, including the 32 kDa voltage-
dependent anion channel (VDAC) and the 30 kDa adenine
nucleotide translocase (ANT), is supported by some,3 but not
all, studies.4−7 A nonmitochondrial localization of TSPO has
also been described, e.g., in the plasma membrane of
erythrocytes, the nuclear and extranuclear fraction of breast
cancer cells, the nuclei of human hepatocytes, and other
organelle membranes of several cell types.8

TSPO is evolutionarily well-conserved, and it is present in
almost all organisms, suggesting a critical role in biological
processes.9 Regarding tissue distribution, TSPO is ubiquitous,
but it is mainly found in steroid-synthesizing tissues (including
adrenal glands and gonads), kidneys, nasal epithelium, lungs,
and the heart, while a lower expression is shown in the brain and
liver.8
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TSPO participates in several cellular functions, but one of the
most frequently described is the regulation of the rate-limiting
step of steroidogenesis, explaining its prominent localization at
the level of steroid-synthesizing tissues. Specifically, TSPO is
involved in the internalization of cholesterol into the
mitochondrion. In the IMM, cholesterol is converted into
pregnenolone by the enzyme CYP11A1 (cytochrome P-450
family 11 subfamily A member 1), then pregnenolone is
transported to the sarcoplasmic reticulum where it is
metabolized to steroid products.8 It has been hypothesized
that TSPO ligands stabilize the tertiary structure of the protein
and consequently facilitate mitochondrial import of cholesterol,
leading to increased steroidogenic efficiency in various
steroidogenic in vitro models.10 Interestingly, it has been
demonstrated that the equilibrium thermodynamic parameter
predicting the steroidogenic efficacy of a TSPO ligand is the
residence time to the protein rather than the binding affinity.11

TSPO is also involved in other processes related to
mitochondrial bioenergetics, such as apoptosis,12 cellular
respiration and oxidative processes,13 mitochondrial metabo-
lism,14 protein import,15 ion transport,16 immunomodulation,17

porphyrin transport, and heme biosynthesis.18

TSPO is upregulated in several cancerous tissues, including
lung, ovary, colon, prostate, and brain cancers,19 as well as in
activated microglial cells in neuropsychiatric pathologies such as
neurodegenerative diseases (i.e., Alzheimer’s and Parkinson’s
diseases). Due to this feature, TSPO has been suggested as a
biomarker of neuroinflammation20 and the progression of these
pathologies.21 Conversely, TSPO is downregulated in the brains
of patients with post-traumatic stress, anxiety, and obsessive-
compulsive disorders22 and upon repeated stress, including
noise exposure.23 Small synthetic TSPO ligands have been
developed and biologically evaluated as potential tools for
treating TSPO-related disorders, and TSPO has gained
recognition as a marker and therapeutic target of neuro-
psychiatric pathologies.

Biodistribution studies (in vivo and in vitro) using radiolabeled
ligands, e.g., [3H]-diazepam (rat and guinea-pig cardiac
membranes),24 [3H]-Ro5-4864 (7-chloro-5-(4-chlorophenyl)-
1-methyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-one), and

[3H]-PK11195 (N-methyl-N-(1-methylpropyl)-1-(2-
chlorophenyl)isoquinoline-3-carboxamide) (Figure 1), demon-
strated TSPO is also located in the heart, prevailing in the
myocardial ventricles compared to atria.25

TSPO is up-regulated upon acute electroshock in cardiac
ventricles, followed by an increase in TSPO density in the
cerebral cortex.26 Recently, TSPO has been found to be involved
in CDs and, more specifically, in ischemia-reperfusion injury
(IRI), but its exact role remains to be established.27

In the present report, an overview of the recent literature
evaluating the effects of TSPO ligands on cardiac pathophysi-
ology is presented, together with the most representative
examples of the few TSPO radioligands studied so far for
diagnosing CDs, particularly atherosclerosis, myocarditis, large
vessel vasculitis (LVV), and myocardial infarction (MI). The
discussion, moving from diagnostic to therapeutic applications,
aims to shed light on the potential of TSPO as a target to be
exploited by the scientific community to advance cutting-edge
research in the field of CDs management.

2. THE ROLE OF TSPO IN CARDIAC
PATHOPHYSIOLOGY

Several studies demonstrated that TSPO ligands may have
different cardiac effects, indicating a possible involvement of
TSPO in regulating heart physiology. Initially, TSPO has been
proposed to influence cardiac contractility and heart rate by
modulating calcium flux and ion transport, respectively.27,28

TSPO ligands decrease the calcium current and thus lower
calcium release from the sarcoplasmic reticulum, which might
explain their observed negative inotropic effects.29 The negative
chronotropic effect of TSPO ligands has been ascribed to a
decreased inward ion current during the fourth phase of the
action potential in pacemaker cells, which leads to a hyper-
polarization of the resting membrane potential.30 Further
studies have questioned the involvement of TSPO ligands in
the regulation of cardiac electrophysiology because certain
TSPO ligands are responsible for biological effects only at
concentrations that exceed their affinity values for the target, and
in these conditions they can also bind other molecular targets/
receptors.28 Thus, their resulting pharmacological effect might

Figure 1. Chemical structures of diazepam, Ro5-4864, and PK11195 and their corresponding [3H]-radiolabels.
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hardly be attributable to their specific binding to TSPO. For
example, the negative chronotropic effect of Ro5-4864 (Figure
1) might be a result of the direct interaction with calcium
channels.31 It is conceivable that inconsistencies may depend on
different experimental models, species, types of TSPO ligands,
and concentrations used.27 It is important to remark that this
complicated issue concerning synthetic TSPO ligands has been
frequently ascribed to the complexity of this protein modulating
numerous processes. It is not uncommon that a TSPO ligand
can determine different effects with reference to a specific TSPO
function depending on the experimental system employed.
Thus, the classical concept of inhibitor (antagonist) and
activator (agonist), commonly recognized for membrane
ligand/receptor systems, cannot be applied to TSPO ligands
and synthetic ligands, initially labeled as TSPO agonists or
antagonists, often revealed to produce comparable effects if
different experimental models are applied.

In addition, TSPO ligands have been proposed to exert a
protective effect in CDs by reducing reactive oxygen species
(ROS) production and preventing mitochondrial dysfunction
and stress-dependent cardiomyocyte loss.28 Together with these
possible effects, the main physiologic mechanisms involving
TSPO that have been investigated are related to the interference
with cholesterol transport and the interaction with other
mitochondrial components, as detailed below.

