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The accuracy of the diamond scheme is experimentally investigated for anisotropic dif-
fusion problems in two space dimensions. This finite volume formulation is cell-centered
on unstructured triangulations and the numerical method approximates the cell averages
of the solution by a suitable discretization of the flux balance at cell boundaries. The key
ingredient that allows the method to achieve second-order accuracy is the reconstruc-
tion of vertex values from cell averages. For this purpose, we review several techniques
from the literature and propose a new variant of the reconstruction algorithm that is
based on linear Least Squares. Our formulation unifies the treatment of internal and
boundary vertices and includes information from boundaries as linear constraints of the
Least Squares minimization process. It turns out that this formulation is well-posed on
those unstructured triangulations that satisfy a general regularity condition. The per-
formance of the finite volume method with different algorithms for vertex reconstruc-
tions is examined on three benchmark problems having full Dirichlet, Dirichlet-Robin
and Dirichlet–Neumann boundary conditions. Comparison of experimental results shows
that an important improvement of the accuracy of the numerical solution is attained
by using our Least Squares-based formulation. In particular, in the case of Dirichlet–
Neumann boundary conditions and strongly anisotropic diffusions the good behavior of
the method relies on the absence of locking phenomena that appear when other recon-
struction techniques are used.
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1. Introduction

Finite volume methods have been widely used for the numerical approximation of
conservation laws and nonlinear elliptic and parabolic problems arising from many
practical applications such as computer simulation of nonlinear heat transfer,37

semiconductor devices,20 compressible Navier–Stokes fluid dynamics,26 petroleum
reservoir models,10 groundwater flow39 and contaminant transport.14,15 In the early
literature, finite volumes were investigated as the so-called integral finite differ-
ence methods,42,43 box schemes6,29 and generalized finite difference schemes.30,38

More recently, connections have been established between finite volumes and finite
elements, yielding finite volume elements,18,19,40,44 that seek for numerical approx-
imations in finite element spaces. The degrees-of-freedom of finite volume elements
are associated with the vertices of the computational grid and the discrete unknowns
approximate the analytical solution over mesh control volumes with arbitrary
shapes (Voronoi regions, median dual cells, etc.). Another class of finite volume
methods, which has been developed in this last decade, is the one of cell-centered
discretizations where the scheme unknowns are approximations of cell averages over
simplices (triangles in 2D, tetrahedrons in 3D).22 In the framework of cell-centered
discretizations, we proposed a second-order accurate finite volume method that was
successfully applied to steady transport models with scalar diffusion and homo-
geneous Dirichlet boundary condition.13 A nonlinear variant of this scheme was
also designed to ensure a discrete maximum principle to the numerical solution
of diffusion11 and advection-diffusion16 problems. Recent developments also try to
approximate the entire gradient as the adjoint of the divergence operator32–35 by
simultaneously using primal and dual meshes.23,31 Other theoretical results were
obtained for both classes of finite volume methods regarding a priori24,25 and
a posteriori9 error estimates.

A number of engineering applications among those mentioned at the begin-
ning of this paper may entail mathematical formulations with anisotropic coeffi-
cients in second derivative terms. Therefore, finite volume practitioners have focused
their attention on the design of numerical methods that properly handle diffusion
anisotropy.1,2,36 For these reasons, in this paper we experimentally investigate the
behavior of our cell-centered scheme when a strong diffusion anisotropy character-
izes the model equation. In addition, by developing an idea that we have briefly
presented in a preliminary publication,17 we derive a new technique that is effective
for implementing boundary conditions of very general type.

To these aims, let us consider the second-order elliptic problem:

Find a function u satisfying :

−div(K∇u) = s, in Ω, (1.1a)

u = gD, on ΓD, (1.1b)

τu + n · K∇u = gR, on ΓR, (1.1c)
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where Ω ⊂ R
2 is a polygonal domain with boundary Γ = ΓD ∪ΓR and ΓD ∩ΓR = ∅.

We assume that ΓD and ΓR are piecewise continuously differentiable. In the model
problem described by (1.1a)–(1.1c), K is the 2 × 2 constant conductivity tensor, s

the forcing term, n the unit vector almost everywhere orthogonal to Γ and pointing
out from Ω, gD and gR the Dirichlet and Robin boundary functions respectively
defined almost everywhere on ΓD and ΓR, and τ a suitable real factor. It is worth
noting that the formulation in (1.1c) includes the case of pure Neumann condition
for τ = 0. Under suitable assumptions on the regularity of s and the boundary
functions gD and gR, this model problem can be reformulated in weak form, and
existence and uniqueness of solutions can be proved.41

In order to solve (1.1a)–(1.1c), we design a second-order accurate finite volume
method on unstructured triangulations by first constructing the numerical diffusion
flux of any mesh edge, and then defining the discrete “mass”-balance of any control
volume by the divergence theorem. The numerical diffusion flux is defined by using
both cell averages and vertex values of the solution, according to the formulation
of the “diamond scheme”.13,22 Since in the framework of cell-centered methods we
want to retain cell averages like scheme unknowns, we introduce a reconstruction
algorithm for determining vertex values from cell averages. For any vertex of the
mesh, we first define the reconstruction stencil as union of the cells that share the
vertex; then, we calculate a cell weight for every element of the stencil. Cell weights
are used in an interpolation formula that must be linearly consistent, i.e. exact on
linear functions, to ensure that the resulting finite volume method be second-order
accurate. It is important to realize that this reconstruction step is required by any
vertex of the mesh, no matter the vertex being internal or on the boundary of
the computational domain. In fact, the reconstructed value of a boundary vertex
always gives a contribution to the numerical flux of the internal edges to which the
vertex belongs. For the Dirichlet boundary ΓD, the reconstruction is immediate,
because, consistently with (1.1b), the vertex is assigned the value provided by eval-
uating gD at the vertex position. For the Robin boundary ΓR, the reconstruction
is a much more difficult task, because the vertex value, although determined by
the boundary condition (1.1c), is no longer available from the direct evaluation of
a boundary function. We emphasize that an incorrect definition of the value of the
boundary vertex may deteriorate the quality of the numerical solution, and produce
a degeneration of the scheme performance to first-order accuracy27,28 or prevent
convergence at all due to locking phenomena.5 As far as this issue is concerned,
we derive the cell weights of the interpolation formula by solving an approxima-
tion problem on each reconstruction stencil by means of linear least squares. When
this procedure is applied to a Robin boundary vertex, information from boundary
condition (1.1c) is introduced in the evaluation of cell weights by suitable linear con-
straints. Thus, a suitable definition of cell weights allows us to apply the same inter-
polation formula to reconstruct the value of both internal and boundary vertices.

The outline of the paper is as follows. In Sec. 2 we introduce the grid notations
used in the paper and state the regularity assumption that must be satisfied by
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every computational mesh. In Sec. 3 we present the general formulation of our cell-
centered finite volume method. In Sec. 4 we design the least squares-based recon-
struction technique for internal and boundary vertices. For the sake of comparison,
we also review several alternative weight constructions for the vertex interpolation
formula which are taken from the literature. In Sec. 5 we evaluate the accuracy of
several implementations of this finite volume method for a number of combinations
of the least squares weights and the other cell weights of Sec. 4. The performance
of the finite volume method is experimentally obtained by comparing the conver-
gence rates of the numerical solution for three benchmark problems on a realistic
range of diffusion anisotropy. To investigate the scheme accuracy in the treatment
of complex boundary conditions, the three benchmark problems take, respectively,
full Dirichlet, half Dirichlet-half Robin, and half Dirichlet-half Neumann boundary
conditions. In Sec. 6, we discuss some final remarks and conclusions.

