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We describe main issues and design principles of an efficient implementation, tailored to recent genera- 

tions of Nvidia Graphics Processing Units (GPUs), of an Algebraic MultiGrid (AMG) preconditioner previ- 

ously proposed by one of the authors and already available in the open-source package BootCMatch: Boot- 

strap algebraic multigrid based on Compatible weighted Matching for standard CPUs. The AMG method relies 

on a new approach for coarsening sparse symmetric positive definite (s.p.d.) matrices, named coarsening 

based on compatible weighted matching . It exploits maximum weight matching in the adjacency graph 

of the sparse matrix, driven by the principle of compatible relaxation, providing a suitable aggregation 

of unknowns which goes beyond the limits of the usual heuristics applied in the current methods. We 

adopt an approximate solution of the maximum weight matching problem, based on a recently proposed 

parallel algorithm, referred to as the Suitor algorithm , and show that it allows us to obtain good quality 

coarse matrices for our AMG on GPUs. We exploit inherent parallelism of modern GPUs in all the kernels 

involving sparse matrix computations both for the setup of the preconditioner and for its application in a 

Krylov solver, outperforming preconditioners available in the original sequential CPU code as well as the 

single node Nvidia AmgX library. Results for a large set of linear systems arising from discretization of 

scalar and vector partial differential equations (PDEs) are discussed. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

We are concerned with the efficient solution, on recent genera-

ions of GPU accelerators, of systems of linear equations: 

 x = b , (1)

here A ∈ R 

n ×n is a symmetric positive definite (s.p.d.), large and

parse matrix. More specifically, we focus on the main issues and

esign principles driving a parallel implementation of main func-

ionalities of the package BootCMatch: Bootstrap algebraic multigrid

ased on Compatible weighted Matching [1] , for preconditioning and

olving system (1) by an Algebraic MultiGrid (AMG) method based

n aggregation. 

AMG methods are a popular choice for dealing with a sys-

em like (1) , when it results from the discretization of partial
� This work has been partially supported by the EC under the Horizon 2020 

roject Energy Oriented Center of Excellence (EoCoE II): Toward Exascale for Energy , 

roject ID: 824158 and INdAM-GNCS Project on Innovative and Parallel Techniques 

or Large Linear and Nonlinear Systems, Function and Matrix Equations with Applica- 

ions . 
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ifferential equations (PDEs) on complex geometries and unstruc-

ured grids or when no information about its origins are available

2–4] . The main distinguishing feature of the above methods, with

espect to their geometric counterpart, is the chance of defining

n automatic setup of the hierarchy of coarse-level variables and

atrices by relying only on the (fine) coefficient matrix. Many

ariants of AMG methods [5–8] and related parallel software li-

raries [9–11] have been proposed in the literature. They differ in

he way in which coarse-level variables are selected and in the

etting of coarse-to-fine transfer operators. Despite of differences,

urrent AMG methods show good algorithmic scalability, meaning

hat the number of iterations stays almost constant while the sys-

em size scales up, when they are applied to classes of sparse ma-

rices corresponding to discretizations of 2nd order scalar elliptic

DEs. 

In [12,13] , the authors propose a new AMG method, and the

orresponding sequential software, which relies on a new setup

rocedure to generate coarse-level variables aimed at obtaining an

MG preconditioner showing good algorithmic scalability for more

eneral s.p.d. linear systems. 

Here we present a parallel version of BootCMatch, which effi-

iently exploits the fine-grained parallelism and the memory orga-

ization of modern GPU accelerators, with the final aim to move

https://doi.org/10.1016/j.parco.2019.102599
http://www.ScienceDirect.com
http://www.elsevier.com/locate/parco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2019.102599&domain=pdf
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a step towards AMG for future exascale computations. It is worth

noting that in BootCMatch we proposed a bootstrap (adaptive)

AMG aimed to obtain a preconditioner with a desired convergence

rate, while in the following we do not consider adaptivity and only

focus on a single hierarchy AMG based on the new setup procedure

described in [12,13] . 

In the last 10 years a growing number of systems embeds GPU

accelerators to exploit their outstanding performance (see [14] ).

However, these new platforms may require to rethink and redesign

algorithms, data structures and software development paradigms

for taking full advantage from their usage. In particular, it is not

unusual for algorithms that on traditional computing platforms are

considered inefficient due to slow convergence, to become very

much competitive on GPUs since additional computations are well

tolerated and convenient with respect to using complex memory

access patterns. For example, it is well known that highly paral-

lel smoothers, such as versions of weighted Jacobi, outperform, in

terms of execution times, more effective but intrinsically sequen-

tial smoothers as Gauss-Seidel relaxation, for preconditioning and

solving sparse linear systems on GPUs (e.g., see [15–17] ). One of

the main objectives of our work, as described in Section 3 , has

been to implement highly tuned kernels that access GPU global

memory according to best practices of CUDA programming and to

use the available computing resources ( i.e., CUDA cores) in a cost-

effective way by introducing the concept of miniwarp , for all the

kernels implemented in BootCMatch. The rest of the paper is or-

ganized as follows: Section 2 introduces the AMG methods and

in particular the variant that relies on the solution of a weighted

graph matching problem for the generation of the coarse-level

variables. Section 3 describes the issues related to a parallel im-

plementation of the AMG method based on compatible weighted

matching. Section 4 provides a brief description of related works.