2.1. TSPO, Cholesterol Transport, And Oxidative
Stress. The first recognized and best-studied function of
TSPO is to facilitate cholesterol transport from the cytosol to the
IMM, a crucial step for steroidogenesis and other biological
processes.28 However, in a pro-oxidative condition, cholesterol
within mitochondria is highly sensitive to ROS attack and
autoxidation, resulting in the formation of oxysterols, which may
promote mitochondria damage, such as membrane lipid
peroxidation, increased membrane permeability and, ultimately,
cell death.32−36 The most abundant oxysterols in cardiac
mitochondria are 7α- and 7β-hydroxycholesterol (OHC), 7-
ketochol, and cholesterol epoxides, derived from 7-hydro-
peroxycholesterol. Among them, 7α-OHC, 7β-OHC, and 7-
ketochol do not promote further lipid peroxidation, while
hydroperoxycholesterol and cholesterol epoxides change the
biophysical organization of lipids and proteins within mem-
branes, thus affecting membrane fluidity.

During myocardial reperfusion following an ischemic event,
cholesterol accumulates in the mitochondrion and generates
self-oxidized oxysterols,35,36 which may be involved in the
myocardial IRI. Accordingly, Musman et al. demonstrated that
in the diabetic hypercholesterolemic rat model (ZDF fa/fa), the
increased accumulation of cholesterol, other sterols, and
oxysterols inside cardiac mitochondria dramatically exacerbated
mitochondrial impairment following ischemia reperfusion
(IR).36 A previous study showed hypercholesterolemia increases
mitochondrial oxidative stress in the porcine myocardium.37

Thus, the correlation between hypercholesterolemia and
mitochondrial damage in these experimental models underlines
the possible deleterious effects of cholesterol-derived oxy-
sterols.35,36 Besides propagating lipid peroxidation, oxysterols
contribute to oxidative stress by depleting the antioxidant
defense of cardiomyocytes, including glutathione. For example,
7-ketochol and 7β-OHC cause apoptosis via the mitochondrial
pathway by reducing cell antioxidant activity. In addition,
oxysterol can enhance the activity of superoxide-producing
enzymes, such as NADPH oxidase and xanthine oxidase, further
exacerbating oxidative stress.34,38

Interestingly, the inhibition of oxysterol accumulation as a
consequence of cholesterol accumulation in the myocardial
mitochondrial matrix through TSPO ligands was shown to exert
cardioprotective effects and rescue oxidative phosphorylation in
a lean and hypercholesterolemic murine model of IR, even if the
underlying mechanism still needs to be established.35,36

However, the available findings suggest that oxysterols, which
are produced in pathological conditions, could represent a link
between mitochondrial damage, cholesterol accumulation, and
the potential therapeutic role of TSPO ligands in CDs.

2.2. TSPO-Interacting Mitochondrial Components.
TSPO has been shown to influence the activity of other
mitochondrial components, such as the mPTP, VDAC, and
inner membrane anion channel (IMAC), that play a crucial role
in determining the fate of cardiomyocytes in acute and chronic
CDs, such as acute MI and HF.39,40

2.2.1. mPTP. The mPTP supramolecular complex is a
nonspecific channel with a cutoff of 1.5 kDa that is formed
and opens under stress conditions, triggering the so-called
mitochondrial permeability transition that is responsible for
cardiomyocyte death.41 The molecular identity of mPTP-
forming units has long been debated, yet no definitive model
has been agreed upon.4−7 Although the peptidyl-prolyl cis−trans
isomerase (PPIase), or cyclophilin D (CypD), is the only
component unambiguously involved in mPTP regulation,
TSPO, among others, has been attributed at least an indirect
facilitating role in channel opening. Cardiac IR is the main
pathological condition able to trigger irreversible mPTP
opening. Following ischemia, the lack of oxygen supply to the
mitochondrial respiration chain blocks mitochondrial ATP
synthesis. In the first few minutes of ischemia, anaerobic
glycolysis copes with the lack of oxygen, but the ATP produced
is insufficient to support cardiac activity. This process has several
consequences, such as ionic imbalance and membrane
depolarization. A cytosolic calcium overload occurs at the
expense of a decrease in mitochondrial calcium concentration.42

At first, the decreased mitochondrial Ca2+ amount is helpful as it
causes acidosis, which protects the heart from ischemic
damage43 and prevents mPTP opening. However, conditions
in favor of the latter are established, such as the decrease in
mitochondrial membrane potential and the increase in ADP and
Pi concentrations. If ischemia persists, the increased cytosolic
Ca2+ concentration activates Ca2+-dependent enzymes that
cause membrane destruction and cell death. Rapid coronary
reperfusion is the only therapeutic strategy used to date in
hospitals to treat ischemic events. However, reperfusion
paradoxically causes so-called reperfusion injury. Indeed, the
sudden supply of oxygen following a period of hypoxia promotes
an excessive production of ROS, which is also increased by the
calcium accumulated in the cytosol during ischemia. ROS are
then transported into the mitochondrion once the membrane
potential is restored. The increase in ROS and augmented
calcium concentrations lead to an increase in mitochondrial
membrane permeability, resulting in mPTP opening. As a
consequence, the proton motive force is dissipated because of
the inability of the IMM to act as a barrier toward protons; this
causes the uncoupling of oxidative phosphorylation, which in
turn results in ATP depletion and, therefore, in the exhaustion of
cellular energy.44 The increased permeabilization of the IMM
because of mPTP opening causes mitochondrial swelling,45

which is in turn augmented by several processes accompanying
postischemic heart reperfusion, such as adenine nucleotide
depletion, high phosphate concentration, and oxidative stress.44
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The main driving force of mitochondrial swelling is the
equilibration of all low-molecular-weight osmolytes between
the cytosol and mitochondria, while proteins are retained within
their respective compartments.45 Thus, the highest protein
concentration in the matrix exerts an osmotic pressure resulting
in swelling of the matrix compartment.45 Mitochondrial
swelling, followed by OMM breaking, in turn leads to the
release of pro-apoptotic signaling molecules and irreversible
mitochondrial damage.41 However, if insufficient ATP levels are
maintained, apoptotic death predominates over necrotic cell
death.45

The possible role of mPTP in CDs was first studied by
Crompton et al.,46 who showed that preventing the opening of
the pore could represent a potential target for cardioprotection
against myocardial IRI.47 Accordingly, many drugs used in
cardioprotection trials, such as sangliferin A (SfA),48 cyclosporin
A (CsA),49,50 6-MeAla-CsA, 4-methyl-val-CsA, N-methyl-4-
isoleucine-CsA (NIM811), and D-3-MeAla-4-EtVal-CsA
(Debio-025), prevent mPTP opening during reperfusion.51,52

Further works showed that the beneficial effect induced by CsA
is mediated by the inhibition of CypD,53 the 18 kDa matrix
protein encoded by the nuclear PPIF gene.49 In detail, CypD has
been proposed to sensitize mPTP by interfering with the
function of ATP synthase, a putative component of the mPTP.54