2. General Setting, Notations and Mesh Regularity Assumption

In this section, we introduce the notations adopted in this paper and, for ease of
reference, collect the definitions of topological and geometrical entities. The polyg-
onal domain Ω ⊂ R

2 is covered by a triangulation, which is a finite collection of
two-dimensional closed simplices with non-overlapping interiors. The simplices of
the domain mesh are denoted by the letter “T” and labeled by a Latin index like i

(j, k, . . .). For example, Ti is the ith control volume (cell) of the mesh. The whole
set of mesh control volumes is denoted by Th = {Ti}, and these latter ones are such
that Ω = ∪ Ti∈Th

Ti. The parameter h that labels the mesh Th is called the mesh size,
and is formally given by the supremum of the mesh control volume diameters21:
h = maxTi∈Th

diam {Ti}.
The mesh edges are denoted by the letter “e” and labeled by a couple of Latin

indices, as, for example, eij . It is useful to distinguish between internal and boundary
edges. Any internal edge eij is shared by two control volumes Ti and Tj such
that eij = Ti ∩Tj . When eij is a boundary edge, the index i always refers to the
unique control volume Ti to which the edge belongs, while the index j is defined in
accordance with a suitable boundary numbering system (ghost cell). The symbols
Fh, F int

h and Fbnd
h denote respectively the set of all mesh edges, the set of internal

edges, and the set of boundary edges. When dealing with internal edges, eij and
eji are equivalent symbols that denote the same edge. In expressions like eij ∈ Fh

(or F int
h ) we assume that the edge labeled by i and j is considered only once (for

example, by taking the representative with i < j). We have: Fh = F int
h ∪Fbnd

h and
F int

h ∩Fbnd
h = ∅.

The mesh vertices are denoted by the symbol “v” and labeled by Greek letters
like α (β, γ, . . .). The symbols Vh, V int

h and Vbnd
h denote respectively the set of

all mesh vertices, the set of internal vertices, and the set of boundary vertices.
This last set is split for convenience in the union of Dirichlet and Robin boundary
vertices, respectively denoted by VDir

h and VRob
h . We have: Vbnd

h = VDir
h ∪VRob

h ,
VDir

h ∩VRob
h = ∅, Vh = V int

h ∪Vbnd
h and V int

h ∩Vbnd
h = ∅.
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Fig. 1. Mesh entities for an internal edge.

The mesh entities related to the cell Ti are consistently labeled by the same
index i:

— |Ti|, the area of Ti,
— ∂Ti, the boundary of Ti,
— xi, the barycenter of Ti.

The mesh entities related to the edge eij , which are displayed in Fig. 1, are consis-
tently labeled by the same couple of indices ij:

— |eij |, the length of eij ∈ Fh;
— xij , the center of eij ∈ Fh;
— nij , the unit vector orthogonal to eij ∈ Fh and oriented from Ti to Tj if eij ∈

F int
h , pointing out of Ω if eij ∈ Fbnd

h ;
— tij , the unit vector parallel to eij ∈ Fh and such that the vector pair (nij , tij)

forms a counterclockwise oriented basis of R
2;

— x̃ij , the orthogonal projection of xi on the line containing the edge eij ∈ Fh;
— hij = (x̃ij−xi)·nij , the distance between the center of Ti and the edge eij ∈ Fh;
— Hij = (xj − xi) · nij = hij + hji, the effective distance between the centers of

Ti and Tj when eij ∈ F int
h .

The mesh entities related to the mesh vertex vα are consistently labeled by the
same index α:

— xα, the position vector of vα;
— Vα, the co-volume associated to vα and defined in the median dual mesh.

According to the vertex notation (and with slight exception to the edge notation),
we indicate the two edges that are incident to the boundary vertex vα by the symbols
e±α . The labels “±” are set by assuming that the boundary Γ is counterclockwise
oriented; the edge labeled by the minus sign “−” is encountered before the vertex
vα and the edge labeled by the plus sign “+” is encountered after the vertex vα.
We define:

— n±
α , unit vectors orthogonal to e±α ;



January 5, 2007 14:59 WSPC/103-M3AS 00181

6 E. Bertolazzi & G. Manzini

Fig. 2. Mesh entities for a boundary vertex.

— t±α , unit vectors parallel to e±α and such that the vector pairs (n±
α , t±α ) form two

possibly distinct counterclockwise oriented basis of R
2.

The mesh entities associated to the boundary vertex vα are shown in Fig. 2.
We denote the barycentric coordinates of x̃ij with respect to the vertices vα

and vβ of eij by λ̃ij
α and λ̃ij

β . By definition, it must hold that λ̃ij
α + λ̃ij

β = 1 and
λ̃ij

α xα + λ̃ij
β xβ = x̃ij . The following algebraic vectors, which are associated to the

vertex vα, will be used in the formulation of the least squares reconstruction of
vertex values:

— uα = (u1, . . . , uNα)T ∈ R
Nα , the cell averages of the triangles surrounding vα;

— wα = (wα,1, . . . ,wα,Nα)T , the cell weights for the elements of uα;
— gα = (g−α , g+

α )T ∈ R
2, the data associated to the boundary edges e±α incident to

the boundary vertex vα:

g±α =




0, if vα ∈ V int
h ,

gD(xα), if vα ∈ VDir
h ,

limx→x±
α

gR(x), if vα ∈ VRob
h ,

(2.1)

where the limits to x±
α in the third expression are taken along the edges e±α ;

— wb
α = (w−

α ,w+
α )T , the edge weights for the elements of gα.

Finally, summations are taken over the following sets of indices:

— σi, indices of the cells sharing an edge with Ti,
— σα, indices of the cells surrounding the vertex vα,
— σ′

i, indices of the boundary edges of Ti,
— νij , indices of the vertices of the edge eij , i.e. α and β.

Coherently with edge notations, eij is a boundary edge of Ti for every j ∈ σ′
i and

the internal edge shared by Ti and Tj for j ∈ σi. Thus, the index j ∈ σi ∪σ′
i labels

all the edges forming the boundary of Ti.
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2.1. Mesh regularity assumption

Let us denote by ρi the maximum radius of the balls contained in the cell Ti.
The finite volume method described in this paper is formulated on a family of
two-dimensional grids {Th} that are regular if:

(i) there exists a mesh regularity constant Creg > 0 that is independent of hi and
such that hi/ρi ≤ Creg for any h ≤ h0;

(ii) the triangulations {Th} are weakly acute for any h ≤ h0.

The first property is normally required in the convergence analysis of conforming
finite element methods21 to ensure that the shape of triangles does not degenerate
when h → 0. Although the analysis of our finite volume method is beyond the
scope of this paper, we take this condition for the same reason. The second property
ensures that x̃ij is an internal point of the edge eij .

2.2. The cell average operator

Let P
0(Th) be the subspace of the Hilbert space L2(Ω) consisting of the functions

having constant restriction on the control volumes of the triangulation Th. We
denote the orthogonal projector from L2(Ω) onto P

0(Th) by Ah(·) and call it the cell-
average operator. This operator is used in Sec. 5 to define convergence errors on cell
averages and gradients of the analytical solution. The dimension of P

0(Th) is equal to
NT and the identification between P

0(Th) and R
NT is readily established. Therefore,

we can interpret this operator as the vector-valued functional Ah : L2(Ω) 	→ R
NT

such that

Ah(u)|i =
1

|Ti|

∫
Ti

u(x) dV, for 0 ≤ i ≤ NT.

Throughout the paper, we will also use the shortcut Ai(u) = Ah(u)|i.

