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Supporting Information Text

Five-band Hubbard model for AgF2. As for cuprates(1), one can consider a simplified model of the electronic structure of AgF2
in which the more relevant d and p orbitals are taken into account. Since accurate values of electronic parameters are not
available for d9 Ag compounds, our aim here is to provide estimates of the more important parameters that determine the
magnetic interaction in AgF2. In addition, we discuss the similarities and difference of the parameters with cuprates and show
that a large value of the magnetic interaction in AgF2 is compatible with the parameter estimates.

A natural choice for a minimal model, is to consider one dx2−y2 orbital per Ag. For the F’s, due to the strongest buckling
with respect to cuprates, one should consider one extra p-orbital per fluorine atom which mixes significantly with the d-orbital.
Figure S2 shows schematically a silver-fluorine-silver (L-F-R) bond and defines the more relevant orbitals. Here, L and R are
left and right silver ions and F refers to the bridging fluoride. We call η the L-F-R angle. Orbitals are defined in the caption.
In the room temperature structure(2) η = 129.90.

By symmetry, the p⊥ orbital taken in the direction of the red arrow in Figure S2 has negligible mixing with the dL/R
orbitals. Therefore, we restrict to two p orbitals for the central F, namely p‖ parallel to the L-R line (green arrow) and pz in
the plane that contains the L-F-R triangle and perpendicular to the bond (blue arrow).

To model the AgF2 electronic structure, since there are two fluorine atoms per f.u. one should consider a five-band Hubbard
model rather than the usual(1) three-band Hubbard model of cuprates. The model reads H = H1 +H2 with,

H1 =
∑
i,σ

eic
†
iσciσ +

∑
i 6=j,σ

tijc
†
iσcjσ, [S1]

H2 =
∑
i

Uic
†
i↓ci↓c

†
i↑ci↑ +

∑
〈i 6=j〉,σ,σ′

Uijc
†
jσ′cjσ′c

†
iσciσ +

∑
〈i 6=j〉,σ,σ′

Kijc
†
iσciσ′c

†
jσ′cjσ, [S2]

where the operator c†iσ creates a hole of spin σ and the index i runs through the Ag dx2−y2 and the F p‖,z orbitals defined in
Fig. S2. ei and tij are single particle and hopping matrix elements respectively. Holes repel each other with strength Ui on
orbital i and strength Uij between different orbitals i and j. Kij is the direct exchange interaction between different orbitals
(usually ferromagnetic, i.e. Kij < 0).

Estimate of hopping matrix elements. We discuss the more relevant hopping matrix elements for the nearest-neighbor magnetic
interaction. Other matrix elements and further details will be presented elsewhere. We define tpd as the hopping matrix element
of an hypothetical straight L-F-R bond (η = 180◦) keeping the Ag-F distances constant. In this case only the p‖ orbital mixes
significantly and the hopping matrix element is tpd ≡ (

√
3/2)(pdσ) where (pdσ) is the usual Slater-Koster(3) parameter. We

find that (pdπ) matrix elements do not play an important role therefore, as customary for cuprates, we neglect them in the
present computation.

Referring to Fig. S2, matrix elements are defined by the following equations,

H1|dL〉 = −t‖d|p‖〉+ tzd|pz〉,
[S3]

H1|dR〉 = t‖d|p‖〉+ tzd|pz〉,

where we introduced,
t‖d ≡ tpd sin(η/2), tzd ≡ tpd cos(η/2). [S4]

We can obtain a first estimate of the straight-bond parameter tpd from band structure computations in related compounds.
Refs. 4, 5 report tpd for hypothetical solids with various F-Ag distances. We have estimated tpd in AgF2 using the scaling
of Ref. 6 to extrapolate to the equilibrium bond distances in AgF2 (Fig. S4) and obtained tpds = 1.39 eV and tpdl = 1.37 eV
where s/l refer to the nonequivalent short (2.067Å) and long (2.074Å) bonds present in the structure. Using Eq. (S4), we
obtain the pd-hopping matrix elements labeled “Slater-Koster” in Table S1.

A more direct determination can be obtained by performing an unpolarized DFT computation of AgF2 followed by a
parametrization of the bands in terms of Wannier orbitals which can be done using the maximally-localized projection scheme
as implemented in the Wannier90 code(7). Figure S3 shows in red the DFT band structure in the region of the pd-bands. The
blue lines are the bands obtained with the Wannier90 code with one d-like Wannier orbital centered on each Ag and two p-like
Wannier orbitals centered on each F (5-band model) adopting the same local reference frame as defined in Fig. S2. Parameters
are optimized to represent as best as possible the bands that cross the Fermi level inside a “frozen” energy window (shown in
Fig. S3). Indeed, we see that this goal is well fulfilled. Other bands are not expected to be reproduced since they are dominated
by orbitals not in the five-band model. In particular, as can be seen from the left panel, the bands immediately below the froze
window and above -3 eV have dominant p⊥ character and d character different from x2 − y2. Below that region significant
weight in the orbitals of the five-band model appears again. This region, being far from the Fermi level is not constrained to be
reproduced in detail but general features, as the overall bandwidth, is well reproduced by the Wannier parametrization, which
is enough for our propose.