Several studies, which will be discussed in more detail below,
have reported that certain TSPO ligands act as cardioprotective
agents by preserving the physiological function of mitochondria
and preventing cell death.55−57 Other TSPO ligands have been
shown to promote mPTP opening and apoptosis regardless of
TSPO,58−60 thus suggesting that this protein does not directly
intervene in pore regulation.7 Accordingly, it has emerged that
TSPO ligands play an indirect role in mPTP opening by acting
on oxidative stress and the production of ROS as pivotal triggers
of pore opening.
2.2.2. VDAC. The VDAC, also known as a mitochondrial

porin, is found in the OMM, and one of its primary roles is the
regulation of both the input and output of mitochondrial
metabolites, ions, and nucleotides controlling the exchanges
between mitochondria and the rest of the cell. The anion
channel is closely associated with TSPO at the contact sites
between the IMM andOMM.61 VDAC isoforms 1 and 3 actively
participate in intrinsic cell death by forming a large flexible pore
that allows the release of pro-apoptotic proteins such as
cytochrome c (Cyt-c), apoptosis-inducing factor (AIF), Smac/
DIABLO, and endonuclease G.62 Furthermore, VDAC is
considered a target for proteins of the Bcl-2 family62 and
promotes apoptosis by favoring ROS overproduction in
conjunction with TSPO activity.63,64 VDAC is also involved in
mitochondrial damage and rupture since its closure causes a
defect in ATP/ADP exchange, leading to mitochondrial swelling
and breakage followed by the release of several proapoptotic
factors such as Cyt-c into the cytosol, as observed during mPTP
opening.62

TSPO ligands may exert their cardioprotective action by
increasing the stabilization of the antiapoptotic Bcl-2 in the
mitochondrial membrane at the expense of the proapoptotic
Bax, thus restraining cell death.56 In particular, TSPO ligands
hinder the interaction of pro-apoptotic proteins with VDAC at
contact sites between IMM and OMM, where TSPO, VDAC,
ANT and other proteins are located,65 thus preventing Cyt-c
release, but also limiting the production of ROS and therefore
the permeabilization of the OMM.

2.2.3. IMAC. The IMAC is a partially anion-selective channel
of the IMM found in both the heart and liver. Although its
molecular identity is still unknown, its presence was first
characterized in 1986 by Garlid and Beavis, who demonstrated
that anions like Cl−, Br−, SO4

2−, PO4
3−, etc., could cross the

mitochondrial membrane.66 The IMAC is mainly involved in
mitochondrial volume homeostasis and also plays a role in the
contractile and electrical functions of the heart. It has been
implicated in postischemic damage by promoting the generation
of arrhythmias during the reperfusion period.67,68 This occurs
due to ROS production, particularly due to a mechanism known
as “ROS-induced ROS release” (RIRR). Briefly, RIRR is a
process in which an initial release of ROS by a cellular
compartment due to oxidative stress triggers the production and
the release of ROS in other compartments.69 Regarding cardiac
damage, IMAC is thought to be activated by the production of
ROS at themitochondrial level, which in turn causes the efflux of
superoxide anions.70,71 In a study conducted in 2003,72 it was
shown that RIRR can trigger oscillations of mitochondrial
NADH and oscillatory depolarization of the IMM in
cardiomyocytes, which in turn may cause arrhythmias in the
reperfusion phase following ischemia by altering myocyte
excitability.67 In addition, it has been shown that IMAC opening
due to RIRR also influences mPTP opening.73,74 In particular,
the pore opening is triggered by the oxidation of thiols in
cardiomyocytes.74 IMAC does not participate in forming
complexes with TSPO. However, TSPO ligands limit
mitochondrial ROS production avoiding the threshold for
IMAC opening to be reached, which represents an additional
mechanism for indirect modulation of mPTP and limitation of
arrhythmias.67,68,72,75,76 TSPO ligands have also been shown to
inhibit IMAC activation in swelling assays on isolated
mitochondria,77 strengthening the assumption that they are
functionally related to each other, even though through a still
incompletely understood mechanism. However, some con-
troversy emerged, especially considering the concentrations of
ligands necessary to inhibit IMAC and perform cardioprotective
action (>30 μM), which far exceed far the affinity range in the
nanomolar order.66,67

3. CARDIAC IMAGING VIA TSPO RADIOLIGANDS
In clinical practice, molecular cardiac imaging serves a significant
role in clinical cardiology.78,79 It enables a detailed evaluation of
the pathophysiology of heart injury and the subsequent
remodeling, which is essential in developing new and effective
therapies.80 One of the well-established clinical applications of
positron emission tomography (PET) in cardiac imaging is the
assessment of myocardial perfusion with high accuracy in the
absolute measurement of myocardial blood flow and coronary
flow reserve. This application promises to be expanded thanks to
the availability of novel compounds like [18F]-flurpiridaz.81

Another established clinical application of cardiac PET is the
assessment of myocardial and vascular glucose metabolism with
the use of the radiopharmaceutical leader in PET imaging, i.e.,
[18F]-FDG (2-[18F]-fluoro-2-deoxy-D-glucose), even if the
quality of the PET signal, in particular in the wall of vessels, is
still limited. Nevertheless, PET has multiple potentials in cardiac
and vascular molecular imaging.

TSPO is one of the most interesting inflammatory biomarkers
exploited for PET imaging.82 Nonetheless, thus far there are just
a few TSPO radioligands employed for cardiac imaging
purposes, representing a new and valuable opportunity to
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exploit the potential of PET imaging, particularly thanks to the
quantification capabilities.

A list of TSPO PET radiotracers tested in cardiology imaging
is reported in Chart 1. Most of these were initially developed for
neuroimaging applications due to TSPO’s high expression in
activated microglial cells characterizing neuroinflammatory
diseases.82,83

3.1. First-Generation PET Tracers for TSPO. PK11195
and Ro5-4864 (Figure 1) belong to the so-called first-generation
TSPO ligands.84 In 1984, PK11195 was radiolabeled with
carbon-1185 to give [11C]-PK11195 (Chart 1, Table 1), the first

radiotracer for TSPO used in PET imaging. This radiotracer was
used for imaging atherosclerosis,86 a chronic disease of large and
medium-sized arteries involving inflammatory processes that
leads to major CVDs, such as ischemic heart disease, stroke, and
peripheral vascular disease.87 Macrophages play a crucial role in
atherosclerosis onset, since they are recruited in the vessel wall
from the beginning of the inflammatory process and participate
in plaque progression and/or rupture;88 in a nutshell, they are
the primary inflammatory cell types in atherosclerotic plaques.
Because activated macrophages express high TSPO levels,89

TSPO radioligands could represent valuable tools for detecting

Chart 1. TSPO Radiotracers Tested in PET Cardiology Imaging
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inflammation associated with atherosclerosis by PET. Experi-
ments performed in an atherosclerotic mouse model showed
[11C]-PK11195 uptake in inflamed plaques but similar
accumulation in unaffected arterial walls, discouraging a
potential application in the clinical field.90

In addition, a clinical study performed in patients with
abdominal aortic aneurysms showed that chronic inflammation
of the vessel wall was not detectable with [11C]-PK11195.91