3. Finite Volume Formulation

The cell-centered finite volume method that approximates the solution of (1.1a)–
(1.1c) is derived by exploiting the local conservation property

−
∫

∂Ti

n · K∇u dS =
∫

Ti

s dV, for Ti ∈ Th. (3.1)

Let us denote the approximate cell average of u on the cell Ti by ui, and the NT-sized
vector containing all the approximate cell averages of u associated to the control
volumes of Th by uh ∈ R

NT . The vector space R
NT is isomorphic to the subspace of

L2(Ω) of the functions defined on Ω and having a constant restriction on any cell of
Th. For this reason, throughout the paper we will exploit the identification between
these two spaces by indicating corresponding elements with the same symbol. The
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cell-centered finite volume discretization approximates the local conservation prop-
erty (3.1) by the discrete balance equations:

1
|Ti|

∑
j∈σi ∪σ′

i

|eij |Φij(uh) = si, for Ti ∈ Th. (3.2)

The ith equation in (3.2) correlates the approximate cell average ui to the integral
balance of the numerical fluxes Φij(uh) across the edges eij forming the control
volume boundary ∂Ti and the cell average si of the source term s in (1.1a). The
proper definition of the numerical flux Φij(uh) from cell averages is crucial to provide
second-order accuracy of the cell-centered finite volume method. To this aim, let
G�

ij(uh) and GDir
ij (uh) respectively denote the discrete constant gradients on the

internal edges F int
h and the boundary edges of Dirichlet type EDir

h .
The numerical diffusive flux is given by

Φij(uh) =




−nij · KijG�
ij(uh), if eij ∈ F int

h ,

−nij · KijGDir
ij (uh), if eij ∈ EDir

h ,

gR
ij − τ(uα + uβ)/2, if eij ∈ ERob

h .

(3.3)

The first two formulas of (3.3) approximate the co-normal derivative of u that
appears in (3.1), i.e. n · K∇u, by the discrete counterpart that is derived by first
decomposing the flux integral (3.1) on every edge eij ∈ ∂Ti and then applying the
second-order mid-point quadrature rule. We define Kij by evaluating the diffusion
tensor at xij ∈ eij , i.e. Kij = K(xij), or by averaging K on eij in a componentwise
sense, that is

Kij =
1

|eij |

∫
eij

K(x) dS.

The third formula of the numerical flux definition (3.3) accounts for the Robin
boundary conditions expressed by the function gR on the right-hand side of (1.1c).
In analogy with the definition of Kij , the discrete term gR

ij can be given by a direct
evaluation of the boundary function gR

ij = gR(xij), or by the line-integral average

gR
ij =

1
|eij |

∫
eij

gR(x) dS.

3.1. Approximation of the solution gradient at mesh edges

The derivation of the discrete gradient formulas for internal and Dirichlet bound-
ary edges starts from defining the one-sided gradient Gij(uh) associated to the
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edge eij from the interior of Ti. The discrete gradient G�
ij(uh) of the internal edge

eij ∈ F int
h is uniquely defined by averaging the two one-sided contributions that are

built within the cells Ti and Tj sharing eij . Instead, the discrete gradient GDir
ij (uh)

at each boundary edge of Dirichlet type eij ∈ EDir
h coincides with the gradient

defined within the (unique) cell Ti to which edge eij belongs. In order to formu-
late the one-sided edge gradient Gij(uh), we apply the Gauss–Green relation to the
volume integral of K∇u on the triangular domain defined by the center of gravity
of Ti and the vertices of edge eij . Let us recall that α and β denote the indices
labeling the vertices of eij , i.e. νij = {α, β}, and x̃ij ∈ eij is the orthogonal pro-
jection of the barycenter xi onto the edge eij . The vertex values uα and uβ at
vertices vα and vβ are provided by one of the reconstruction algorithms that will be
described in Sec. 4. The approximation of the solution at x̃ij is given by the linear
interpolation:

ũij = λ̃ij
α uα + λ̃ij

β uβ. (3.4)

As x̃ij is an internal point of eij because of the mesh regularity assumption, its
barycentric coordinates λ̃ij

α and λ̃ij
β are non-negative numbers bounded from above

by unity. Thus, ũij is a convex linear interpolation of uα and uβ. The one-sided
gradient at eij within Ti is finally written as

Gij(uh) =
ũij − ui

hij
nij +

uβ − uα

|eij |
tij . (3.5)

3.1.1. Internal edges

A unique definition of the numerical edge flux is required to obtain a conservative
formulation of the numerical diffusive flux Φij(uh). To this aim, given an inter-
nal edge eij , the two contributions arising from the one-sided numerical gradients,
Gij(uh) built in Ti and Gji(uh) built in Tj , are averaged by:

G�
ij(uh) = WijGij(uh) + WjiGji(uh), (3.6)

where the non-negative weights are:

Wij = 1 − Wji =
hij

Hij
.

This results in the following definition of the numerical flux:

Φij(uh) =
(

uj − ui

Hij

)
κ

(n)
ij +

(
uβ − uα

|eij |

)
κ

(t)
ij ,
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where the coefficients κ
(n)
ij and κ

(t)
ij contain the normal and tangential projections

of the co-normal vector Knij , i.e.

κ
(n)
ij = nij · Kijnij , (3.7a)

κ
(t)
ij =

(
λ̃ij

α + λ̃ji
β − 1

) |eij |
Hij

nij · Kijnij + nij · Kijtij . (3.7b)

Note that the tangential term nij · Kijtij in (3.7b) disappears when diffusion is
isotropic, i.e. the diffusion tensor is a scalar multiple of the identity matrix. As
a consequence, it is this tangential contribution that bears the responsibility for
a consistent approximation of the anisotropic flux. The accuracy of the vertex
reconstruction is thus of fundamental importance to achieve full accuracy of the
tangential component of the numerical flux and good performance for anisotropic
diffusion.

3.1.2. Dirichlet boundary edges

When eij ∈ EDir
h , the edge gradient GDir

ij (uh) is set equal to the unique one-sided
edge gradient Gij(uh). Thus, we have

GDir
ij (uh) =

ũij − ui

hij
nij +

uβ − uα

|eij |
tij ,

so that

Φij(uh) = − ui

hij
κ

(n)
ij +

κ
(t)
β,ijuβ − κ

(t)
α,ijuα

|eij |
.

Tangential contributions involve the gradient coefficients

κ
(t)
α,ij = −

λ̃ij
β |eij |
hij

nij · Kijnij − nij · Kijtij ,

κ
(t)
β,ij = +

λ̃ij
α |eij |
hij

nij · Kijnij + nij · Kijtij .

Since at least one of the two boundary vertices vα and vβ is of Dirichlet type,
we may argue that the relation uα = gD

α or uβ = gD
β (or both, simultaneously)

must be true. We remark that the tangential component of the diffusive flux on
the boundary edge is proportional to uβ −uα. This clearly implies that this flux
component is completely determined by the Dirichlet boundary function gD when
both uα = gD

α and uβ = gD
β are used.



January 5, 2007 14:59 WSPC/103-M3AS 00181

Vertex Reconstruction for Finite Volume Methods 11

3.2. Source term contribution

The discretization of the right-hand side source term s in (1.1a) is taken into account
by the NT-sized vector s = {si}. The components of s are estimated by averaging
the right-hand side analytical source function s(x) on Ti. We have

si =
1

|Ti|

∫
Ti

s(x) dV =
1
3

∑
j∈σi ∪ σ′

i

s(xij).