We checked that the optimized orbitals obtained with Wannier90 correspond closely to the dx2−y2 and the pz,‖ orbitals
defined above which confirms this simple picture. Furthermore, the values of the hopping parameters (Table S1) corresponds
fairly well (except for tdzl) with the values estimated using a single Slater-Koster parameter and structural information. If
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we perform the Wannier90 optimization with all d- and p-orbitals, one obtains a fit of the DFT band structure in the -7 eV
to 1 eV energy window indistinguishable from the DFT bands. The resulting hoppings (last row in Table S1) match almost
perfectly the values obtained with the Salter-Koster parametrization. This indicates that the slightly different parameters of
the five orbital Wannier computation, take into account indirect hopping processes though the neglected orbitals and therefore
such values are the recommended ones in a five-band model.

As with the analysis of Fig. S4 the parameter tpd obtained from Wannier90 is very close to the value accepted for cuprates(8)
(tpd ∼ 1.3 − 1.6 eV) although, as will be discussed below, because of buckling the resulting magnetic interaction is smaller.
Regarding in plane fluorine-fluorine hoppings we find that they are on the range tpp ∼ 0.13− 0.3 eV which is roughly a factor
of two smaller than accepted values for oxygen-oxygen hoppings in cuprates (tpp ∼ 0.65). This is expected as distances are
generally larger than in cuprates and the F’s orbitals are more localized than those of O’s. Another important difference is that
for AgF2 small but non-negligible fluorine-fluorine hoppings connect different planes in specific directions. This will result in
longer-range magnetic interaction as will be clear from the polarized DFT computations.

Estimate of the on-site repulsion and the charge transfer energy. Here we provide details of the estimate of the strength of the
Coulomb interaction on the Ag 4d orbitals using the empirical information available and polarized DFT computations.

As mention in the main text, in solids the Hubbard interaction U = U0 − R is strongly screened respect to the free ion
value, U0, due to the relaxation of the environment. As it is well known R can be quite large, for example for the d shell of Cu,
U0
d = 18.6 eV for free ions and gets reduced to 9 ∼ 10 eV in oxides(9–12). A rough estimate of R can be obtained assuming

that the relaxation is dominated by the polarization of the neighbors (9, 12) due to the electric field ±e/d2
i of added/removed

electrons. Here di is the distance to the neighbor. This yields,

R = 2
∑
i

Pi, [S5]

with Pi = αe2/(2d4
i ). The sum runs over neighbors assumed to have polarizability α. For oxygen(13) α varies in the range

αO = 0.5 ∼ 3.2 Å3. In the case of La2CuO4, αO ∼ 1.9 Å3 is needed to obtain R ∼ 10 eV.
Unfortunately, direct probes of Ud in AgF2 are not available. As mentioned in the main text, estimates of solid state values

can be obtained by examining experiments on closed d shell systems where Auger spectroscopy gives a direct measurement of
Ud according to Cini-Sawatzky theory(14, 15). First estimates of Ud were obtained by Powell analyzing the Auger spectra
of the noble metals. We can check the relevance of this measurements for our propose comparing the case of pure Cu metal
and Cu in oxides. For elementary Cu, Powell concluded that Ud = 7.7 eV, similar to the value obtained by Sawatzky and
collaborators(16) and somehow below to the value accepted in parent high-Tc cuprates, Ud ∼ 8 ∼ 10 eV(8, 10). The strongest
screening in the metal respect to the oxide can be attributed to screening by the open 4s shell. Since Ag atom is larger than
Cu atom, for elementary noble metals we expect larger polarizability and a smaller bare Coulomb integral in the former respect
to the latter. Consistently Ud = 5.1eV is found in elementary Ag(17, 18), smaller than Cu but still quite large. Again, this
value should be taken as a lower bound for Ud in AgF2 because of the additional screening of 5s electrons.

A more realistic value of Ud for its use in AgF2 can be obtained from the analysis of Auger spectra in Ag2O where Ag is
in the d10 configuration. For comparison in the case of Cu2O (also d10) Ud = 9.2 eV was obtained by Tjeng, Sawatzky and
collaborators(11). This is close to standard value used in superconducting cuprates although in the latter case screening is
expected to be larger due to the larger number of nearest neighbor O’s. In the case of Ag2O, they obtained Ud = 5.8 eV which
could be explained with a screening R = 9 eV. This is underestimated with Eq. (S5) and αO = 3.2 Å3 which yields R = 5.2eV.