More promising results were obtained in a proof-of-concept
clinical study regarding the imaging of intraplaque inflammation
with the dual-modal PET/[11C]-PK11195/contrast-enhanced
computed tomography (CT) angiography, where the possibility
to distinguish recently active and symptomatic plaques from
asymptomatic plaques was highlighted.86

The same dual modality was used for imaging vascular
inflammation in patients with LVV (e.g., giant cell arteritis or
Takayasu’s arteritis),92 a chronic granulomatous inflammatory
condition occurring in the aorta vessel wall or its main
branches.93

The radiotracer allowed the assessment of arterial inflamma-
tory activity in LVV patients, distinguishing patients with active
and nonactive or more quiescent disease.92 PET/CT angiog-
raphy could detect [11C]-PK11195 uptake in the vascular wall,
providing anatomical details on vessel wall thickening and
excluding atherosclerotic disease.92

Nonetheless, the promising results of these experiments were
accompanied by some drawbacks. The high level of nonspecific
binding,94 due to the high lipophilicity of the compound (Table
1), involves a weak signal-to-noise ratio that hampers its
quantification, and the short half-life of carbon-11 (20 min)
limits the clinical application of [11C]-PK11195. To overcome
these obstacles, alternative TSPO probes were developed.

3.2. Second-Generation PET Tracers for TSPO. These
new tracers were conceived to obtain compounds with lower
lipophilicity than the previous generation, maintaining a high
affinity for TSPO (Chart 1, Table 2). The labeling was
performed mainly using fluorine-18, having a longer half-life
(109.7 min) than carbon-11 and therefore being more easily
manageable.

One of these new compounds is [18F]-FEDAA1106 [N-(5-
fluoro-2-phenoxyphenyl)-N-(2-18F-fluoroethyl-5-methoxyben-
zyl) acetamide] (Chart 1, Table 2), which was used to image
vascular inflammation in vivo in a murine model.97 Furthermore,
the same authors compared this TSPO radioligand with [18F]-
FDG for PET imaging of vascular inflammation, showing that
the [18F]-FEDAA1106 signal was significantly higher at the
inflamed, disturbed flow region than the noninflamed, uniform
flow regions. In contrast, differences in [18F]-FDG uptake were
less distinct.

Significant tracer uptake in lesion areas was observed;
however, the murine model has an induced and intense local
inflammation in the vessel wall, which may not appear equally in
a clinical situation of atherosclerotic patients. Thus, subsequent
studies used alternative approaches to better capture variability
in inflammatory activity in plaques, as seen in clinical
atherosclerosis.

When one benzene ring of DAA1106 was replaced with a
pyridine ring, a series of phenoxyarylacetamide derivatives with a
lower lipophilicity was produced (Chart 1, Table 2).

In 2016, Hellberg et al. investigated [18F]-FEMPA (N-{2-
[2 - 1 8F -fluo roe thoxy ] -5 -me thoxybenzy l } -N - [ 2 - (4 -
methoxyphenoxy)pyridin-3-yl]acetamide) (Chart 1, Table 2) as
a radiotracer for the detection of atherosclerotic plaque
inflammation98 in the mouse aorta. Similar to [11C]-PK11195,
the [18F]-FEMPA uptake ratio between the atherosclerotic
plaque and the nonatherosclerotic vessel wall was not favorable;
therefore, the authors proposed that this radiotracer may be
more suitable for imaging intense areas of inflammation, such as
LVV.

[18F]-Fluoromethyl-PBR28 (N-(2-((fluoro-18F)methoxy)-
benzyl)-N-(4-phenoxypyridin-3-yl)acetamide) and [18F]-
CB251 (2-(2-(4-(2-[18F]fluoroethoxy)phenyl)-6 ,8-
dichloroimidazo[1,2-a]pyridin-3-yl)-N,N-dipropylacetamide)
(Chart 1, Table 2) were used in a comparative study to evaluate
their suitability for myocarditis diagnosis.99,100 Myocarditis is an
inflammatory myocardial condition that, in the acute and/or
chronic form, involves variations in the number and function of
lymphocytes, macrophages, and antibodies. This disease
features cardiomyocyte abnormalities, which determine regional
or global contractile impairment, chamber stiffening, or
conduction system disease.101 It is a relatively low-incidence
pathology for which early diagnosis is hampered by the lack of
specific and differential symptoms compared to other heart
diseases, being easily confused with different cardiovascular
pathologies, i.e., MI.102,103 The comparative study was
performed in a rat experimental autoimmune myocarditis
(EAM) model. Regarding specificity, [18F]-CB251 showed
superior TSPO uptake in the EAM rat heart compared to [18F]-
fluoromethyl-PBR28, which did not significantly differ from
healthy controls. Results support [18F]-CB251 imaging for the
noninvasive detection of myocarditis.

The potentiality of [18F]-PBR06 (18F-N-fluoroacetyl-N-(2,5-
dimethoxybenzyl)-2-phenoxyaniline) as TSPO radiotracer to
image atherosclerotic plaques in ApoE-knockout mice provided
promising results. A few years later, this ligand and [11C]-PBR28
(N-acetyl-N-(2-11C-methoxybenzyl)-2-phenoxy-5-pyridin-
amine) (Chart 1, Table 2) were used in an in vitro and in vivo
pilot study in humans to evaluate the potential of these
compound for the imaging of inflammatory vascular disease.

Table 1. First-Generation PET Tracer for TSPO
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Table 2. Second-Generation PET Tracers for TSPO
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Despite good uptake on surgical samples in vitro, PET studies
in patients showed no sign of inflammation in vivo, indicating
that those two radiotracers failed to prove clinical relevance for
imaging inflammatory vessel disease.

[18F]-FEDAC (N-benzyl-N-methyl-2-[7,8-dihydro-7-(2-18F-
fluoroethyl)-8-oxo-2-phenyl-9H-purin-9-yl]acetamide) (Chart
1, Table 2) recently showed, in in vivo and in vitro studies, the
potential to detect atherosclerotic plaques in rabbits and
atherosclerotic lesions and high-risk coronary plaques in
humans.104 In another study, in a rat model of coronary
occlusion, [18F]-FEDAC demonstrated TSPO is a promising
biomarker for imaging mitochondrial dysfunction associated
with myocardial ischemia by PET/CT, highlighting the
potential of TSPO ligands as tracers for the imaging of ischemic
injuries in the heart.105 A preliminary evaluation of [18F]-FDPA

(N,N-diethyl-2-(2-(4-18F-fluorophenyl)-5,7-dimethylpyrazolo-
[1,5-a]pyrimidin-3-yl) acetamide) (Chart 1, Table 2) for cardiac
inflammation imaging was investigated in rats after MI. The
stability of uptake in the heart and the fast clearance from the
other organs allowed a sufficiently large time window for cardiac
imaging. Obtained data highlighted [18F]-FDPA as a potential
radiotracer for cardiac inflammation.106