3.3. The finite volume linear system

The final system of linear equations is written as:

Guh = s + g,

where G = {Gij} is the NT × NT stiffness matrix and g = {gi} ∈ R
NT is the

vector of boundary conditions. The matrix G and the vector g are built in the
following assembly process. First, we express ũij as a linear combination of vertex
values by using (3.4), and these latter as combination of cell averages by means of a
vertex reconstruction formula (see Sec. 4). Then, we use these expressions in (3.5)
to obtain the one-sided gradient Gij(uh) for every Ti ∈ Th and j ∈ σi ∪ σ′

i. It is
worth noting that the gradient Gij(uh) is defined in terms of cell averages of the
triangles sharing vα and all triangles sharing vβ . In accordance with (3.6), we define
the gradient G�

ij(uh) by averaging the two one-sided gradients Gij(uh) and Gji(uh).
On the boundary, we take the one-sided gradient Gij(uh) for the edge gradient
GDir

ij (uh). Finally, we reformulate the discrete flux balance (3.2) as

1
|Ti|

∑
j∈σi ∪σ′

i

|eij |Φij(uh) = (Guh − g)|i = si, for Ti ∈ Th,

by employing the expressions of the internal and boundary edge gradients in the
definition of the numerical flux (3.3). More details of this assembly process and
the formulas of G and g are reported in a previous publication by Bertolazzi and
Manzini.13 The resulting non-symmetric linear system arising from this discretiza-
tion is solved by using the routine ma413 from the HSL collection of FORTRAN
linear algebraic solvers for sparse matrices.

4. Vertex Reconstructions

In this section, we formulate our least squares-based algorithm and review, for
the sake of comparison, a number of different algorithms from the literature for
determining the vertex value from cell averages. Basically, we want to express the
vertex value uα as a weighted mean of the cell-averaged data {uk, k ∈ σα} that are
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associated to the cells surrounding vα. All the techniques considered in this section
essentially differ for the weight construction that provides the coefficients of the ver-
tex interpolation formula. In particular, we propose a derivation of cell weights that
is based on the resolution of an unconstrained least squares problem if the vertex
is internal and a constrained least squares problem if the vertex is on the bound-
ary with a condition of Robin (Neumann) type. We show in Proposition 4.1 that
recovering vertex values from cell averages by using this technique is a well-posed
problem on weakly acute triangulations. Such a treatment of Robin (Neumann)
conditions requires the introduction of two additional terms in the interpolation
formula to take into account contributions from the boundary edges e±α that are
incident to the boundary vertex vα. No reconstruction is required by a Dirichlet
boundary vertex, because the vertex value can be directly derived from the bound-
ary function gD. However, we will include this last case in the general formulation
by suitably modifying the cell weights.

4.1. Least squares reconstruction

We identify the vertex value uα with the value provided at the vertex position xα

by the following linear approximation of the solution within the co-volume Vα:

Rα(x; uh) = a + b · (x − xα), x ∈ Vα. (4.1)

Thus, uα = Rα(xα; uh). In the case of a Robin boundary vertex, the boundary
condition (1.1c) is taken into account by introducing the additional constraints:

τa + n±
α ·

(
Kαb

)
= g±α , (4.2)

where g±α is defined in (2.1). Let {λk, k ∈ σα} denote a generic set of weighting
coefficients that are supposed to be bounded, i.e. 0 < λk < 1 for k ∈ σα, and satisfy
the normalization condition

∑
k∈σα

λk = 1. For practical calculations in Sec. 5,
we will take λk = |Tk| /

∑
k∈σα

|Tk|. The coefficients (a,bT )T in (4.1)–(4.2) are
solution of the least squares problem

(a,bT )T = argmin(a′,b′,T )T ∈V

( ∑
k∈σα

λk [a′ + b′ · (xk − xα) − uk]2
)

,

where

V =




{
(a′,b′,T )T ∈ R

3 such that τa′ + n±
α ·

(
Kαb′) = g±α

}
for vα ∈ VRob

h ,

R
3 otherwise.
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4.1.1. Technicalities

For ease of presentation, we list below the definition of the principal matrix oper-
ators and vectors used in Proposition 4.1. All these symbols logically refer to the
vertex vα to which the reconstruction algorithm is applied and should consistently
take the sub-index α. However, we shall drop α from the matrix symbols Λ, A, B,
B† and K to simplify notations. We also use the vector symbol 0 = (0, . . . , 0)T to
indicate the null vector having contextually consistent size. The matrices Λ and A
are associated to the least squares algorithm and are defined for both internal and
boundary vertices as follows:

• Λ = diag{λ1, . . . , λNα} ∈ R
Nα×Nα is the diagonal matrix collecting the least

squares coefficients;
• A ∈ R

Nα×3 is the least squares matrix given by

A =




1 x1 − xα y1 − yα

...
...

...
1 xNα − xα yNα − yα


 .

The matrix B is used to write the boundary constraint equations. The matrix B†

is the generalized inverse8 of B normalized to have B†B = I. The columns of the
matrix K form a basis for the kernel of BT , i.e. BTK = 0. The definitions of B,
B† and K are different for n−

α = n+
α and n−

α 
= n+
α , and these two cases must be

separately treated. We take n±
α as algebraic column vectors and the symbol “×” to

indicate the vector product in R
3. We have:

• n−
α = n+

α ;

B =
[

τ

Kαnα

]
, B†,T =

[
0

K−1
α nα

]
∈ R

3×1, K =

[
0 −1

K−1
α tα τK−1

α nα

]
∈ R

3×2,

where nα = n±
α and tα = t±α indicate the (unique) normal and tangential

vectors.

• n−
α 
= n+

α ;

B =

[
τ τ

Kαn−
α Kαn+

α

]
, B†,T =


 0 0

K−1
α t+

α

n−
α · t+

α

K−1
α t−α

n+
α · t−α


 ∈ R

3×2,

K =

[(
τ

Kαn−
α

)
×

(
τ

Kαn+
α

)]
∈ R

3×1.

Note that the condition n±
α · t∓α 
= 0 is true from the mutual orthogonality of

these vectors.
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4.1.2. The reconstruction coefficients and the displacement factor

Let wα =
(
wα,k

)T be the algebraic vector containing the cell-centered weights, and

wb
α =

(
w±

α

)T
be the algebraic vector containing the boundary edge weights.

Proposition 4.1. Let Th be a weakly acute triangulation. The least squares approx-
imation of the solution value at vα is given by

uα =
∑

k∈σα

wα,kuk + w−
α g−α + w+

α g+
α , (4.3)

where

(i) if vα is an internal vertex,

wα = ΛA(ATΛA)−1

(
1
0

)
and wb

α = 0; (4.4)

(ii) if vα is a boundary vertex with a Robin-type condition,

wα = ΛAK(KT ATΛAK)−1KT

(
1
0

)
, (4.5a)

and

wb
α =




B†(I− ATΛAK(KTAT ΛAK)−1KT )
(

1
0

)
if n−

α 
= n+
α ,

1
2B

†(I− ATΛAK(KTAT ΛAK)−1KT )
(

1
0

) (
1
1

)
if n−

α = n+
α ;

(4.5b)

(iii) if vα is a boundary vertex with a Dirichlet-type condition, wα = 0 and wb
α =

(1/2, 1/2)T .

The proof of this proposition is postponed after the two technical lemmas that follow
below. The first lemma describes two geometrical facts that are consequence of the
assumption that the mesh is weakly acute. These facts are used to demonstrate the
second lemma.