Polarizabilities have units of volume and tend to scale with ionic volumes. Indeed, F− has a smaller polarizability(13) due
to the more compact orbitals, αF = 0.64 Å3, and the di distances are smaller so Eq. (S5) yields R ∼ 2.4 eV for the screening of
Ud in AgF2. If taken literally this would imply Ud = 12.4 eV, but given the above underestimation of the screening in Ag2O
we suspect that this value of Ud is too large. In any case, we see that the expectation of smaller values of Ud in the 4d shell
respect to the 3d shell can be compensated by poorer screening. These estimates, however, are too crude to obtain practical
values of Ud in the solid and are presented only to show that expectations based solely on the extension of the orbitals may be
too crude too. The physical value should be smaller than the Eq. (S5) estimate but larger than the one found in the metal i.e.
5.1 eV< Ud < 12.4 eV. This indicates that a value similar to the one in cuprates is quite reasonable.

An alternative estimate can be obtained from the distance between Hubbard bands in hybrid DFT and indicated with red
arrows in Fig. 2. This yields Ud = 10.7 eV (La2CuO4) and Ud = 9.4 eV (AgF2). For concreteness in the computations of
magnetic interactions below we use the latter value. Clearly more accurate theoretical and experimental determinations are
called for.

Another important parameter is the charge transfer energy ∆ which can be defined as the energy cost to transfer a hole from
the d shell of the transition metal to the p shell of the ligand in the absence of hybridization, (d9 + p6 → d10 + p5). We notice
that the insulating gap in the hybrid DFT computation for La2CuO4 (Fig. 2) is very close to the value of the charge transfer
parameter (∆ ≡ ed − ep) estimated from constrained DFT(8) computations ∆ = 3.5 eV. Thus, we use the gap in the AgF2
computation as a proxy to estimate ∆ = 2.7 eV. For simplicity we neglect the crystal field splitting between the p orbitals.

Finally, given the more compact p orbitals in fluorine the bare Coulomb interaction should be larger than for oxygen but we
expect this to be partially compensated by a larger screening due to a polarizability of silver larger than copper so we take
Up = 4 eV, close to typical values in cuprates.
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Magnetic interactions. Our aim here is to describe the magnetic excitations of the system with a Heisenberg model,

H = 1
2
∑
ij

JijSi.Sj , [S6]

where the sums run over all Ag sites and Si is a spin 1/2 operator. The similarity of the parameters estimated above for AgF2
with the ones for cuprates suggest that the nearest-neighbor antiferromagentic interaction J , should be large in the present
compound. We first use perturbation theory to estimate the order of magnitude and discuss the effect of buckling for the
nearest-neighbor exchange interaction. Then we present a DFT computation to examine longer range interactions, estimate the
degree of anisotropy and estimate the Néel temperature.

Perturbative computation. We consider again the L-F-R of Fig. S2. The antiferromagnetic interaction among nearest-neighbor
spin-1/2 Ag sites is the result of two opposite mechanisms: Anderson’s superexchange(19) and direct exchange. An important
point is that due to buckling the pz orbital of Fig. S2 cannot be neglected.

A first estimate of the nearest-neighbor interaction can be done using perturbation theory. Direct exchange appears at
second order in the hopping while superexchange appears at fourth order. One obtains, J = J(2) + J(4), with,

J(2) = 2t2‖d

(
1

∆−K‖d
− 1

∆ +K‖d

)
, [S7]

J(4) =
(
t2‖d − t2zd

)2

∆2

(
4
Ud

+ 8
2∆ + Up

)
= cos2(η)

t4pd
∆2

(
4
Ud

+ 8
2∆ + Up

)
. [S8]

Here, given the uncertainties in parameters, we made various simplifying assumptions. We neglected the small difference
in hopping matrix elements due to short and long Ag-F bonds reported in Table S1. Similarly to the case(20) of CuGeO3,
both the Hund’s rule exchange among the p orbitals and the direct exchange between p and d orbitals yield a ferromagnetic
contribution. However, the former appears at fourth order in the hopping so it was neglected. Only the dominant direct
exchange parameter with the p‖ orbital, K‖d, was retained. Another simplification was to take a single parameter Up for the
repulsion of two holes on the same p orbital or on different p orbitals. Also for simplicity, we neglected the nearest neighbor
repulsion Upd which can be partially absorbed in the definition of ∆.

Because the pz orbital is even respect to an exchange of L and R while the p‖ is odd, tunneling process though these orbitals
interfere destructively as it is clear from the prefactor in Eq. (S8). Clearly, such effect tends to reduce the superexchange
interaction J(4), respect to a flat configuration (tzd = 0).