Second-generation TSPO radioligands possess higher TSPO-
specific signals than first-generation radioligands. Conversely,
unlike first-generation probes, they suffer from other drawbacks,
such as sensitivity to TSPO single-nucleotide polymorphism
(SNP) rs6971.107 The rs6971 SNP influences the binding of
TSPO radioligands in the TSPO gene that determines an amino
acid substitution (Ala147Thr). Such polymorphism leads to
modifications in the TSPO structure, such as the reduced

Table 2. continued

Table 3. Third-Generation PET Tracers for TSPO
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Table 4. TSPO Cardioprotective Agents
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distance between the second and fifth transmembrane domains,
resulting in a lower radioligand affinity. Notably, there are three
different human subject categories, namely high-affinity binders
(HABs), low-affinity binders (LABs), and mixed-affinity binders
(MABs) that are, respectively, homozygous for wild-type TSPO,
homozygous for the Ala147Thr TSPO, and heterozygous.108,109

Thus, patients with the same TSPO density but different
genotypes will provide different PET signals; therefore, TSPO
genotyping is required to interpret imaging outcomes. For this
reason, a third generation of ligands with low sensitivity toward
rs6971 was established (Chart 1, Table 3).

3.3. Third-Generation PET Tracers for TSPO. [18F]-
GE180 (S-N,N-diethyl-9−2-18F-fluoroethyl)-5-methoxy-
2,3,4,9-tetrahydro-1H-carbazole-4-carboxamide (Chart 1,
Table 3)117 is a tricyclic-indole compound and has been used
in the imaging of atherosclerotic plaque inflammation in a
mouse model. [18F]-GE180 shares the same high level of TSPO
specificity of second-generation ligands and the low sensitivity to
SNP of the first-generation class. It showed similar binding
characteristics compared to the previously described [18F]-
FEMPA, displaying uptake in macrophage-rich areas in
atherosclerotic lesions and lesion-free vessel walls in mice.83

Recently, [18F]-LW223 [(R)-N-(sec-butyl)-3-((fluoro-18F)-
methyl)-N-methyl-4-phenylquinoline-2-carboxamide] (Chart
1, Table 3) was developed and tested in the detection of
macrophage-driven inflammation in a rat MI model.118 MI is a
life-threatening condition caused by a lack of blood flow and
oxygen supply to the heart muscle. It is due mainly to the
development of plaques within arterial walls that may occlude
the coronary vessels in situ or, quite commonly, by vulnerable
plaque rupture and distal embolism. The binding of [18F]-
LW223 to TSPO in the human brain and heart in in vitro assays
highlighted that it is not susceptible to the rs6971 human genetic
polymorphism. In addition, [18F]-LW223 detected and
quantified the macrophage-driven inflammation in a rat MI
model, holding promise in clinical translation for the prognosis
of MI.118

4. TSPO LIGANDS AS CARDIOPROTECTIVE AGENTS
Several studies have been conducted on TSPO ligands, and their
cardioprotective effects have been mainly associated with
stabilizing mitochondrial function.

4.1. Ro5-4864 (4′-chlorodiazepam). Ro5-4864 (4′-
chlorodiazepam, Figure 1, Table 4) is a TSPO ligand belonging

Table 4. continued
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to the class of benzodiazepines in which, basically, a chlorine
atom was inserted at the para position of the 4-phenyl ring of
diazepam, a clinically used benzodiazepine drug.

Regarding its role in the physiological activity of the heart
(heart rate and contractility), the results reported in the
literature have been highly controversial. In a first study, Ro5-
4864 showed a negative inotropic effect in several models, for
example, in the left and right ventricle papillary muscles of
guinea pigs, rats, and rabbits.76,119−121 In another study, Saegusa
et al. demonstrated that injecting Ro5-4864 into the sinus node
of an isolated canine right atrium decreased atrial rate and
contractile force at concentrations between 100 and 1000 μg.122
Grupp et al. questioned these findings, proving that Ro5-4864
did not show inotropic effects, either positive or negative, but
only modified the coronary flow rate by producing a dose-
dependent increase in isolated perfused rat hearts.123 However,
in a following study, Weissman et al.124 reported that Ro5-4864
did not act as an inotropic agent by itself but incremented the
pro-ischemic inotropic effect induced by a calcium channel
activator (BayK8644). On the contrary, Leeuwin et al.
demonstrated that Ro5-4864 has a dose-dependent positive
inotropic effect and increases coronary blood flow in rat hearts
when administered at concentrations greater than 24 μM.125

These controversial findings may be due to different doses
utilized for the tested ligand or the different animals/species.
Leeuwin et al. also demonstrated that the effects mediated by
Ro5-4864 were abolished by PK11195.125 Also, PET studies
highlighted a negative chronotropic action of Ro5-4864 when
injected at 200 μg/kg or more,27 while a further work
demonstrated the role of the ligand in decreasing the calcium
inward current during the second phase of the action potential in
rabbit and isolated guinea pig cardiomyocytes at concentrations
greater than 3 μM.119

With respect to pathological conditions, TSPO seems to be
mainly involved in IRI. As recently demonstrated by Obame et
al., Ro5-4864 was able to reduce cardiac injury and increase
recovery during reperfusion following an ischemic event in
rats.56 This effect is probably associated with inhibition of both
Cyt-c release and the activity of AIF. In particular, Ro5-4864
increases the resistance of mitochondria to calcium-induced
pore opening by stabilizing the association of the antiapoptotic
Bcl-2 with the mitochondrial membrane and hampering the
association of the proapoptotic Bax.

To summarize, the cardioprotective effects of Ro5-4864 are
related to its ability to limit mitochondrial membrane
permeabilization and inhibit mPTP opening.56 However,
mPTP opening inhibition is not due to a direct action of the
ligand on the pore, given that Ro5-4864 did not counteract
mPTP opening in isolated mitochondria compared to cyclo-
sporine A, an mPTP opening inhibitor used as reference.
Paradoxically, Ro5-4864 induced pore opening at concen-
trations several orders of magnitude higher than those required
to saturate the receptor. In the same study, it has been shown
that Ro5-4864 administration resulted in the restoration of
mitochondrial respiration and oxidative phosphorylation, which
could be associated with the inhibition of mitochondrial Cyt-c
release, making it more available for the electron transfer
chain.56

In 2010, Xiao et al. confirmed these results, indicating that
Ro5-4864 reduces ROS production caused by a sudden increase
in oxygen during reperfusion and increases the activity of
complexes I and III of the mitochondrial electron transport

chain while blunting the activity of the ROS generating xanthine
and NADPH oxidase.126