Lemma 4.2. Let Th be a weakly acute triangulation. Then,

(i) if vα is an internal vertex the barycenters of the triangular cells of the stencil
σα are not collinear ;

(ii) if vα is a boundary vertex and n−
α = n+

α , the barycenters of the triangular cells
of the stencil σα are not aligned with n+

α .
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Proof. Both items are proved by contradiction arguments.
(i) Without loss of generality, we take the vertex vα coincident with the origin,

i.e. xα = 0, and assume that all the barycenters of the triangles Tk for k ∈ σα are
on the same vertical line in the strictly negative half-plane. As the triangulation is
weakly acute and vα is an internal vertex, there must exist a triangle in the stencil
σα that is entirely contained in the positive half-plane. This triangle contains the
vertex vα which coincides with the origin and at least another vertex with a strictly
positive abscissa. Therefore, its barycenter must be located in the positive half-
plane and cannot be on a line in the strictly negative half-plane thus resulting in
the contradiction.

(ii) As n−
α = n+

α , we can consider the triangles incident to vα ∈ Vbnd
h and the

triangles built by specular reflection with respect to the boundary line. If (ii) was
true, all these triangles would have aligned gravity centers, thus violating (i).

Note that Lemma 4.2(ii) does not prevent the barycenters of the triangles inci-
dent to a boundary vertex to be aligned, but just to be aligned along a direction
that is orthogonal to the boundary.

Lemma 4.3. Let Th be a weakly acute triangulation. Then,

(i) if vα ∈ V int
h , rankA = 3;

(ii) if vα ∈ Vbnd
h , ker (BT ) ∩ ker (A) = {0}.

Proof. (i) As the mesh is weakly acute, the condition card {σα} ≥ 4 must hold
and, in view of Lemma 4.2, at least three triangles in σα must have non-collinear
barycenters. Therefore, the matrix A has at least one non-null 3 ×3-minor.

(ii) Let us note that condition ker (BT ) ∩ ker (A) = {0} is equivalent to
range (B) + range (AT ) = {R

3}, and the latter to

rank

(
A
BT

)
= 3.

We will show that the equivalent condition on the matrix rank is always satisfied
if A and B are built on a weakly acute triangulation. If rankA = 3 then (ii) is
trivially true. Let us assume that rankA < 3, and distinguish the two following
sub cases.

• n−
α = n+

α . Then, the boundary is “locally flat” near vα, and card {σα} ≥ 2
because the mesh is weakly acute. In view of Lemma 4.2, there exist at least
two triangles in σα with barycenters xk1 and xk2 not aligned with n+

α =
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Fig. 3. Proof of Lemma 4.3; the picture exemplifies the case n−
α �= n+

α ; note that xk does not
belong to the same half-plane of the points P± by construction and, hence, cannot be aligned to
them.

(n+
α,x, n+

α,y)T . Thus, the minor

∣∣∣∣∣∣
1 xk1 − xα yk2 − yα

1 xk1 − xα yk2 − yα

τ n+
α,x n+

α,y

∣∣∣∣∣∣
is non-null.

• n−
α 
= n+

α . Let us take the two vectors n±
α, centered at vα and denote their

other extremal points by P+ and P− as depicted in Fig. 3. As the mesh is
weakly acute, there must exist a triangle Tk that is incident to vα and entirely
contained within the half-plane delimited by the orthogonal line to the bisector
of the angle between n±

α and not containing P+ and P−. The gravity center of
Tk, i.e. xk, cannot be aligned to P+ and P−, because it belongs to a different
half-plane (see Fig. 3); thus, the minor

∣∣∣∣∣∣
1 xk − xα yk − yα

τ n+
α,x n+

α,y

τ n−
α,x n−

α,y

∣∣∣∣∣∣
is non-null.

Proof of Proposition 4.1. For compactness of notation, we introduce the vectors
ζ = (a,bT )T and ξ(ζ) = Aζ−uα; note that ∇ζξ(ζ) = A. For the sake of reference,
we rewrite Eq. (4.3) as

uα = wT
αuα + wb,T

α gα, (4.6)

and evaluate the reconstructed value by uα = a = (1,0T )ζ from (4.1). The proof
of Proposition 4.1 only takes into consideration the cases of an internal vertex
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and a Robin boundary vertex, because the case of a Dirichlet boundary vertex is
obvious.

(i) Internal vertex case
The unknown vector of the reconstruction coefficients ζ = (a,b)T is the minimizer
of the least squares functional

J (ζ) =
1
2
ξ(ζ)TΛξ(ζ). (4.7)

We impose the null gradient condition on the least squares functional (4.7), i.e.

∇ζJ (ζ) = (∇ζξ(ζ))T Λξ(ζ) = AT Λ (Aζ − uα) = 0,

in order to obtain the algebraic system of the weighted normal equations

ATΛA ζ = ATΛuα. (4.8)

It turns out that the 3 × 3 real matrix AT ΛA of the left-hand side of (4.8) is
non-singular. To see this, we first note that the matrix A has maximum rank, i.e.
rankA = 3, due to the mesh regularity assumption and Lemma 4.3. A standard
result of matrix theory implies that rank (ATΛA) = rankA; thus, ATΛA, which
is a square matrix of order 3, has rank 3 and is non-singular. The solution of (4.8)
is formally written as

ζ = (ATΛA)−1ATΛuα. (4.9)

Finally, we set the boundary weights wb
α to zero because no boundary data are to

be taken into account for an internal vertex, and derive the formula (4.4) for the
weights wα by comparing (4.9) and (4.6).

(ii) Robin boundary vertex case
We introduce the two boundary constraints (4.2) in the least squares functional
by using the Lagrangian multipliers µ = (µ−, µ+)T . We also consider the special
solution of the linear algebraic problem BT ζ̂ = gα that is given by ζ̂ = (â, b̂)T =
B†,T gα. The vector of the reconstruction coefficients ζ = (a,b)T and the vector of
the Lagrangian multipliers µ are the minimizers of the constrained least squares
functional

J (ζ, µ) =
1
2
ξ(ζ)T Λξ(ζ) + µT (BT ζ − gα).

By imposing the null gradient conditions

∇ζJ (ζ, µ) = (∇ζξ(ζ))T Λξ(ζ) + Bµ = 0,

∇µJ (ζ, µ) = BT ζ − gα = 0,
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we obtain the augmented algebraic system

[
ATΛA B

BT 0

] [
ζ

µ

]
=

[
ATΛuα

gα

]
. (4.10)

We formally write the solution to (4.10) by the null space technique. We substitute
the general expression of solution ζ = ζ̂ + Kρ into (4.10) and project onto the
null-space of BT in order to derive the reduced algebraic system

KT AT ΛAKρ = KT ATΛ(uα − Aζ̂) (4.11)

for the vector ρ. Mesh regularity assumption and Lemma 4.3 imply that

ker (BT ) ∩ ker (A) = {0}.

Therefore, the matrix KT ATΛAK on the left-hand side of (4.11) is non-singular
and the vector ρ can be formally written as

ρ = (KT ATΛAK)−1KTAT Λ(uα − Aζ̂). (4.12)

Then, we substitute (4.12) for ρ and use ζ̂ = B†,T gα in ζ = ζ̂ + Kρ to get

ζ = K(KT
(
ATΛA

)
K)−1KT ATΛuα

+ [I − K(KT (AT ΛA)K)−1KTATΛA]B†,T gα.

Finally, we derive formulae (4.5a)–(4.5b) by comparing this last expression to (4.6).

(iii) Dirichlet boundary vertex case
Obvious.

4.1.3. Remarks on the reconstruction process

Remark 4.4. A simple calculation allows the reader to verify that the coefficient
vectors wα and wb

α are the unique solution of

AT wα + B̃
T
wb

α =
(

1
0

)
, (4.13)

where B̃ is the generalized inverse8 of B† normalized to have B†,T B̃ = I. Equa-
tion (4.13) is consistent with both requirements that the reconstruction be exact
for linear polynomials on the co-volume region Vα and have a constrained gradi-
ent on the Robin boundary edges. For an internal vertex, relation (4.13) can be
simplified as

ATwα =
(

1
0

)
, (4.14)
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which is still expression of the linear consistency of the interpolation formula using
the weights wα.