As a reference, and according to the previous estimates we can take, t‖d = 1.24 eV, tzd = 0.65 eV, Ud = 9.4 eV, Up = 4 eV,
∆ = 2.7 eV. With these parameters and neglecting direct exchange one obtains J = J(4) = 0.22 eV. Such value is too large to
be taken seriously but shows that even in the presence of buckling large values of the magnetic interaction are possible. Such
overestimation is also common to cuprates when the direct exchange is neglected(8, 20? , 21). Experimentally J = 0.07eV is
obtained in the main text. This requires K‖d = −0.17 eV, which is of the order of typical values in cuprates(8, 20? , 21).

The above discussion clarifies the role of buckling on the determination of the magnetic interaction. In addition the similarity
of microscopic parameters of AgF2 with the ones of cuprates have been emphasized and we showed that a large value of J is
not incompatible with the present knowledge of parameters. In the following we present a computation of magnetic interactions
based on DFT which confirms this concussion.

Density Functional Theory computations and Néel Temperature. To compute magnetic interactions with DFT one can use either a
total energy method(22) (TE) or the magnetic total force theorem (MTFT)(23). The latter has the advantage that interactions
of arbitrary range can be computed within one computation. We use the latter as implemented in Ref. 24 for a general
exploration of interactions and perform total energy computations to check the results in specific cases.

For the magnetic total force theorem computations, the Green’s functions and the local spin-dependent Hamiltonian matrix
elements were evaluated using a set of maximally localized Wannier functions calculated with the Wannier90 software interfaced
with VASP. This set is different from the Wannier computation of the previous section because only one Wannier orbital per
Ag site is retained.

Table S2 shows the exchange interactions computed by the two methods. The theoretical nearest neighbor interaction results
to be around 1/2 of typical values in cuprates. Despite the fact that some bands in the paramagnetic electronic structure have
non-negligible dispersion in some of the out of plane directions (Fig. S3) the magnetic interactions are quite anisotropic.

In order to estimate the Néel temperature we have performed classical Monte Carlo simulations of model Eq. (S6) with spins
substituted by classical vectors of length 1/2 and parameters from the MTFT computations of Table S2. Such simulation yields
T classN = 90 K. However, treating the spin as classical is a very rough approximation for a spin-1/2 system. To investigate this
effect we performed classical simulations of a simple three-dimensional Heisenberg model on a square lattice for which fully
quantum mechanical simulations are available(25). Comparing the classical and the quantum simulations for systems of similar
ratio of the interlayer to intralayer coupling α we arrive at the conclusion that the quantum TN = γ(α)T classN with γ = 2.3 for
the anisotropy of AgF2 (γ depends weakly on α so a precise determination is not necessary). This yields TN = 207 K for the
theoretical Néel temperature of AgF2 to be compared with the experimental value TN = 163 K. Since, as explained in the main
text, we find experimentally that the nearest neighbor magnetic coupling is even larger than the one of the MTFT method we
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attribute the difference to longer-range coupling. Indeed, we find that such couplings are very sensitive to details of the method
while the nearest neighbor coupling is much more robust. For example, using non-optimized Wannier orbitals we find that
long-range coupling can change by a factor of 2 while the nearest neighbor coupling changes by 10%. Another source of error
may be additional terms in the Hamiltonian not considered here like four-site cyclic exchange(26) and Dzyaloshinsky-Moriya
interaction. Given these approximation we find that the theoretical Néel temperature of the same order as the experimental
one confirms the presence of robust magnetic interactions in AgF2 as in cuprates.

Methods

Sample preparation. Powder samples were prepared in-house starting from AgNO3, anhydrous HF treated with K2NiF6, and
elementary fluorine. In typical synthesis, 3 g of silver(I) nitrate (AgNO3) was weighted into the FEP (tetrafluoroethylene-
hexafluoropropylene block copolymer) reaction vessel (16 mm i.d., 19 mm. o.d., length = 18 cm; equipped with PTFE valve)
in a dry-box. Anhydrous HF (20 ml, Linde, 99.995%), treated with K2NiF6 (Advance Research Chemicals, Inc.) for several
hours prior to use, was condensed onto AgNO3 at 77 K. The reaction vessel was brought to ambient temperature and a clear
colourless solution was obtained. Elemental fluorine was slowly added at ambient temperature till the pressure in reaction
vessel reached 4 bar. Precipitation of a brown solid was observed. The stirring of the reaction mixture at ambient temperature
was carried out. After one day, the reaction vessel was cooled down to 77 K, volatiles pumped away, reaction mixture brought
to ambient temperature and the new portion of fluorine was added. The whole procedure has been repeated several times.
With the last portion of fluorine, which was already in an excess the reaction mixture was left for 2–3 days. After that the
liquid phase was decanted away and the volatiles were pumped away overnight at ambient temperature. The freshly prepared
sample was used for research as described below. A commercial reference sample of AgF2 was obtained from Sigma Aldrich.
Samples where enclosed in sealed quartz capillaries for further manipulation and characterization.