Ro5-4864 can also decrease the incidence of arrhythmias and
reduce calcium overload. In addition, if administered at
reperfusion, it protects against postischemic arrhythmias
following reperfusion in rabbit hearts; if administered before
ischemia, it improves the recovery of the post-IR contractile
performance.76,126 In a preclinical study conducted on pigs,
Ro5-4864 intracoronary administration at the onset of
reperfusion, after 60 min of coronary occlusion, improved faster
ST-segment elevation resolution without hemodynamic com-
plications and reduced microvascular damage, but it did not
significantly reduce infarct size.127

As mitochondrial membrane fluidity appears to be impaired
after cardiac IR, Paradis et al. investigated the causes of this
membrane alteration on mitochondria isolated from rat hearts
subjected to a half-hour ischemia followed by a quarter-hour
reperfusion; the administration of Ro5-4864 appeared to
ameliorate this condition.35 Specifically, membrane fluidity
was measured by evaluating the change in steady-state
fluorescence anisotropy of two fluorescent probes, namely 1,6-
diphenyl-1,3,5-hexatriene (DPH) and hematoporphyrin IX
(HP), that bound, respectively, to hydrophobic lipid regions
and protein sites in mitochondrial membranes. The results
indicated that cholesterol accumulation in the mitochondrial
matrix in the post-IR setting indirectly affected membrane
fluidity at lipid regions by promoting lipid peroxidation, which
was prevented by the administration of Ro5-4864. Cholesterol
accumulation, established during reperfusion, remains one of
the major problems related to the cardiovascular system, as it
leads to atherosclerosis, arterial stenosis, thrombosis, and
myocardial ischemia. In this respect, Paradis et al. also showed
that Ro5-4864 strongly inhibited the accumulation of
cholesterol and cholesterol-derived oxidation compounds
(oxysterols) during reperfusion, improved respiration parame-
ters, and decreased the sensitivity of mPTP opening.35

Collectively, these data demonstrate that one of the main
cardioprotective effects exerted by Ro5-4864 is the limitation of
dangerous effects exerted by cholesterol accumulation and lipid
peroxidation to limit mitochondrial membrane derangements
and functional impairments.

In a study conducted in 2016, the authors128 compared the
effects of intracoronary Ro5-4864 (2 μM) administered to pigs
or rats just prior to or immediately after reperfusion,
respectively. The treatment causes a reduction of the “no-
reflow” area and guarantees long-term positive effects, such as a
reduction in infarct size and improvement in global systolic
function in rats. In large animals (pigs), closer to the human
physiology, Ro5-4864 caused more or less the same effects with
the addition of more rapid resolution of ST-segment elevation.

Another study conducted in 2010 concerning oxidative stress
proved that Ro5-4864 could counteract cardiac hypertrophy in
rats induced by isoproterenol (ISO),129 a nonselective β-
adrenergic agonist associated with an increase in oxidative stress,
fibrosis, and hypertrophy. ISO binding to β-adrenergic receptors
causes positive inotropic and chronotropic effects; specifically, it
causes both peripheral vasodilatation and cardiac hypoxia,
resulting in relative ischemia and calcium overload leading to
excessive ROS production, oxidative stress, infarct-like
cardiomyocyte necrosis, and myocardial fibrosis. The results
showed that Ro5-4864 decreasedmyocyte hypertrophy, fibrosis,
and necrosis, which were previously increased by the high levels
of ROS. Concerning myosin heavy chain (MHC) isoform
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expression in murine models, in physiological conditions the β-
isoform is less expressed than the α-isoform, but in the case of
cardiovascular problems the former is upregulated; in fact, β-
MHC is considered a marker of hypertrophy. Administration of
Ro5-4864 resulted in the downregulation of β-MHC expression
and the reduction of left ventricular size. Important data
emerged from this study regarding Ro5-4864 doses. Indeed,
while the decrease in isoprenaline-induced production of
thiobarbituric acid reactive substances (TBARs) did not change
with increasing doses, different data were found on reducing two
endogenous antioxidants, glutathione peroxidase (GPx) and
superoxide dismutase (SOD). In fact, Ro5-4864 at 0.1 mg/kg
inhibited the decrease in both antioxidants, but when the doses
were increased to 0.5 mg/kg the effect was maintained only
toward the SOD.129 The explanation for this trend is not clear
from this study, but Ro5-4864 has already demonstrated to have
such paradoxical effects in terms of concentrations. Indeed, from
a previous in vitro study conducted by Kenyon et al., it emerged
that nanomolar concentrations of Ro5-4864 caused aldosterone
release, but this effect is not retained by increasing
concentrations to a micromolar range. This could be due to
inhibitory effects involving enzyme competition.130 Clearly the
cardioprotective effects of the TSPO ligand are complex and
need more focused studies.

In a more recent study, the possible cardioprotective effects of
Ro5-4864, alone or in the presence of the NO synthase (NOS)
inhibitor N(ω)-nitro-L-arginine methyl ester (L-NAME), were
evaluated in a model of ISO-induced rat MI.131 Lower levels of
circulating and myocardial markers of ischemic injuries were
measured in the Ro5-4864-treated group, which was partially
prevented by L-NAME, thus suggesting that NO should be an
important mediator of the TSPO ligand action.131

In another work, the role of Ro5-4864 against doxorubicin-
induced cardiac damage has been evaluated. Doxorubicin is an
antineoplastic antibiotic of the anthracycline family with a broad
antitumor spectrum. However, it causes contractile dysfunction
and the development of cardiomyopathies related to mitochon-
drial dysfunction, proved by the fact that the mitochondrial
respiratory chain is the primary source of ROS during the
treatment. In this context, the effects of Ro5-4864 have been
studied on adult isolated-paced cardiomyocytes. The results
evidenced that Ro5-4864 inhibits the doxorubicin-induced
contractile dysfunction, which initially manifests as acute
myocardial injury and then advances to a chronic congestive
HF by augmenting ROS production and mPTP opening.132

4.2. PK11195. PK11195 (Figure 1, Table 4) is a TSPO
ligand belonging to the class of isoquinoline carboxamides.133 It
should be remembered that PK11195 influences neither heart
contractility nor coronary flow rate by itself. Still, it modulated
Ro5-4864 effects, even if the two ligands display a similar affinity
for TSPO. In fact, PK11195 was shown to inhibit the effects
produced by Ro5-4864 on the heart, including the negative
inotropism on papillary muscle from the right and left ventricles
of guinea pigs and the dose-dependent positive inotropism
together with the increase of coronary blood flow in rat
hearts.125 Nevertheless, PK11195 resulted in diminishing aortic
flow, dP/dtmax (baroinometry), end-systolic pressure, and stroke
work more than Ro5-4864;120 this may be due to the
interactions with the target that are influenced by the nature
of the ligand in terms of enthalpy and entropy, which are the
basis of the binding equilibrium.133

Cytosolic calcium concentrations play a crucial role in
ischemic processes. Therefore, it is thought that the interaction

of TSPO with L-type voltage-dependent calcium channels
located on the plasma membrane may contribute to the
development of this pathological condition.