Section 5 presents the results obtained on a large set of test cases.

Finally, Section 6 concludes the work also presenting future lines

of activity. 

2. Background 

2.1. Algebraic multigrid methods 

Multigrid methods are linear complexity methods for solving

system (1) . They are built on a relaxation method (the smoother ),

such as a Richardson-type method, which efficiently damps high-

frequency errors, although it is not able to reduce low-frequency

errors. However, moving the problem to a coarser grid, what were

previously low-frequency errors become high-frequency errors and

can be damped by a new application of relaxation. The above pro-

cedure, whose setup requires coarser grids and transfer operators

for moving among the grids, can be recursively applied obtaining

methods with a computational cost which depends only linearly

on the problem size [3,18] . While geometric multigrid methods rely

on a pre-defined hierarchy of grids and on transfer operators de-

pending on the geometry of the problem, AMG methods use only

the information available in the system matrix. In the following,

we describe the main components for setup and application of an

AMG method; for an exhaustive introduction to AMG we refer the

reader to [2] . 

Let the set of row indices of the s.p.d. matrix A be the fine index

space, i.e., � = { 1 , 2 , . . . , n } . Any AMG generates a hierarchy of nl

index spaces and a corresponding hierarchy of matrices, 

�1 ≡ � ⊃ �2 ⊃ . . . ⊃ �nl , A 

1 ≡ A, A 

2 , . . . , A 

nl , 

by a suitable coarsening algorithm using the information contained

in A . A vector space R 

n k is associated with �k , where n k is the size

of �k . For all k < nl , a prolongation operator is built P k ∈ R 

n k ×n k +1 

and the matrix A 

k +1 = (P k ) T A 

k P k is computed according to the
alerkin approach. A smoother operator M 

k is also defined, repre-

enting the iteration matrix of a relaxation method. All the above

omponents are built in the so-called setup phase . The components

roduced in the setup phase may be combined in several ways to

btain different types of multigrid cycles ; this is done in the appli-

ation or solve phase . An example of such a combination, known

s symmetric V-cycle, is given in Algorithm 1 . In that case, a sin-

Algorithm 1: V-cycle 

V-cycle( k, nl, A 

k , b 

k , x k ) 

if k � = nl then 

x k = x k + (M 

k ) −1 
(
b 

k − A 

k x k 
)
; 

b 

k +1 = (P k +1 ) T 
(
b 

k − A 

k x k 
)
; 

x k +1 = V-cycle 
(
k + 1 , A 

k +1 , b 

k +1 , 0 
)
; 

x k = x k + P k +1 x k +1 ; 

x k = x k + (M 

k ) −T 
(
b 

k − A 

k x k 
)
; 

else 

x k = 

(
A 

k 
)−1 

b 

k ; 

end 

return x k 

le iteration of the same smoother is used before and after the

ecursive call to the V-cycle (i.e., in the pre-smoothing and post-

moothing phases). However, more robust, although more expen-

ive, choices can be performed, such as W-cycle [18] , and recur-

ive Krylov-based cycle (K-cycle) [19] . At the coarsest level, i.e., for

 = nl, a direct solver is usually employed. Actually, especially in

arallel implementations of the algorithm, an iterative solver of the

oarsest system is also applied in order to reduce data dependen-

ies among parallel processors. 

The choice of the coarse index spaces and of the prolongation

perators are strictly related to each other and affects the con-

ergence properties of Algorithm 1 . Indeed, convergence strongly

epends on the ability of the coarse vector spaces to accurately

epresent the errors unaffected by relaxation ( algebraically smooth

ectors ) and the ability of the prolongators to interpolate them

ack to the fine space well. Recent theoretical developments pro-

ide general approaches to the construction of coarse spaces for

MG having optimal convergence, i.e., a convergence indepen-

ent of the problem size, in the case of general linear systems

see [20] and the references herein). However, despite these the-

retical developments, almost all currently available AMG meth-

ds and software rely on heuristics to drive the coarsening process

mong variables; for example the strength of connection heuris-

ics is derived from a characterization of the algebraically smooth

ectors that is theoretically well understood only for M-matrices.

he above heuristics is generally used both in the classical coarsen-

ng and in an alternative approach, named coarsening by aggrega-

ion [2,8,18] . The classical coarsening separates the original index

et into either coarse indices (C-indices), which form the coarse

evel, and fine indices (F-indices), whose unknowns will be in-

erpolated by the C-indices values, while aggregation-based coars-

ning uses aggregates of fine indices to form the coarse indices.

n [12,13] a new coarsening algorithm, which does not require a

riori characterization of smooth vectors, has been proposed. It

elies on the so-called compatible relaxation principle introduced

n [21] , which indicates a way to measure the quality of a coarse-

evel space, and exploits a maximum weight matching in the graph

efined by the system matrix to find out an automatic aggregation-

ased coarsening for general s.p.d. matrices. In the following we

escribe the main features of the above aggregation algorithm and

efer the reader to the original papers for details on the rationale
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nd numerical principles at the base of its use for efficient coars-

ning. 

.2. Aggregation algorithm based on weighted graph matching 

Let G = (V, E, C) be the weighted undirected adjacency graph

f the matrix A in (1) , where the vertex set V consists of the

ow/column indices of A , the edge set E corresponds to the cou-

les of indices ( i, j ) of the nonzero entries in A , and C = (c i j ) (i, j) ∈ E 
s a matrix of positive edge weights. A matching in G is a sub-

et of edges M ⊆ E such that no two edges in M share a ver-

ex. A maximum weight matching in the graph G is defined as the

rg max M 

∑ 

(i, j) ∈M 

c i j . 