Sample characterization by powder X-ray diffraction. Powder X -ray diffraction pattern (XRDP) with CoKα radiation was
recorded at room temperature for freshly prepared and purchased AgF2 samples enclosed in a 0.3 mm quartz capillary. The
XRDPs are shown in Fig. S5 and indicate the presence of a small amount of AgF impurity in both samples (reflections from
AgF are somewhat larger in commercial AgF2 than in a freshly prepared sample) as well as three reflections from unknown
impurities (seen only for commercial AgF2; they do not originate from AgNO3, which is a common precursor of AgF2).

Sample characterization by heat capacity measurements. Heat capacity measurements were conducted for milligram quantities
of AgF2. In order to prevent reaction with moisture each sample was wrapped in aluminum foil in a glovebox and then
transferred to the Physical Property Measurement System (MPMS, Quantum Design) for measurements. The obtained heat
capacities were corrected for the signal from aluminum(27).

The heat capacity of AgF2 (Fig. S6) show a λ type anomaly due to magnetic ordering at 161 K. The entropy change at the
phase transition (estimated by integrating cp /T at λ peak in the 145–165 T range) equals 0.28 J mol-1 K-1, i.e. only 5 % of
Rln(2) value expected for full ordering of spin 1/2 system. Thus, the high-T paramagnetic phase must exhibit substantial
short-range antiferromangetic interactions (as for(28) CuCl2). Partial ordering above the Néel point suggest in turn the
presence of appreciable magnetic superexchange between the Ag2+ centers.

Sample characterization by High-Field Electron Paramagnetic Resonance. High-field, high-frequency electron paramagnetic
resonance (EPR) spectra at temperatures ranging from ca. 3 K to 290 K were recorded on a home-built spectrometer at the
EMR facility of the NHMFL(29). The instrument is equipped with a superconducting magnet (Oxford Instruments) capable of
reaching a field of 17 T. Microwave frequencies over the range 52-416 GHz were generated by a phase-locked Virginia Diodes
source, producing a base frequency of 13± 1 GHz, which was multiplied by a cascade of frequency multipliers. The instrument
is a transmission-type device and uses no resonance cavity. A liquid He-cooled InSb bolometer (QMC Instruments Ltd) was
used as a microwave detector. All spectra were taken in derivative mode, dI /dB (where I is the absorption intensity), using
field modulation and a phase-sensitive lock-in detection scheme. Since the samples are moisture-sensitive, they were packed in
air-tight sample holders (�in= 7 mm, �out= 9 mm, l = 26 mm) made from perfluoropolymers, and protected with two tightly
fitting PTFE (Teflon®) stoppers (l = 28 mm).

We searched for EPR signal using fields from 0 to 14.9 T and frequencies ca. 50-640 GHz at temperatures ranging from ca.
3 K to 200 K and found no signal which could be attributed to the bulk of the sample, a situation that mirrors cuprates(30).

Sample characterization by far infrared absorption spectroscopy. The far infrared (FIR) spectrum has been collected in the
transmission mode in a Vertex 80v spectrometer (from Bruker) equipped with a globar light source. A mylar beam splitter and
DTGS detector were used. The measurement set-up included two PTFE optical windows spaced by a 0.1 mm thin separator;
the fine AgF2 powder was dispersed on the internal side of one of the windows.

Comparison of phonon frequencies with DFT calculations and mode assignment. We compared the experimental Raman and
far infrared (FIR) phonons with the theoretical predictions based on the DFT computations. The purpose is twofold. On one
hand, good agreement between theory and experiment allows to validate the accuracy of the DFT computations. On the other
hand, AgF2 can easily decompose due to excessive illumination or reaction with containers or even traces of moisture thus
vibration spectroscopy allows to check the integrity of the sample. Including the IR phonons in the analysis ensured that the
full phonon assignment is robust. In the following we present both the IR and Raman vibrational analysis.
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The unit cell has 4 formula units which yields 36 Γ-point frequencies. Symmetry analysis yields the following irreducible
representations:

AgF2 : 3Ag + 6Au + 3B1g + 6B1u + 3B2g + 6B2u + 3B3g + 6B3u

The acoustic modes transform like B3u, B2u and B1u. Of the remaining modes 15 should be IR active (8 of those are
observed), 12 should be Raman active (11 of those are observed), and 6 should be silent.

For the classification of the modes here and in Table S3 we adopt a coordination system different from the main paper and
such that [AgF2] sheets are in the ac plane, while b axis is perpendicular to them.