As previously explained in section 4.1, Ro5-4864 can increase
BayK8644-induced myocardial ischemia; in contrast, PK11195
has been shown to inhibit it.29 Both Ro5-4864 and PK111195
could also have a direct action on calcium channels, in addition
to that via TSPO. In fact, in a study conducted in dogs treated
with verapamil, an antihypertensive calcium antagonist that
induced heart toxicity, PK11195 proved to counteract some
effects caused by the drug. For example, PK11195 could restore
sinus activity lost during verapamil treatment but could not
prevent or cure hemodynamic changes.134

In a study conducted in 2006,135 the ability of PK11195 to
promote mPTP opening, leading consequently to Cyt-c release
and mitochondrial uncoupling, was investigated. The results
showed that PK11195 causes dose-dependent (50, 100, and 200
μM) mPTP opening. In general, a calcium concentration above
100 μM is required to cause pore opening,136 but the results of
this study showed that PK11195-induced opening does not
require calcium, consistent with the fact that it can interact
directly with voltage-dependent calcium channels located on the
plasma membrane.137 This study also revealed that CsA
prevented PK11195-induced opening, inhibiting pro-apoptotic
protein release.

Regarding oxidative stress, PK11195, at concentrations from
5 to 25 mg/kg, resulted in the dose-dependent inhibition of the
RIRR response, stabilizing mitochondrial membrane potential
and protecting against postischemic injury and early and delayed
ventricular arrhythmias induced in dogs by 20 min of
ischemia.138

In a more recent study conducted in 2020, PK11195 was
shown to have a unique mechanism to limit the RIRR
phenomenon in rabbits. Indeed, when administered at the
moment of reperfusion, PK11195 limited ROS release and ROS-
induced cell death.139 In more detail, rabbit ventricular
myocytes were subjected to 20 min of ischemia and then to 3
h of reperfusions in both the absence and the presence of 50 μM
PK11195 treatments, the first after 15 min, the second after 1 h,
and the third after 3 h from reperfusion. Myocyte death was
assessed by lactate dehydrogenase (LDH) assay, while other
effects, such as changes in calcium concentration, membrane
potential, and ROS release, were examined by confocal
microscopy combined with fluorescent indicators. An important
finding emerged from the results; it was shown that PK11195,
administered at the onset of reperfusion, normalized succinate
oxidation and glutamate utilization. However, when adminis-
tered earlier during ischemia, it did not exert cardioprotective
effects. These findings highlighted the importance of the timing
of PK11195 administration during myocardial ischemia.139

4.3. SSR180575. SSR180575 (7-chloro-N,N,5-trimethyl-4-
oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acet-
amide, Table 4) is a TSPO ligand that features both
neuroprotective and cardioprotective effects.57 As mitochondria
not only represent an energy source but also regulate the cell
life−death cycle in case of pathological conditions, ROS
production represents one of the major problems in IRI; in
particular, H2O2 causes a massive reduction of mitochondrial
membrane potential, inhibition of oxidative phosphorylation,
and release of pro-apoptotic proteins such as caspase 3. In
several in vitro and in vivo models of cardiac IRI, SSR180575
prevented the ROS-dependent decrease of mitochondrial
membrane potential, reduced oxidative phosphorylation
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capacities, Cyt-c release, caspase 3 activation, and DNA
fragmentation.55 In more detail, administering SSR180575 in
perfused rat hearts (100 nM to 1 μM) or by oral pretreatment
(3−30 mg/kg), reduced contractile dysfunction caused by
reperfusion. Furthermore, a marked reduction in infarction size
was noted in both isolated rabbit hearts and anaesthetized rats
undergoing left coronary artery occlusion followed by
reperfusion; this is probably related to the coexistence of
necrosis and apoptosis during ischemia, which diminishes in
case of treatment with SSR180575.140 Still, administration of
SSR180575 both preventively and therapeutically restored left
ventricular function in a dose-dependent manner following an
ischemic event in a model of rabbit hearts. SSR180575 also
improved recovery of cardiac function by 50% and prevented
ischemia-induced reperfusion, the primary cause of cardiac
damage.55 Regarding oxidative stress, it was noted that
SSR180575 prevented mitochondrial uncoupling and inhibition
of oxidative phosphorylation in treated mitochondria subjected
to H2O2. Therefore, it is thought that it may act directly on
mitochondria involved in calcium homeostasis, one of the
critical points of ischemic damage.57

Another study has determined TSPO’s role in signaling
pathways that lead to cell death. In particular, the study focused
on renal dysfunction in a rat IR model. Similar to what was
observed for the heart, ischemia followed by reperfusion caused
both apoptosis and tubular necrosis in kidneys due to increased
production of ROS, thus determining peroxidative damage, high
expression of the proapoptotic protein Bax, low expression of the
antiapoptotic protein Bcl-2, and caspase 3 release. Treatment
with SSR180575 significantly reduced these damaging effects.57

Another study on apoptosis was conducted in 2010 on
polymorphonuclear leukocytes (PMNs), as TSPO is highly
expressed in blood cells. Specifically, administration of
SSR180575 protects leukocytes from TNFα-induced apoptosis
in a dose-dependent manner, thus leading to the conviction that
targeting TSPO could represent a potential strategy for the
treatment of pathologies characterized by an increased blood
cell apoptosis, such asHIV (human immunodeficiency virus).141

4.4. TRO40303. TRO40303, namely 3,5-seco-4-nor-choles-
tan-5-one oxime-3-ol (Table 4), is a cholesterol-like TSPO
ligand that binds specifically to the cholesterol site of TSPO; it
was initially identified as a neuroprotective agent142 but was later
investigated in more detail for its roles in cardioprotection, as
[14C]TRO40303 accumulates rapidly in rats’ hearts after a single
intravenous administration (2mg/kg).143 In the same study, rats
were subjected to 35 min of ischemia and then reperfused for 24
h. Administration of TRO40303 (2.5 mg/kg) immediately
before reperfusion reduced infarct size by 38%, and this was
associated with a reduction in pro-apoptotic proteins, especially
AIF, but not Cyt-c release, which is a major cause of cell
death.144 TRO40303 showed no effect on calcium retention but
still caused a delay in mPTP opening in rats subjected to 2 h of
ischemia followed by 2 h of reperfusion and inhibited pore
opening in cardiomyocytes of neonatal rats treated with H2O2. It
is therefore thought that the delayed mPTP opening is not due
to an action on calcium retention but to a reduction in ROS
production. Comparing the effects of TRO40303 with those of
CsA on pore opening and oxidative stress, it was noted that
TRO-dependent effects occur earlier than those caused by CsA
and, in particular, mPTP opening inhibition promoted by CsA
coincides with its effects on ROS production and calcium
overload. In addition, it was found that effects mediated by both
CsA and TRO40303 on mitochondrial and cytosolic calcium