Remark 4.5. The algebraic problem resulting from the weighted normal equations
may be ill-conditioned when the mesh is highly stretched.4,7 As the sensitivity of the
solution of both (4.8) and (4.10) formally depends on the square of the condition
number of A, a loss of accuracy may occur in the computation of least squares
weights. This situation takes place when the gravity centers of the triangles are
nearly collinear, that is, when a situation of numerical rank deficiency occurs in the
resolution of least squares problems. A possible strategy to overcome this difficulty
consists in enforcing the regularity requirements on the computational grid by a
minimal angle condition at the mesh generation level. This makes it possible to
avoid excessive mesh stretching and reduce the alignment of control volume centers.
A further improvement4,7 consists in applying the orthogonal decomposition A =
QR, where Q is the orthogonal matrix and R the upper triangular matrix of the
Gram–Schmidt process.

4.2. Alternative reconstruction algorithms

In this subsection, we review the formulation of several algorithms from the litera-
ture for determining the cell weights {wα,k} of the vertex reconstruction formula:

uα =
∑

k∈σα

wα,kuk. (4.15)

We shall apply (4.15) to all mesh vertices without any particular care of the
boundary ones. Possible choices of reconstruction weights {wα,k}k∈σα are given
by4,22,27,28:

— wα,k = 1/Nα;

— wα,k = |xk − xα|−1
/ ∑

k∈σα

|xk − xα|−1;

— wα,k = |Tk| /
∑

k∈σα

|Tk|.

To study the order of formal consistency of the interpolation formula (4.15) with
the above cell weights, we first rewrite condition (4.14) in the form of the explicit
relations: ∑

k∈σα

wα,k = 1, (4.16a)

∑
k∈σα

wα,k(xk − xα) = 0. (4.16b)

If the cell weights satisfy relation (4.16a), the vertex interpolation formula (4.15)
is formally exact for constant functions, and we will say that these weights are
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first-order accurate. This condition is sufficient to make the finite volume method
at least first-order accurate. If, in addition, the cell weights satisfy relation (4.16b),
the vertex interpolation formula (4.15) is formally exact for linear functions, and we
will say that these weights are second-order accurate. The simultaneous satisfaction
of (4.16a)–(4.16b) is enough to make the finite volume method linearly consistent,
and, thus, to achieve formal second order of accuracy.

It is easy to check that all the weights listed above only verify (4.16a), so that the
reconstruction formula (4.15) is at most first-order accurate. However, cell weights
providing second-order accuracy can be constructed from first-order ones by the
following strategy. Let {W 1st

α,k} indicate a set of first-order accurate weights, and k1

and k2 be two indices in σα such that the vectors (xα −xk1) and (xα−xk2) are not
parallel. In order to get condition (4.16b) satisfied, we solve the algebraic system
of the two linear equations for the unknowns s1 and s2 that arises from the vector
relation:

(xα − xk1)s1 + (xα − xk2)s2 =
∑

k∈σα,
k �=k1,k2

W 1st
α,k(xk − xα).

Then, we evaluate the normalization factor

W 2nd
α,TOT = s1 + s2 +

∑
k∈σα,

k �=k1,k2

W 1st
α,k ,

and, for every k in σα, we set

W 2nd
α,k =

1
W 2nd

α,TOT

×




W 1st
α,k for k 
= k1, k2,

s1 for k = k1,

s2 for k = k2.

As can be readily seen, the new set of weights {W 2nd
α,k } satisfies both condi-

tions (4.16a)–(4.16b), thus achieving the sought linear consistency in the recon-
struction formula (4.15). It is worth noting that the choice of the couple of indices
k1 and k2 is not unique. A possible strategy for selecting them is as follows:

(a) we select the index k1 that maximizes
∣∣W 1st

α,k

∣∣ over the index set σα;
(b) we select the index k2 
= k1 that maximizes

∣∣W 1st
α,k

∣∣ over the index set σα\{k1};
(c) if the vectors (xα −xk1) and (xα −xk2) are not aligned we stop the procedure;

otherwise, we discard k2 from σα and repeat the procedure from step (b).

Other procedures may be envisaged to determine k1 and k2, such as, for exam-
ple, searching the indices that minimize the absolute value of the weights, or
the indices providing the greatest and the smallest absolute values, or again ran-
domly choosing two distinct indices within σα, and so on. Regarding this issue, we
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experimentally tested a number of variants without noting significant differences in
the final performance of the finite volume method.

5. Numerical Experiments

The performance of our finite volume method for different vertex reconstructions
is experimentally investigated for the numerical resolution of the elliptic prob-
lem (1.1a)–(1.1c) with the anisotropic diffusion tensor

K =
[

cos θ − sin θ

sin θ cos θ

] [
1 0
0 ε

] [
cos θ sin θ

− sin θ cos θ

]
. (5.1)

The diffusion tensor K depends on two parameters: the rotation angle θ and the
anisotropy ratio ε. The rotation angle θ controls the orientation of the principal
directions of anisotropy, i.e. the eigenvectors of K, which are parallel to the axis of
an orthogonal reference frame rotated by this angle with respect to the coordinate
directions. The anisotropy ratio ε, which is the ratio between the eigenvalues of K,
controls the relative strength of diffusion along the principal directions of anisotropy.
In this section, we present the numerical results obtained for θ = π/6 and ε = 1,
10−2, 10−4, which are well representative of the performance of our finite volume
method.

We consider the following three cases:

Case I: Dirichlet boundary data with ΓRob = ∅ and

u = gD on ΓDir = {(x, y)
∣∣ x = 0, 1 ory = 0, 1};

Case II: mixed Dirichlet and Robin boundary data with

u = gD on ΓDir = {(x, y)
∣∣ x = 0 or y = 0};

u + n · K∇u = gR on ΓRob = {(x, y)
∣∣x = 1 or y = 1};

Case III: mixed Dirichlet and Neumann boundary data with

u = gD on ΓDir = {(x, y)
∣∣ x = 0 or y = 0};

n · K∇u = gR on ΓRob = {(x, y)
∣∣ x = 1 or y = 1}.

Case I allows us to measure and compare the influence of different algorithms for
the internal vertex reconstruction on the performance of the finite volume scheme
with an assigned value to the boundary vertices. Instead, Case II and Case III make
it possible to investigate the effect of the boundary vertex treatment on the scheme
perfomance for the Robin and Neumann case, respectively. It is worth noting that,
in Cases II and III, the value that is reconstructed at a boundary vertex affects the
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Fig. 4. Base computational grid for numerical experiments formed by 272 triangular cells, 430
edges, 159 vertices, and 44 boundary edges and vertices; all angles are strictly acute.

Fig. 5. The numerical flux of the edges in bold line takes a contribution from the reconstructed
value of the boundary vertex vα, which is assigned a Robin boundary condition on the left and a
Neumann boundary condition on the right.

evaluation of the numerical flux of each internal edge incident to this vertex in a
very different way. This situation is illustrated in Fig. 5, and the features of these
three test cases are summarized as follows:

• in Case I, only Dirichlet boundary conditions are considered and the approxi-
mate value of each boundary vertex is derived from a direct evaluation of the
boundary function gD at the vertex position;

• in Case II, we set τ = 1 in the third equation of (3.3), and, consequently, the
vertex value uα (respectively, uβ) gives a contribution to the numerical flux of
all the edges incident to vα (respectively, vβ) including the boundary edges;

• in Case III, we set τ = 0 in the third equation of (3.3), and uα (respectively, uβ)
can only give contribution to the numerical flux of the internal edges incident
to vα (respectively, vβ).