Hybrid functional DFT is considered to perform better than DFT+U and was used to obtain more accurate vibrations
frequencies but the intensity computation was restricted to the DFT+U method for technical reasons. The theoretical
wavenumbers coming from DFT+U calculations or hybrid functional DFT are presented in Table S3 as-obtained, i.e. without
any scaling to fit the data.

The DFT+U calculations tend to reproduce the IR spectrum reasonably well (Fig. S7b). The largest intensity is computed
for the 441 cm−1 band (B3u), which is indeed the strongest band in the experimental spectrum (also, its wavenumber is
identical to the theoretical value). This band is assigned to B3u Ag-F stretching mode, which corresponds to local deformation
of the local [AgF4] square towards the (2+2) bent cis-[F2...AgF2] unit.

Substantial intensities are also computed for the 453 cm−1 band (it is too close to the main feature to be distinguished from
it clearly) as well as for the 310 and the 312 cm−1 bands (there is a feature at 307 cm−1 in the experimental spectrum), for the
185 cm−1 band (exp. 193 cm−1), for the 134 cm−1 band (there is a shoulder at ca. 139 cm−1 in experimental spectrum) and
for the 90 cm−1 band (the experimentally seen band at 93 cm−1 is stronger than predicted). The bands seen in experiment at
159 and 168 cm−1 have their intensities underestimated by theory (for bands at 156 and 163 cm−1, respectively). Despite these
discrepancies, the bands appearing in the experimental spectrum may be rather easily assigned.

Since absolute wavenumbers of the IR-active modes were predicted with the accuracy better than 10 cm−1, one may base
the assignment of Raman-active modes on the assumption that their calculated wavenumbers are fairly correct, too, while the
intensities may differ from the experimental ones. This assumption is not unreasonable since Raman intensities are inherently
difficult to predict.

The Raman spectra in the phonon region for various excitation energies is shown in Figure S7a. The spectra taken with the
three laser lines are quite similar. The spectrum taken with 1064 nm (1.17 eV) excitation is predominated by a strong band at
254 cm-1, which is assigned to the B2g mode (for assignment of this and other bands see Table S3). Several weaker features
appear, particularly at 168, 183, 198, 314, and 486 cm-1. The broad band at ca. 970 cm-1 is also seen.

For the excitation with 514.5 nm (2.41 eV) a mode at 417 cm-1 relatively gains on intensity. Since the intensity of this mode
grows with the photon dose we assign it to an impurity phase generated via a photochemical processes.The absence of this
band was monitored to check the integrity of the sample for both vibrational and electronic Raman measurements.

Importantly, the strongest calculated Raman band at 253 cm−1 is found at 254-258 cm−1 in the experimental spectra.
This band is assigned to the B2g mode involving the Ag-F stretching, which leads to the formation of quasi-1D kinked-chain
structure (AgF+)(F-). The relative intensities of four Raman-active bands in its vicinity are not predicted very accurately, as
expected, but their wavenumbers agree very well with the experimental values (311 exp. vs. 309 cm−1 theor.; 290 exp. vs. 296
cm−1 theor.; 244 exp. vs. 249 cm−1 theor.; 232 exp. vs. 227 cm−1 theor.). The last important band which is predicted to be
quite intense in Raman spectrum is the one positioned at 443 cm−1 (B2g). We find a weak Raman feature at 446 cm−1 in
some of our spectra, which we tentatively assign to this B2g mode.

Having assigned fundamentals, it is now possible to understand the origin of the broad structured band appearing at 970
cm-1 in spectra measured with 1064 nm or 514.5 nm excitation (see main paper). This band likely originates from the first
overtones of the highest-frequency Raman (B3g 478 cm-1, B2g 481 cm-1), IR-active (B1u 470 cm-1, B2u 468 cm-1) and silent
modes (Au 477 cm-1). The first overtones for all of them are totally symmetric (Ag) and likely resonance-enhanced, particularly
at 514.5nm excitation . Since two phonons are combined the total momentum of the pair is restricted to be zero but one of the
constituents can have arbitrary momentum which explains the broad structure.

Respect to the group theory analysis, 1 extra band appears in the IR spectrum (shoulder at 497 cm-1), and 4 extra bands in
Raman spectra (138 cm-1, 368-377, 413-419, and 480-485 cm-1). In Table S3 we propose their assignment to the corresponding
overtones and/or combination modes, using match of wavenumbers and symmetry considerations.

Based on the analyses presented above, supplemented by more thorough analysis of all weak features, we obtain the band
assignment shown in Table S3.