In [12,13] a maximum weight matching has been exploited to

orm aggregates of index pairs for good-quality coarsening in AMG

ethods. The main element driving the aggregation scheme is the

efinition of a suitable matrix C = C(A, w ) of edge weights for the

djacency graph of the original system matrix, which is function

f A and of a vector w ∈ R 

n . More specifically, C consists of pos-

tive values arising from a computation, which has linear com-

lexity, involving the entries of A and of a good sample w of

he algebraically smooth vectors for the system at hand. For the

ake of completeness, details on the way we define the matrix C

nd exploit maximum weight matching in the aggregation algo-

ithm are summarized in Appendix A . Here we observe that ac-

urate solutions for the computation of maximum weight match-

ng in a graph are based on the Hungarian algorithm to search

ptimal augmenting paths in the matrix between unmatched ver-

ices [22] . That algorithm has a super-linear worst-case complexity

nd it is intrinsically sequential, therefore it represents the main

ssue in the search for an efficient parallel computation of a max-

mum weight matching. However, approximate solutions featuring

ear-linear complexity have been shown to represent a viable ap-

roach to obtain a more efficient matching for good-quality coars-

ning and some of them have been included in the BootCMatch

oftware framework. For a detailed discussion on the impact of ap-

roximate matching algorithms on the preconditioner performance

e remind to [13] . 

. Parallel algorithms for GPUs 

In the following we describe the design principles applied in

ur implementation, specifically tailored for recent generations of

vidia GPUs using the CUDA framework, of the main kernels in-

olved in setup and application of the compatible weighted match-

ng AMG procedure as preconditioner in a preconditioned Conju-

ate Gradient (CG) method. As in the original BootCMatch code

nd in the Nvidia AmgX library, we chose to employ a CSR (Com-

ressed Sparse Row) storage format for the sparse matrices. 

.1. Setup of the preconditioner 

The two main issues in the development of a GPU version of

he setup phase are: the computation of maximum weight match-

ng in weighted graphs and the computation of coarse matrices. 

The original CPU version offers the choice among a set of opti-

al and approximate maximum weight matching algorithms that,

owever, are either inherently sequential or unsuitable to a good

PU implementation. Therefore, we employed a different algo-

ithm, named Suitor , which is a fast half-approximate matching al-

orithm, i.e., a matching whose total weight is at least half the op-

imal weight and whose cardinality is at least half the maximum

ardinality. The computational complexity of the sequential Suitor

s O(| E| �) , where | E | is the number of edges and � is the max-

mum vertex degree in the graph G . The algorithm follows an ap-

roach based on speculative matches to reduce the number of can-
idate mates for a vertex. A vertex i proposes (tentatively matches)

o its heaviest neighbor j that does not already have a proposal

f heavier weight. This reduces the number of neighbors a vertex

onsiders as candidate mates. If i has a proposal of lower weight,

hen i matches itself to j and unmatches the previous mate of j ,

.e., k , then the algorithm has to find a new mate for k . The main

eature of the Suitor algorithm, with respect to similar algorithms

sing a local dominant strategy, is to avoid any central queue for

toring the dominant edges, therefore it is more easy to parallelize.

 detailed description of the parallel Suitor algorithm is out of the

cope of the present work since for our aims we relied on the par-

llel version for GPU proposed in [23] and made available to us

rom the authors in source form. For more details we refer the in-

erested readers to [23,24] . 

We note that the CUDA kernels in Suitor original implementa-

ion make use of the shuffle instructions, a feature available start-

ng from the Kepler architecture that offers a way to directly share

ata among threads belonging to the same warp (a group of 32

hreads). The original version of warp-level primitives depended on

mplicit warp-synchronous behaviour that, however, is not longer

uaranteed starting on CUDA 9.0. Therefore, we adapted the Suitor

lgorithm to the new thread-scheduling policy supported by CUDA

.0, although CUDA supports, by using suitable compiler options,

 behaviour of the warp compatible with the legacy environment.

e tested both options (i) updating Suitor so that it uses the

ew shuffle primitives (with explicit synchronization) and (ii) us-

ng compiler options to use the legacy warp (synchronous) be-

aviour, but we did not find significative differences in the ex-

cution time of our code. We observe that the Suitor algorithm,

s already shown for other approximate matchings available in

he original CPU code [13] , makes possible to obtain good quality

oarsening in our AMG (see Section 5 ). 

After optimizing parallel execution of the matching-based

ggregation algorithm, as also remarked in related work (see

ection 4 ), the most time-consuming computation remains the

riple-matrix product involved in the Galerkin approach for com-

utation of coarse matrices. In the beginning, we resorted to the

tandard kernel available in the cusparse [25] library ( cusparseDc-

rmm ). However, we found that its performance was far from be-

ng optimal and we changed our code to use Nsparse , a recent

mplementation of sparse matrix-matrix product available in open

ource format [26] . Nsparse, as the implementation of Suitor, relies

n the legacy shuffle primitives, nevertheless it provides a clear ad-

antage with respect to the general-purpose primitives available in

usparse . 