concentration increases are similar, demonstrating that Ca2+
increase is a secondary and a pore-opening-dependent effect. By
subjecting cardiomyocytes to H2O2-induced oxidative stress
with subsequent ROS production, different effects were
observed for TRO40303 and CsA. Specifically, TRO40303
drastically reduced ROS release, while CsA caused a much
smaller ROS reduction; however, both TRO40303 and CsA
inhibited pore opening by 50%. This effect could be explained by
the fact that while TRO40303 inhibits mPTP opening by
reducing the production of ROS, CsA acts by binding and
inhibiting CypD, a protein that acts as a gate within the pore,
decreasing the release of Cyt-c that causes programmed cell
death.143,145 It is worth mentioning that TRO40303 is a TSPO
ligand that binds to the cholesterol site, unlike the other ligands
discussed above. Therefore, it could also exert its action by
binding directly to specific components related to TSPO, such as
VDAC, promoting its interaction with a hexokinase that leads to
the maintenance of the required ATP concentrations and
augmenting glycolysis.146 Furthermore, TRO40303 also re-
duced the oxysterol production leading to a minor cholesterol
accumulation into the mitochondrial membrane during
reperfusion, diminishing the related injury and the complica-
tions due to the presence of comorbidities such as dyslipidemia
and hypercholesterolemia.147 Still related to ROS production,
TRO40303 prevented the doxorubicin-induced changes in
contractility and augmented cardiomyocyte viability, as
previously reported for Ro5-4864.132 It is of great importance
that TRO40303 was selected as a cardioprotective agent for a
randomized phase I study carried out double-blind. Specifically,
the study was based on the treatment of healthy male subjects,
together with postmenopausal and hysterectomized women,
with TRO40303 administered intravenously from 0.5−13 mg/
kg with a flow rate of 0.04−35 mL/min. The results showed that
the doses were tolerated without causing any major adverse
effects, clarifying that the active dose is 6 mg/kg.148 As
previously mentioned, timely revascularization following an
ischemic event is currently the only accepted therapy in cases of
MI, despite causing the so-called reperfusion injury. For this
reason, TRO40303 was selected as a cardioprotective agent for a
phase II study (MITOCARE), a double-blind trial in which its
safety and efficacy in limiting reperfusion injury were evaluated.
In particular, reperfused patients treated for acute ST-elevation
myocardial infarction (STEMI) with percutaneous coronary
intervention (PCI) or thrombolysis were treated with
TRO40303 or a placebo in addition to their current standard
cardiac drugs. Efficacy was assessed primarily by measuring
infarct size expressed as area under the curve (AUC) for plasma
creatine kinase (CK) and troponin I over 3 days and secondarily
by measuring infarct size normalized to the myocardium at risk
using cardiac magnetic resonance (CMR) together with the
evaluation of left ventricular function, echocardiography, ST-
segment decrease, microvascular obstruction, and extension of
the infarct after PCI.149 Unfortunately, data showed no major
differences in the reduction of reperfusion damage and
infarction between TRO40303-treated and placebo-treated
subjects. These results raised a more provocative question of
whether reperfusion injury occurs in humans, which calls for
further and more in-depth studies.150

5. FUTURE PERSPECTIVES AND CONCLUSIONS
Cardiovascular diseases are the leading causes of morbidity,
disability, and death in Europe and worldwide. In the last two
years, SARS-CoV2 (severe acute respiratory syndrome
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coronavirus 2) infection has been an aggravating factor,
enhancing cardiovascular frailty due to inflammation and stress.
The current evidence suggests that TSPO ligands are promising
cardioprotective candidates, primarily acting at the level of
mitochondria to contrast oxidative stress and optimize the flux
and fate of cholesterol away from the accumulation of toxic
cholesterol catabolites in mitochondria. In this way, TSPO may
contribute to the modulation of inflammation. However, the
exact molecular mechanisms of TSPO action in the heart remain
largely debated and unclarified, together with the clinical
outcomes of TSPO-based drug agents. We reviewed the
characteristics of several pharmacological agents in detail. So
far, studies have been controversial on the outcomes of TSPO-
based drugs on cardiac contractility and perfusion under
physiological conditions, which may be partly attributed to the
variable models or drug dosage adopted in different studies.
More consistent findings support a beneficial role in alleviating
IRI, in which a variety of targets have been proposed, including
apoptosis-inducing factor (AIF), mitochondrial respiration and
reactive oxygen species (ROS) production, calcium load
(affecting cardiac rhythm), and lipid peroxidation (affecting
membrane stability). However, the reduction of infarct size was
only observed sporadically in specific models and selected
circumstances.

In principle, molecular imaging by PET represents an ideal
tool to characterize the in vivo sites of action of TSPO. PET
imaging of radiolabeled TSPO ligands has been more tradition-
ally investigated in the brain, where an elevation in TSPO
binding reflects the activation of microglial cells and is
considered a biomarker of neuroinflammation. Building on
this inheritance, the imaging paradigm has been translated into
the cardiovascular area with an initial focus on the inflammatory
states accompanying CVDs, namely atherosclerotic plaque
vulnerability, vasculitis, and myocarditis. Three generations of
TSPO-targeted PET tracers have been synthesized and tested.
First-generation tracers proved to be insufficiently sensitive to
stratify plaque vulnerability but may still prove useful in
diagnosing more severe inflammation in vasculitis. Second-
generation probes were able to capture myocarditis or cardiac
inflammation following MI; some of them hold promise in the
diagnosis of inflamed plaques in animals, and one ([18F]-
FEDAC) also holds promise in humans. However, their binding
and imaging signal is influenced by gene polymorphisms,
hampering the interpretation of images unless genotyping is
contextually performed. Third-generation probes appear to be
less sensitive to genetic variability, showing a similar capacity to
detect atherosclerotic plaque inflammation compared to
second-generation radioligands as well as promising sensitivity
to detect macrophage-driven inflammation in MI.

In conclusion, the study of TSPO in the heart has opened new
diagnostic and therapeutic leads to address CDs. A better
mechanistic understanding of such a multisite-acting protein
requires systematic studies comparing disease models, doses,
responses, and mechanisms in a consistent manner. TSPO-PET
imaging has been so far used to seek inflammation; however, in
light of the above-summarized mechanisms and their known
involvement in different phases of CD damage, repair, and
remodeling, it would seem appropriate to image the heart and
vessels along disease phases, from insult to dysfunction to
symptomatic disease. In fact, it is tempting to speculate that
TSPO binding may signal different mechanisms in different
phases. The development of organelle-selective PET tracers
would greatly enhance the potential of molecular imaging to

contribute to understanding the described complexity and
contradictions.

In this respect, the authors believe that the present overview
on the advantages and limitations of TSPO ligands will help to
design and develop new therapeutic and/or diagnostic tools
with better efficacy, which will lead to unraveling the
fundamental mechanisms and providing solutions to still
unanswered questions in CDs.
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