Simulation of the Inelastic Neutron Scattering spectra. In order to simulate the inelastic neutron scattering spectra of our
powder samples we used the SpinW software (31). How the overall intensity changes as one moves from one Brillouin zone to
the next depends on the magnetic form factor. Since the atomic form factor of Ag2+ is not available we used the Pd+ form
factor which is also a 3d9 ion. The results are shown in Fig. S8a for an incident energy Ei = 300meV to be compared with
Fig. 4 of the main text. We see that the plume emanating from the ordering wave-vector is well reproduced (indicated) but the
intensity of the flat band is peaked at much smaller wave vectors respect to the experiment. Indeed, the atomic form factor
decays quite fast with momentum as seen in Fig. S8c.

Similarly to Ref. (32) we computed DFT form factors for AgF2 by first obtaining Wannier orbitals on top of the hybrid-DFT
computations with five d-orbitals per Ag ion and three p-orbitals for F ion. Then the dx2−y2 orbital corresponding to the
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fluctuating spin is used to compute the form factor. Cuts of the resulting anisotropic form factor are shown in Fig. S8b. We
see that the in the c-axis direction (z) the form factor is very similar to the atomic form factor of Pd+ consistent with the fact
that the hybridization of orbitals in the c-direction is small. For the in-plane directions (x and y) the form factor has a strong
oscillation and a negative minimum at a finite wave-vector. This originates in the dx2−y2 orbitals which is strongly hybridized
with the surrounding F p orbitals pointing in the bond direction. Thus, the fluctuating magnetic moment has an oscillating tail
in real space which produce a finite momentum minimum when Fourier transformed. Notice that the strength of the form
factor at high momentum can be comparable to that of the atomic Cu2+ ion. Ultimately, the large intensity observed for the
flat band at large momentum in the experiment (Fig. 4) is consistent with a strongly covalent Ag-F bond as suggested also by
the DFT computations.
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Fig. S1. Comparison of the crystal structure of La2CuO4 and AgF2. Notice that for the cuprate layers formed of charged [CuO4]-6 units are compensated
by the [La2]+6 spacer layers. Instead, the [AgF2] layers are intrinsically neutral and charged spacing layers are not required. Notice the similarity of the sheet topology shown on
the right panels.

Fig. S2. Schematic representation of an Ag-F-Ag bond Gray (green) spheres represent Ag (F) atoms. dx2−y2 orbitals are label as dL and dR for the left
and right Ag respectively. They are defined in such a way that the lobs are oriented approximately along the diagonals of the approximate squares defined by F’s (light blue and
salmon). We also show the triangle defined by the central F and the two Ag’s. The arrows represent the direction taken for the p orbitals (p⊥, p‖, pz ). Red is orthogonal to the
triangle plane and defines the p⊥ orbital. Green (p‖) is parallel to the Ag-Ag bond while blue (pz ) is contained in the triangle plane, is perpendicular to the Ag-Ag bond and
points approximately in the c direction.
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Fig. S3. Unpolarized band structure of AgF2. The right panel show the DFT bands obtained with VASP in the region dominated by F-2p and Ag-4d orbitals (red)
and the bands obtained with the Wannier90 code (blue) using a Wannier basis with one d and four p orbitals per formula unit (5-band model). Wannier orbitals are optimized to
match the bands within the indicated frozen window. This provides accurate bands around the the Fermi energy which is located at zero energy. The inset shows schematically
the path around the Brillouin zone. The filled gray curve in the left panel is the total density of states (DOS) while the other curves are the orbital resolved DOS.
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Fig. S4. Hopping matrix elements vs. F-Ag distance (d) Red dots are from Refs. 4, 5. Extrapolation was done assuming Andersen scaling(6), (pdσ) =
(pdσ)0(d0/d)4 (blue line). The blue dots are the tpd values estimated for the two possible Ag-F distances in AgF2.
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Fig. S5. X-ray characterization. Comparison of X-ray diffraction patterns (λ(Kα1) = 1.7890 Å, Co) for as-synthesized (black line) and commercial (red line) AgF2.
Blue arrows mark reflections coming from AgF, pink – from unknown impurities. The hkl indices from AgF2 are given.
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Fig. S6. Heat capacity of AgF2 as a function of temperature. The λ peak with the maximum at 161 K has been used for the estimate of magnetic entropy
change at the phase transition.
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Fig. S7. Vibrational spectroscopy. a The Raman spectra of AgF2 measured at different excitation lines. We show the range of fundamental modes (up to ca. 490
cm˘1) and overtones (up to ca. 970 cm˘1). b Comparison of the measured (red line) and simulated using Lorentzian functions (blue line) IR absorption spectrum of AgF2
(dark blue triangles mark the positions and intensities of of IR-active modes calculated at DFT+U level, which were used for generating the simulated spectrum. c Comparison
of the measured (blue line) and simulated (orange line) Raman spectrum of AgF2.
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Fig. S8. Inelastic neutron scattering. Panel a shows an experimental scan with incident neutron energy Ei = 60meV . The arrow indicates the plume emanating
from the ordering wave-vector and corresponding to the plume seen in the high energy scan of Fig. 4. Panel b shows the SpinW program(31) simulated powder averaged
spectrum for Ei = 300meV and the Pd+ atomic form factor from Ref. (33) to be compare with the computation used the hybrid-DFT form factor and shown in the main text.
The spectrum was convoluted with the experimental resolution. Panel c shows the form factors used in the computations. The red curve is the atomic form factor of Pd+ ion
from Ref. (33) that was used for the simulation in panel b. x, y, z labels cuts of the anisotropic AgF2 form factor along the a, b, c crystallographic directions respectively. The
form factor was obtained from hybrid-DFT computations as explained above. We also show the Cu2+ atomic form factor(33) for comparison (magenta line).
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t‖dl t‖ds tzdl tzds