All other matrix operations of the setup phase, that are the

omputation of the transpose of the prolongator and the restric-

ion of the current-level smooth vector, are implemented by us-

ng a load balancing technique that we refer as miniwarps in anal-

gy with the group of 32 consecutive threads named warp in the

UDA jargon. This approach considers sets (having the same num-

er of elements) of contiguous threads with a possible cardinality

f 2, 4, 8, 16 or 32. Those sets of threads are then concurrently

apped to different data like in classic warp-centric kernels that

se a warp to manage a block of contiguous data. The threads con-

ained in a miniwarp are able to perform cooperative computation

y exploiting the efficient and fine-grained intra-warp communica-

ion allowed by recent CUDA versions. During the execution, each

ow of the sparse matrix is assigned to a single miniwarp; that

s, multiple rows are concurrently executed in the same full warp

f 32 threads. The size of a miniwarp is dynamically dependent

n the average number of nonzero entries per row of the sparse

atrix. The main advantage of this technique is that, for matrices

ith few nonzero entries per row, the number of idle threads de-

reases. With the full warp, if a row has, on average, only k < 32

onzero entries, there are, always on average, 32 − k threads that
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Fig. 1. Each miniwarp is in charge of a row of the matrix stored in CSR format. 
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remain idle. Miniwarps reduce the difference significantly by using

a size that is much closer to the average number of nonzero entries

per row. Fig. 1 shows how the miniwarp works when applied to a

matrix in CSR format in the case of a sparse-matrix dense-vector

product. 

3.2. Application of the preconditioner 

In the preconditioner application, within the solve phase, we

focused on two main kernels: the application of the smoothing

in the multigrid cycle and the implementation of an optimized

version of the CG method. We note that in our code we imple-

mented a flexible version of the CG method [27] , needed in the

case of variable preconditioners, such as Krylov-based AMG cycles

(K-cycle) [19] . 

While in the CPU version of the code we rely on the Gauss-

Seidel relaxation method as smoother and on exact solution of the

coarsest systems, in BootCMatchG we decided to avoid the intrinsi-

cally sequential computation of triangular system solution. There-

fore, both for smoothing and for the solution of the linear systems

at the coarsest level, we chose a version of Jacobi relaxation al-

ready used in [17] for AMG in a GPU setting. It is the so-called � 1 -

Jacobi smoother, which is a paramater-free version of the highly

parallel Jacobi method always convergent for s.p.d. matrices and

having good smoothing properties for strictly diagonally dominant

matrices. Our implementation of this kernel relies again on mini-

warps, each miniwarp is in charge of a row and the selection of

the miniwarp size follows the same criterion above defined. The

most expensive computation both for � 1 -Jacobi smoother and for

the preconditioned CG is the product between a sparse-matrix and

a dense-vector that we indicate with SpMV , therefore we focused

on the tuning of that kernel for our aims. The sparse matrix in-

volved in a SpMV can be: 

• a coarse matrix; in this case, no assumption can be done on the

number of nonzero entries per row; 
• a prolongator; in our aggregation scheme, also known as plain

or unsmoothed aggregation , the matrix has a single nonzero en-

try per row; 
• a transposed prolongator; the matrix has a number of nonzero

entries per row that is, at most, equal to the size of the aggre-

gates. 

For the first case, depending on the sparsity degree of the ma-

trix, the product is implemented by using either a custom kernel

that relies on the concept of miniwarp or by the general-purpose

cusparse primitive for the SpMV . More precisely, the cusparse ker-

nel is used when the number of non-zero entries per row is, on

average, at least equal to the number of threads in a full warp

(i.e., 32 threads). Indeed, we observed that, when the input matrix
ends to be more dense, the cusparse primitive performs better. The

ame technique is used for the transposed prolongator matrix, but

n that case, the miniwarp product perfectly fits with the prolon-

ator sparsity pattern. 

For the prolongator matrix, it is possible to execute the SpMV

ore efficiently taking into account that the matrix has a single

onzero entry per row. In that case we used, for any row, a single

hread. The miniwarp approach employed in the SpMV , compared

o the first cuSPARSE based implementation, provides, on average,

 1.4 × speedup of the total solving time. That speedup increases

p to 2.5 × when the setup phase produces a hierarchy composed

y matrices with a low variance of nnz per row. 

For an efficient implementation of the preconditioned CG

ethod, besides optimization of the SpMV computations, we also

ocused on reducing the number of GPU global memory access op-

rations by employing a version of CG, originally proposed for a

istributed implementation in [28] . This version of the method is

escribed in Algorithm 2 , where the application of the precondi-

ioner is represented by the mapping B(·) from R 

n to R 

n . For

Algorithm 2: Preconditioned Flexible Conjugate Gradient 

1: Given u 0 and set r 0 = b − Au 0 
2: w 0 = d 0 = B(r 0 ) 

3: v 0 = q 0 = Aw 0 

4: α0 = w 

T 
0 r 0 

5: β0 = ρ0 = w 

T 
0 v 0 

6: 

7: u 1 = u 0 + α0 /ρ0 d 0 
8: r 1 = r 0 − α0 /ρ0 q 0 
9: 

10: for i = 1 , . . . do 

11: w i = B(r i ) 

12: v i = Aw i 

13: 

14: αi = w 

T 
i 

r i 
15: βi = w 

T 
i 
v i 

16: γi = w 

T 
i 

q i −1 

17: 

18: ρi = βi − γ 2 
i 

/ρi −1 

19: 