Finally, in order to compare the numerical and the analytical solution, the source
term and the boundary functions gD and gR are specialized so that the exact
solution to model problem (1.1a)–(1.1c) with conductivity tensor (5.1) is given by

u(x, y) = sin (2πx) sin (2πy) + x2 + y2 + 1

on the domain Ω = [0, 1] × [0, 1].
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5.1. Evaluation of the scheme performance

The scheme performance is evaluated by measuring the convergence rate of the
numerical approximation on a sequence of successively refined meshes starting from
the base grid shown in Fig. 4. The base grid consists of 272 triangular cells, 430
edges, 159 vertices, and 44 boundary edges and vertices; all its angles are acute
and, therefore, it satisfies the mesh regularity assumption. The mesh data struc-
tures are managed by P2MESH,12 a C++ public domain library designed for fast
and efficient implementation of partial differential equation solvers. The refinement
process for all grids progresses by connecting together the midpoints of the edges
of each triangle. This ensures that the mesh size parameter h is halved at every
level of refinement and that the newly generated triangles maintain the same aspect
ratio of the original ones. Moreover, all the derived grids are also regular because
no new angles are generated in this process.

The rate of convergence is measured by comparing relative errors at two con-
secutive mesh levels with mesh parameters h and h/2. We found it convenient to
measure the relative error for the approximation of cell averages by using L2 norms:

Eh =
‖uh −Ah(u)‖h

‖u‖L2(Ω)

=

(∑
Ti∈Th

|Ti| |ui −Ai(u)|2
) 1

2

‖u‖L2(Ω)

,

and the relative error for the approximation of cell-averaged gradients by using H1

semi-norms:

EG,h =
‖Gh(uh) −Ah(∇u)‖h

|u|H1(Ω)

=

(∑
Ti∈Th

|Ti| |Gi −Ai(∇u)|2
) 1

2

|u|H1(Ω)

. (5.2)

The error EG,h is defined in (5.2) by comparing the piecewise-constant finite volume
gradient Gh(uh) = {Gi} ∈ P

0(Th) × P
0(Th) with the cell average of the solution

gradient Ah(∇u) = (Ah(∂u/∂x),Ah(∂u/∂y)) ∈ P
0(Th)×P

0(Th). The value of Gi is
calculated by taking the gradient of the linear function interpolating the numerical
solution at the three vertices of Ti.

By second-order convergence rate we imply an O(h2) decrease of the relative
error Eh of the cell-average approximation, and an O(h) decrease of the relative
error EG,h of the gradient approximation.

5.2. Weights used in vertex reconstructions

We denote the reconstruction based on the least squares weights {WLS
α,k]} =

{Wα,k, W b
α,k]} by RLS(·) (Sec. 4.1), the reconstruction based on the weights

{W 1st
α,k} = {|Tk| /

∑
j∈σα

|Tj|} by R1st(·), and the reconstruction based on the
second-order weights {W 2nd

α,k } by R2nd(·) (Sec. 4.2). As the reconstruction algo-
rithm is readily identified by the set of weights that is actually in use, we will also
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refer to the cell weights by the same symbol R∗(·), where ∗ = LS, 1st, 2nd. The
“dot” argument denotes the set of vertices to which the reconstruction algorithm
is applied: V int

h for internal vertices and Vbnd
h for boundary vertices. For example,

RLS(Vbnd
h ) indicates both the reconstruction algorithm and the set of weights based

on least squares algorithm and applied to the boundary vertices.
The results of the numerical experiments presented in Sec. 5.3 are obtained by

using variants of the finite volume method based on the following combinations of
reconstruction algorithms for internal and boundary vertices of Robin and Neumann
type:

— RLS
(
V int

h

)
−RLS

(
Vbnd

h

)
, which uses {WLS

α,k} for both internal and boundary
vertices;

— R1st
(
V int

h

)
−R1st

(
Vbnd

h

)
, which uses {W 1st

α,k} for both internal and boundary
vertices;

— R2nd
(
V int

h

)
−R2nd

(
Vbnd

h

)
, which uses {W 2nd

α,k } for both internal and boundary
vertices;

— RLS
(
V int

h

)
−R1st

(
Vbnd

h

)
, which uses {WLS

α,k} for internal vertices and {W 1st
α,k} for

boundary vertices;
— R2nd

(
V int

h

)
−R1st

(
Vbnd

h

)
, which uses {W 2nd

α,k } for internal vertices and {W 1st
α,k}

for boundary vertices.

All these reconstruction algorithms except R1st
(
V int

h

)
−R1st

(
Vbnd

h

)
are linearly con-

sistent on internal vertices. Thus, we expect that the corresponding finite volume
implementations display second-order convergence in Case I where no reconstruc-
tion is required for the numerical treatment of the boundary. On the other hand,
only the reconstructions RLS

(
V int

h

)
−RLS

(
Vbnd

h

)
and R2nd

(
V int

h

)
−R2nd

(
Vbnd

h

)
are

linearly consistent on the entire mesh vertex set. Thus, we expect that only the finite
volume implementations based on them provide second-order accurate numerical
approximations to the solutions of Cases II and III. In fact, a deterioration of the
global accuracy of the finite volume approximation may occur when the reconstruc-
tion of boundary vertices is less accurate than the reconstruction of internal vertices.
We will investigate this effect by using the two combinations RLS

(
V int

h

)
−R1st

(
Vbnd

h

)
and R2nd

(
V int

h

)
−R1st

(
Vbnd

h

)
. Finally, R1st

(
V int

h

)
−R1st

(
Vbnd

h

)
, which is first-order

accurate for all the vertices, is expected to produce a first-order accurate finite
volume method and is included in our investigation list for the sake of comparison.

5.3. Analysis of numerical results

Figures 6–8 illustrate the convergence rates of the finite volume approximations
produced by the various combinations of reconstruction algorithms of Sec. 5.2.
These three figures graphically present the log–log plots of the relative error norms
(Eh on the left, EG,h on the right) versus the characteristic mesh size h. The “real”
order of accuracy is reflected in the figures by the slopes of the experimental curves,
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and can be approximately evaluated by comparison with the “theoretical” first- and
second-order slopes in the bottom-left corner of each graph.

Case I: Dirichlet boundary conditions
The convergence curves for anisotropy ratios ε = 1, 10−2 and 10−4 are shown from
top to bottom in Fig. 6. From these plots the following facts are experimentally
observed:

(i) all the finite volume methods except the one using R1st
(
V int

h

)
−R1st

(
Vbnd

h

)
show second-order convergence rates;

(ii) the error curves of the scheme using R1st
(
V int

h

)
−R1st

(
Vbnd

h

)
show a linear

convergence rate in the log–log plots of Eh and a sub-linear convergence rate
in the log–log plots of EG,h;

(iii) the error curves for both Eh and EG,h are independent of the values of the
anisotropy ratio ε in the range [10−4, 1];

(iv) for the RLS
(
V int

h

)
−RLS

(
Vbnd

h

)
scheme, the Eh errors are one order of magnitude

smaller than the corresponding errors of the other schemes; for the gradients
this reduction decreases to a factor of two.

The expectations reported in Sec. 5.2 that all the methods based on linearly accu-
rate reconstructions for internal vertices provide second-order convergence is con-
firmed by the numerical results. Note that this behavior is independent of the
anisotropy parameter ε. The numerical experiments show that the magnitude of
the errors for a fixed h is strongly dependent on the reconstruction algorithm, in
particular for cell-averages. The best numerical approximation is indeed provided
by the finite volume scheme using least squares weights.