Slater-Koster 1.24 1.26 0.58 0.59
1+4 orbitals 1.20 1.28 0.73 0.58
5+6 orbitals 1.25 1.26 0.56 0.60

Table S1. Nearest neighbor pd hopping integrals (eV). Slater-Koster are the results extrapolated from the DFT computations of Ref. 4, 5
and Eq. (S4). The next two lines show the present Wannier90 computations with 5 and 11 orbitals per f.u. The subindex s/l refers to the
non-equivalent short and long bonds present in the structure.

Mult. Position diff. Jij (MTFT) Jij (TE)
a b c meV meV

4 ±0.5 ±0.5 0 52 56
2 0 ±1 0 4.5 -
2 ±1 0 0 4.2 -
2 ±(1 −1) 0 1.2 -
2 ±(1 1) 0 1.1 -
4 ±(0.5 −1) ±0.5 0.45 -
2 0 ±(1 −1) −0.26 -
4 ±(0.5 1) ±0.5 0.11 -
4 0 ±0.5 ±0.5 0.576 −1.62
4 ±0.5 0 ±0.5 −0.15 −1.01
4 ±(1 0.5) ±0.5 −0.16 -

Table S2. Magnetic exchange constant. We show the exchange constant Jij computed combining DFT+U and the MTFT method(24) and (for
specific directions) combining hybrid-DFT and the TE method(22). DFT+U combined with TE method yields very similar values. Columns 2-4
are the difference in the position of Ag ions i and j in lattice units. In plane exchange constants less than 1 meV were neglected. The first
column are the number of bonds with the same exchange matrix element (fixing the initial atom). ±(1 − 1) is a shorthand for 1 − 1 and
−1 1.
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No. Exp.IR Exp. Raman DFT+U HSE06 Symm. (activity) Comment
1 497sh 441+56 combination (B3u)

and/or 470 IR B2u (HSE06)
2 480-485 254+233 combination (B2g)

and/or 481 Raman B2g (HSE06)
3 461 477 Au (silent)
4 455 470 B2u (IR)
5 453 468 B1u (IR)
6 446 443 481 B2g (Raman)
7 441vs 441 459 B3u (IR)
8 441 478 B3g (Raman)
9 413-419 341+73 combination (B3g)

& photochemical product*
10 368-377 193+168 combination (B1g)

and/or 193 first overtone (Ag)
11 341sh 350 356 B3u (IR)
12 337 329 340 B1g (Raman)
13 323 325 Au (silent)
14 307m 312 317 B2u (IR)
15 307m 310 317 B1u (IR)
16 311-312 309 323 Ag (Raman)
17 290-291 296 307 B1g (Raman)
18 258 253 257 B2g (Raman)
19 244 249 250 B3g (Raman)
20 232-233 227 232 Ag (Raman)
21 193m 186 199 B2u (IR)
22 193m 185 195 B1u (IR)
23 183 200 Au (silent)
24 162-174 171 183 B2g (Raman)
25 168m 163 175 B3u (IR)
26 162 170 Au (silent)
27 159w 156 161 B3u (IR)
28 143 146 B1u (IR)
29 139sh 134 136 B2u (IR)
30 138 73+73 first overtone (Ag)
31 125 132 140 B3g (Raman)
32 102-117 115 118 B1g (Raman)
33 98 101 Au (silent)
34 93w 94 93 B3u (IR)
35 93w 90 92 B1u (IR)
36 73 72 Au (silent)
37 57 59 65 Ag (Raman)
38 — 27 38 B2u (IR) range not measured

Table S3. Experimental and Theoretical Phonon Frequencies. We provide a tentative assignment of bands appearing in the IR and Raman
spectra of AgF2 (wavenumbers in cm−1). We classify the modes as shoulder (sh), very strong (vs), strong(s), medium (m) and weak (w).
∗Intensity of this band clearly grows with the illumination time; the nature of chemical species which is the product of photochemical
decomposition will be elucidated elsewhere.
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