20: d i = w i − γi /ρi −1 d i −1 

21: u i +1 = u i + αi /ρi d i 
22: 

23: q i = v i − γi /ρi −1 q i −1 

24: r i +1 = r i − αi /ρi q i 
25: 

26: end for 
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ts efficient implementation on GPU we computed the sequence

f the three scalar products (see instructions from 14 till 16 in

lgorithm 2 ) within the main loop, by using a single kernel. This

pproach allows us to reduce of a factor three the number of mem-

ry access operations, indeed the values of the vector w that is in-

olved in all the three products can be maintained in the registers.

he reordering proposed in [28] requires an additional AXPY com-

utation (the update of a vector Y as Y = αX + Y ) with respect to

he original version of the method, however, we grouped the AXPY

omputations in two pairs that are executed in a single kernel (see

he pair of instructions 20 and 21, and the pair of instructions 23

nd 24, in Algorithm 2 ). The results of the first AXPY are main-

ained in the GPU registers and used for the second AXPY opera-

ion so reducing, again, the number of GPU global memory access

perations. 

. Related work 

Preconditioning and solving ever more large and sparse linear

ystems is a key kernel in computational science and the need to

xploit the potential of GPUs for parallel preconditioners in itera-

ive linear solvers is widely recognized [29] . Due to their flexibility

nd potential scalability, many effort s were in particular devoted

o parallel versions of AMG preconditioners specifically tailored to

se single and multiple GPUs. 

Some works [30–34] focused on benchmarks of well-known

MG algorithms, such as AMG based on classical C/F coarsen-

ng [5,7] and aggregation-based AMG [6,8] , by using GPUs to only

ccelerate the application of the preconditioner at each iteration

f Krylov methods. They rely on efficient implementations of the

pMV kernel and emphasize that the setup of an AMG is a bottle-

eck in parallel AMG methods due to the sequential nature of the

oarsening processes. On the other hand, focusing on accelerating

pplication phase of AMG is justified by the need to repeat the

bove application iteratively in a Krylov process. Furthermore, it is

requent the need of solving many linear systems with the same

atrix but different right-hand sides, e.g., in time-dependent or in

ewton-type methods, therefore the setup cost can be amortized

y multiple application phases. 

Early work devoted to obtain a GPU implementation of both

MG setup and application phase on a single GPU is presented

n [35] . The authors describe main issues and their choices in

mplementing a version of the smoothed aggregation-based AMG

roposed in [6] . They rely on a fine-grained parallel implementa-

ion of a generalized maximal independent set algorithm for pro-

ucing aggregates with similar properties and focus on efficient

ernels for the Galerkin triple-matrix product which represents the

ain roadblock on the way to obtain efficient AMG setup. 

In [17] the authors present a GPU implementation of an un-

moothed aggregation-based AMG, where the focus is both to im-

lement an efficient parallel algorithm for computation of maxi-

al independent set of variables, specifically tuned for standard

sotropic graph Laplacian arising in 2nd order elliptic PDEs, and to

implify the Galerkin triple-matrix product. Indeed, when standard

nsmoothed aggregation is employed, the prolongation operator

s a binary matrix and the Galerkin product is reduced to sum-

ations of entries in the matrix at the finer level, which can be

fficiently implemented in CUDA. They also emphasize that more

ophisticated cycles than the standard V-cycle, such as K-cycle,

hould be employed in the case of unsmoothed-type aggregation

chemes in order to preserve optimal convergence of the multi-

evel AMG method. Furthermore, they propose to use the � 1 -Jacobi

ethod both as smoother and as coarsest solver. 

An efficient implementation for GPU of an unsmoothed

ggregation-based AMG is also discussed in [16] and it is at the

ase of the GAMPACK commercial code [36] running both on single
nd multiple GPUs. Also in that work, the authors rely on a parallel

lgorithm for maximal independent set of coarse variables, repre-

enting aggregates of strictly connected fine variables, and propose

o use a hybrid cycle to accelerate convergence of the application

hase. They use K-cycle at the first 2 levels of the AMG hierarchy,

hereas V-cycle is employed at the successive levels, in order to

btain a tradeoff between parallel efficiency and optimal conver-

ence. 

A description of the algorithms included in the publicly avail-

ble Nvidia AmgX library [37] , running on single and multiple-

PUs, is in [38] . AmgX implements both classical and unsmoothed

ggregation-based AMG methods, with different choices for coars-

ning and prolongation operators. The parallel implementation of

lassical AMG is largely based on the methods implemented in the

ast available version of the hypre library [9] . The aggregation algo-

ithm of AmgX is based on a pairwise scheme similar to that pro-

osed in [8] , coupling strongly-connected variables, which relies

n a parallel graph matching techniques for efficient coarsening on

ingle GPU. The library makes available a variety of cycles, such as

 and W, and smoothers and coarsest solvers, including weighted-

acobi, � 1 -Jacobi, block-Jacobi, Gauss–Seidel, and an incomplete-LU

ILU) factorization. AmgX is the state of the art of AMG precon-

itioners for GPUs and in this paper we consider its single-node

ersion for our performance comparisons. 

. Numerical experiments 

Hereafter, we discuss results obtained by using our GPU ver-

ion of BootCMatch, named BootCMatchG (BCMG) , for the solution

f linear systems arising from scalar and vector PDE problems, as

xplained in the following. 