Case II: Mixed Dirichlet and Robin boundary conditions
In this case, we evaluate the influence of the different reconstructions of boundary
vertices on the convergence behavior of the finite volume scheme (Fig. 7). From
these plots the following facts are experimentally observed:

(i) the finite volume methods using RLS
(
V int

h

)
−RLS

(
Vbnd

h

)
and R2nd

(
V int

h

)
−

R2nd
(
Vbnd

h

)
show second-order convergence rate;

(ii) the Eh and EG,h error curves for RLS
(
V int

h

)
−R1st

(
Vbnd

h

)
and R2nd

(
V int

h

)
−

R1st
(
Vbnd

h

)
are very close to the corresponding error curves for R1st

(
V int

h

)
−

R1st
(
Vbnd

h

)
, which manifest first-order accuracy;

(iii) both the relative errors Eh and EG,h of the scheme using R2nd
(
V int

h

)
−

R2nd
(
Vbnd

h

)
increase when ε decreases from 1 to 10−4, while the corresponding

relative errors for RLS
(
V int

h

)
−RLS

(
Vbnd

h

)
are independent of ε.

As is clearly visible in Fig. 7 and pointed out by items (i)–(iii), the reconstruc-
tion of Robin vertices has a strong impact on the accuracy of these finite vol-
ume approximations. Optimal convergence rates are attained by the scheme using
RLS

(
V int

h

)
−RLS

(
Vbnd

h

)
and R2nd

(
V int

h

)
−R2nd

(
Vbnd

h

)
. Instead, the inaccurate treat-

ment of the boundary vertices of Robin type when using first-order reconstruction
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Fig. 6. Case (i): Dirichlet boundary conditions; relative error curves in the approximation of
u(x, y) = sin(2πx) sin(2πy) + x2 + y2 + 1 on the domain Ω = (0, 1) × (0, 1) by using permeability
ratios ε = {1, 10−2, 10−4} (from top to bottom) with principal diffusive directions rotated of
θ = π/6 with respect to the coordinate axis.
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Fig. 7. Case (ii): half Dirichlet and half Robin boundary conditions; relative error curves in the
approximation of u(x, y) = sin(2πx) sin(2πy) + x2 + y2 + 1 on the domain Ω = (0, 1) × (0, 1)
by using permeability ratios ε = {1, 10−2, 10−4} (from top to bottom) with principal diffusive
directions rotated of θ = π/6 with respect to the coordinate axis.
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Fig. 8. Case (iii): half Dirichlet and half Neumann boundary conditions; relative error curves in
the approximation of u(x, y) = sin(2πx) sin(2πy) + x2 + y2 + 1 on the domain Ω = (0, 1) × (0, 1)
by using permeability ratios ε = {1, 10−2, 10−4} (from top to bottom) with principal diffusive
directions rotated of θ = π/6 with respect to the coordinate axis.
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bears the responsibility of the accuracy deterioration mentioned in (ii). Finally, (iii)
reveals that the RLS

(
V int

h

)
−RLS

(
Vbnd

h

)
scheme again yields a strong reduction of

the error with respect to the use of R2nd
(
V int

h

)
−R2nd

(
Vbnd

h

)
in the case of diffusion

anisotropy.

Case III: Mixed Dirichlet and Neumann boundary conditions
In this case, we show the effects of the Neumann boundary conditions on the con-
vergence rates. The results are reported in Fig. 8. From these plots the following
facts are experimentally observed:

(i) for ε = 1, the error curves of the schemes using RLS
(
V int

h

)
−RLS

(
Vbnd

h

)
and

R2nd
(
V int

h

)
−R2nd

(
Vbnd

h

)
show second-order convergence rates. Instead, the

error curves of the schemes using RLS
(
V int

h

)
−R1st

(
Vbnd

h

)
and R2nd

(
V int

h

)
−

R1st
(
Vbnd

h

)
are very close to the first-order error curves of the scheme using

R1st
(
V int

h

)
−R1st

(
Vbnd

h

)
;

(ii) for ε = 10−2, all the error curves for both Eh and EG,h except the ones of
the scheme that uses RLS

(
V int

h

)
−RLS

(
Vbnd

h

)
show a deterioration of the error

constant;
(iii) for ε = 10−4, all the error curves for both Eh and EG,h except the ones of the

scheme using RLS
(
V int

h

)
−RLS

(
Vbnd

h

)
are affected by a lack of convergence on

the coarsest grids.

From (i)–(iii) it follows that the numerical treatment of Neumann boundaries
strongly influences the convergence rates of these finite volume approximations
and this influence increases with the degree of diffusion anisotropy. When the
ratio of anisotropic diffusion is decreased below unity, a locking phenomenon5

takes place for all the error curves except the ones produced by the scheme using
RLS

(
V int

h

)
−RLS

(
Vbnd

h

)
. As pointed out in (ii), this locking phenomenon is already

visible for the intermediate value ε = 10−2 as a deterioration of the error con-
stant. This effect is much stronger for the smallest value ε = 10−4 as the con-
vergence of some of the numerical approximations is prevented on the considered
grid refinement levels. On the other hand, the finite volume method based on
RLS

(
V int

h

)
−RLS

(
Vbnd

h

)
is experimentally locking-free within the considered range of

values of the parameter ε and, thus, robust in the sense of Babuska and Suri.5 As for
the case of mixed Dirichlet and Robin boundary vertices of the previous paragraph,
these results allow us to conclude that the accuracy of the boundary vertex recon-
struction plays a major role in providing a high quality numerical approximation
to the solution of a Poisson problem with strong diffusion anisotropy.

6. Conclusions

We developed a finite volume method for two-dimensional elliptic problems with
strong diffusion anisotropy. The method is cell-centered on unstructured domain
triangulations and approximates the cell averages of the analytical solution by
a numerical formulation of the control volume balance of the diffusion flux. The
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numerical definition of the diffusion flux is performed at any mesh edge by using
both cell averages and vertex values of the solution.

In the cell-centered formulation, cell averages are directly evaluated by the
numerical scheme and a special strategy, the vertex reconstruction, is needed to
define vertex values. Every vertex value is expressed as a linear interpolation of the
cell-averaged solutions of the cells surrounding that vertex, but particular care must
be taken in the treatment of a vertex located on a domain boundary with conditions
of Neumann or Robin type. The accuracy of the vertex reconstruction, including
the treatment of boundary vertices, is indeed crucial for the global accuracy of the
finite volume method. Regarding this issue, we proposed a general approach for
every kind of mesh vertex, e.g. internal or boundary one, which is based on the
resolution of a local least squares problem for the evaluation of the cell weights of
the vertex interpolation formula. Our formulation was designed to include infor-
mation from boundary conditions as linear constraints in the algorithm of weight
construction while maintaining the formal consistency that is required to achieve
second-order accuracy of the final approximation scheme.

We investigated the performance of this approach by considering three bench-
mark problems with boundary conditions of full Dirichlet type, half Dirichlet–half
Robin type, and half Dirichlet–half Neumann type, respectively. In these test cases,
the diffusion anisotropy was controlled by changing the value of the anisotropy
ratio, which is the ratio between the eigenvalues of the diffusion tensor. Numerical
results were produced for anisotropy ratios varying over a range of representative
values of the level of anisotropy that may be found in engineering applications. The
accuracy of the method was evaluated by measuring the approximation errors of cell
averages and cell-averaged gradients: optimal convergence rates were reflected by
the slopes of the experimental convergence curves in log-log plots. By comparison,
we also showed that the numerical solutions provided by our least squares-based
finite volume method are more accurate than the numerical solutions provided by
scheme implementations using other reconstruction algorithms.
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