ANI These test cases derive from the following anisotropic 2D

PDE on the unit square, with homogeneous Dirichlet bound-

ary conditions: 

− div (K ∇u ) = f, 

where K is the constant coefficient matrix 

K = 

[
a c 
c b 

]
, with 

{ 

a = ε + cos 2 (θ ) 

b = ε + sin 

2 (θ ) 
c = cos (θ ) sin (θ ) 

The parameter 0 < ε ≤ 1 defines the strength of anisotropy

in the problem, whereas the parameter θ specifies the direc-

tion of anisotropy. In the following we discuss results related

to test cases with ε = 0 . 001 and θ = 0 , π /8, which we re-

fer to as ANI1 and ANI2, respectively. The problem was dis-

cretized using the Matlab PDE toolbox, with linear finite ele-

ments on (unstructured) triangular meshes of three different

sizes, obtained by uniform refinement. The resulting three

linear systems have s.p.d. matrices with the size 168 , 577 ,

673 , 025 , and 2689 , 537 , respectively. 

LE2D A second set of test cases comes from the discretization

of the following Lamé equations for linear elasticity: 

μ�u + (λ + μ) ∇( div u ) = f x ∈ �

where u = u (x ) is the displacement vector, � is the spa-

tial domain, and λ and μ are the Lamé constants. A mix

of Dirichlet boundary conditions and traction conditions are

applied to have a unique solution. Discretization of the vec-

tor equation leads to systems of equations whose coefficient

matrix is s.p.d. and, since each scalar component of the dis-

placement vector is considered separately, has a block form

where each diagonal block corresponds to the matrix com-

ing from the discretization of Laplace equation for each un-

known component. We considered Lamé equations on a 2D
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Table 1 

BCMG : ANI test cases. 

Size tsetup V-cycle W-cycle 

it tsolve it tsolve 

ANI1 

168,577 34.15 192 115.65 123 216.30 

673,025 64.60 302 464.69 161 664.84 

2689,537 164.80 466 2476.52 205 2410.39 

ANI2 

168,577 30.34 194 116.66 123 213.90 

673,025 64.50 307 471.39 163 650.14 

2689,537 167.59 481 2556.50 209 2437.63 

Table 2 

BCMG : Parflow test cases. 

Matrix tsetup V-cycle W-cycle 

it tsolve it tsolve 

M1 94.46 91 206.80 26 227.54 

M2 96.06 82 189.98 42 390.43 

M3 96.70 125 288.63 107 995.52 

M4 96.10 87 198.36 27 236.69 

M5 97.83 604 1388.30 584 5569.89 
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beam characterized by μ = 0 . 42 and λ = 1 . 7 . The problem,

which we refer to as LE2D, was discretized using linear fi-

nite elements on triangular meshes of three different sizes,

obtained by uniform refinement using the software package

MFEM [39] . The resulting three linear systems have the size

66 , 690 , 264 , 450 , and 1053 , 186 , respectively. 

Parflow A third set of s.p.d. linear systems comes from a

groundwater model, aimed at the numerical simulation

of the filtration of 3D incompressible single-phase flows

through anisotropic porous media. The linear systems arise

from the discretization of the Darcy’s equation, with no-flow

boundary conditions, performed by a cell-centered finite vol-

ume scheme on a (structured) Cartesian grid. They were

generated by using a Matlab code implementing the funda-

mentals of reservoir simulations [40] and can be regarded

as simplified samples of systems arising in ParFlow, a paral-

lel computational model developed at the Jülich Supercom-

puting Centre (JSC). We considered three different systems

with size 10 6 , corresponding to anisotropic permeability ten-

sors randomly generated from a lognormal distribution hav-

ing mean 1 and 5 different values of standard deviation, i.e.,

from 1 till 5, corresponding to increasing anisotropy levels,

which we refer to as Mi, for i = 1 , . . . , 5 , respectively. 

In all cases we solved the linear systems with right-hand sides

set equal to the unit vector. The runs have been carried out on

an Nvidia Titan V (Nvidia Volta with 12 GB and 5120 CUDA cores

running CUDA 9.1), operated by IAC-CNR in Rome. For the sake of

comparison between the CPU and GPU versions of the methods we

also ran the original BootCMatch code on 1 core of an Intel Xeon

Platinum 8176 CPU. The CPU executable has been generated using

the GNU C compiler 5.5 under the control of the 3.1 Linux kernel.

Comparisons with single-node version of Nvidia AmgX 2.0.0.130-

open source library have been finally carried out. 

We always used the AMG preconditioner coupled with our flex-

ible version of the preconditioned CG solver (see Section 3 ). The CG

procedure stopped when the euclidean norm of the relative resid-

ual reached the tolerance rtol = 10 −6 or the number of iterations

reached a predefined threshold itmax = 50 0 0 . We always consid-

ered AMG hierarchies with maximum size of the coarsest matrix

fixed to maxcset · n 1/3 , where maxcset is a positive arbitrary value

and n is the original matrix dimension, so that the cost of possible

direct solution of the coarsest system is no larger than the cost of a

matrix-vector product involving the original matrix. This is a usual

way to fix the size of the coarsest system aimed to obtain a good

tradeoff between the number of levels of the final hierarchy and

the efficiency of the preconditioner for increasing problem size. In

our tests we put maxcset = 40 , which is the default in BootCMatch.

The same rule for the maximum size of the coarsest matrix is also

used in [11] . A maximum number of levels was also fixed to 40.

To maintain a maximum coarsening ratio equal to 4, we composed

couples of prolongator operators computed by matching-based ag-

gregation, resulting in double pairwise aggregates, in line with the

approach implemented in [11] and also supported by AmgX [37] .

Note that, for all the experiments discussed in the following, we

chose the unit vector as original smooth vector involved in the

aggregation algorithm described in Appendix A . In all cases one

sweep of � 1 −Jacobi method was applied as both pre- and post-

smoother whereas 20 sweeps of the same method were applied at

the coarsest level. 

5.1. Performance results 

We first compare results obtained by applying the AMG pre-

conditioner built by BCMG both as V-cycle and W-cycle. Table 1

summarizes performance results of the preconditioned CG, when
-cycle and W-cycle are applied, for the test cases ANI1 and ANI2

hile system size increases. We report the execution time in mil-

iseconds (ms), needed for the setup ( tsetup ) of the preconditioner,

he number of iterations ( it ) and the time for the solution of the

ystems ( tsolve ). Note that the total time for the preconditioner

etup and the system solution is tsolv e + tsetup. As expected, W-

ycle requires a smaller number of iterations than V-cycle, also

howing a better algorithmic scalability. Indeed number of iter-

tions increases more slowly for increasing problem size for all

he ANI test cases. On the other hand, W-cycle generally has a

arger computational cost per iteration, therefore the best execu-

ion times are generally obtained by applying V-cycle, but for the

argest size, where the large reduction of the number of iterations

esults also in a lower solving time for W-cycle. Comparison be-

ween V-cycle and W-cycle are also reported for the Parflow test

ases in Table 2 . We observe that, also in this case, W-cycle re-

uires a smaller number of iterations than V-cycle; however, in

ll cases V-cycle outperforms W-cycle in terms of execution times.

imilar behaviour are observed also for the LE2D test cases, there-

ore, we conclude that for the available choice of parallel smoother

nd coarsest solver, best execution times of BCMG are generally ob-

ained when V-cycle is applied. 

.2. Comparison with BootCMatch 

In the following, we compare the performance of BCMG with

hat of the original CPU version. To the purpose of making the

omparison as fair as possibile, we show results obtained by using

 sequential version of the Suitor algorithm in the setup phase. In

he application phase, two different configurations of the V-cycle

re considered: in the first configuration, which we refer to as

CM1 , we applied the same choices for the pre/post-smoother and

he coarsest solver available in BCMG , i.e., 1 sweep of � 1 −Jacobi as

oth pre- and post-smoother and 20 sweeps of the same method

t the coarsest level; a second configuration, referred to as BCM2

mploys 1 sweep of the more robust Gauss-Seidel smoother at

he intermediate levels and exact solution, obtained by the sparse

irect solver SuperLU [41] available through BootCMatch, for the

oarsest system. This second choice generally gives better results

n terms of number of iterations and solution time at the limited

ost of an LU factorization of the coarsest matrices, as we dis-

uss in the following. Finally, we also report comparison with the
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Fig. 2. Speedup of BCMG vs BootCMatch: ANI test cases. 
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riginal CPU version of the code, using the default parameters for

oth the setup and the application, i.e., the Auction-type algo-

ithm included in BootCMatch for near-optimal maximum weight

atching in the setup phase and K-cycle with the same choices of

moother and coarsest solver as in BCM2 in the application phase;

e refer to this method as BCMK . This default configuration of

he CPU code often results in the lowest number of iterations and

hen of the solution time, especially for increasing problem size,

lthough it entails a larger cost for the setup. 

In Fig. 2 we show speedup of the GPU version of the precon-

itioner versus the two CPU versions, for the test cases ANI1 and

NI2. The speedup obtained in the setup phase (see Fig. 2 on the

eft) has a similar behaviour both for BCM2 and BCM1 in all the

NI test cases, with very small variations probably due to fluctua-

ions in the system load. We remark that, as expected, the cost of

he LU factorization of the coarsest matrices has a negligible im-

act on the setup cost of BCM2 for these test cases, whereas for

oth BMC2 and BCM1 most of the setup time is spent in the triple-

atrix Galerkin products and in the aggregation algorithm based

n maximum weight matching. The speedup always increases with

he matrix size and, when the largest system of the ANI1 test cases

s considered, it reaches a maximum value of 27.2 and of 27.7 for

CM1 and BCM2 , respectively. Similar results are obtained also for

NI2. A good speedup is obtained also in the solve phase (see

ig. 2 on the right), where maximum values of 54.6 and 38.2 are

btained for the test cases ANI1, when BCMG is compared with

CM1 and BCM2 , respectively. Note that the speedup obtained in

he solve phase by BCMG is better when it is compared with BCM1

ue to the reduction in the number of iterations, and then in the

olution time, of the BCM2 version of the CPU preconditioner. In-

eed, the number of iterations needed to BCM2 for the largest sys-

em size is 321 for the test cases ANI1 and 333 for the test cases

NI2, whereas BCMG requires 466 and 481 iterations (see Table 1 )

or ANI1 and ANI2, respectively, and the corresponding CPU ver-

ion BCM1 requires 461 and 471 iterations for ANI1 and ANI2, re-

pectively. Looking at the speedup of BCMG versus BCMK , we ob-

erve maximum values of speedup in the setup phase of 58.6 and

6.6 for ANI1 and ANI2, respectively, due to the larger cost of the

uction-based matching w.r.t. the Suitor algorithm, and a maxi-

um speedup of about 26 in the solve phase for all the ANI test

ases. The number of iterations needed to BCMK for the largest sys-

em size is 134 for ANI1 and 136 for ANI2. 

Fig. 3 shows speedup results for the LE2D test cases. In these

est cases the speedup of the setup phase is slightly better when

CMG is compared with BCM1 , and it reaches a value of 43.4 for

he largest problem size, whereas a value of 36.5 is obtained for
CM2 . Actually, we believe that the above difference is due to fluc-

uations in the system load. As a matter of fact, the time differ-

nce between the setup time of BCM1 and BCM2 for the largest

ize is only ~ 0.2 s. It is worth noting that the improvement in the

peedup of the LE2D setup, when the problem size increases, with

espect to the previous ANI test cases is due to the larger impact

f the matching computations on the overall setup cost and shows

he effectiveness of the GPU implementation of the above compu-

ation. Also in the LE2D test cases, the best speedup of BCMG in

he setup is obtained when it is compared with the default choice

f the C-code BCMK ; in this case a speedup of 53.3 is observed for

he largest problem size. The speedup of the solve phase reaches

 maximum value of 46.9 when BCMG is compared to the corre-

ponding CPU version of the same preconditioner ( BCM1 ). An ex-

ected degradation of the performance is observed in the solve

hase when BCMG is compared with BCM2 , where a maximum

peedup of 18.9 is obtained. This behaviour is due to the dra-

atic reduction in the number of iterations obtained when a more

obust smoother is employed at the intermediate levels and the

irect solver is applied on the coarsest system for these, more

hallenging, test cases. As a matter of fact, the number of iter-

tions needed by BCM2 for the largest system size is equal to

141, whereas 2702 and 2751 are the number of iterations needed

y BCM1 and BCMG , respectively. The speedup of the solve phase

hen BCMG is compared to BCMK is increasing going from the

mallest to the medium size of the problem, whereas it has a sig-

ificant decrease when the largest size problem is solved, showing

 value of 15.5. This behaviour is related to the large reduction of

umber of iterations required by BCMK for increasing problem size,

hat in this case shows the best value of 510. 

Results for the Parflow test cases are shown in Fig. 4 . We see

hat in the setup phase a speedup of about 23 is obtained by BCMG

ersus BCM1 , whereas a speedup ranging from 23 and 24 is ob-

ained when BCMG is compared to BCM2 . Also in these test cases,

he cost of the LU factorization of the coarsest matrix is negligi-

le, therefore the behaviour of the speedup for both BCM1 and

CM2 is very similar. In the solve phase, we obtain a speedup rang-

ng from 46.6 till 48 when BCMG is compared to BCM1 , whereas

e observe a minimum speedup of about 25.8 for the M1 test

ase and a maximum speedup of about 37.3 for the M5 test case

hen BCMG is compared to BCM2 . This large variability is due to

he different number of iterations needed by BCM2 for the differ-

nt systems, which is still smaller than that needed when BCMG

nd BCM1 are applied, e.g., in the best case of M5, BCM2 requires

32 iterations against a number of iterations equal to 604 both for

CM1 and BCMG . If we look at the speedup results of BCMG versus
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Fig. 3. Speedup of BCMG vs BootCMatch: LE2D test cases. 

Fig. 4. Speedup of BCMG vs BootCMatch: Parflow test cases. 
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BCMK , we see that in the setup phase we obtain a speedup ranging

from 56.6 and 68, whereas in the solve phase we obtain a maxi-

mum speedup of 58.5 for the M5 test case, where 600 iterations

are needed to converge. 

5.3. Comparison with AmgX 

In this section we show a performance comparison with pre-

conditioners implemented in the Nvidia AmgX package, when they

run in a single-node setting. We considered the two different con-

figurations available for preconditioner setup in AmgX: classical

AMG and aggregation-based AMG. For classical AMG we used de-

fault configurations including D1 -interpolation and AHAT strength

of connection metric (see AmgX Reference Manual for details [37] ),

default parameters are also used for plain aggregation AMG, where

aggregates of size 4 are required. We refer to them as AmgXclas-

sic and AmgXaggr , respectively. Both the preconditioner types are

applied as V-cycle within preconditioned CG iterations and the

same choices for pre/post-smoother and coarsest solver applied

for BCMG are considered for our comparisons. The parameters of

Section 5 are also set for monitoring convergence of the precondi-

tioned CG. 

Note that we also applied the AmgX preconditioners as W-

cycle. Furthermore, all the other available choices for smoothers

and coarsest solvers have been considered for our test cases. In

all cases, the best results in terms of execution times have been
btained with the AmgX preconditioners discussed in the present

ection. 

In Fig. 5 we compare execution times for setup (left) and solve

right) phases of the preconditioners for the test cases ANI1. We

bserve that AmgXclassic shows the longest times both for setup of

he preconditioner and for solving the systems; its convergence be-

aviour degrades significantly when the matrix size increases: the

umber of iterations increases from 533 up to 2885 going from

he smallest to the largest size, as shown in Fig. 6 (left). Better al-

orithmic scalability properties are shown both for AmgXaggr and

or BCMG , where a much more limited increase in the number of

terations is observed for increasing size. In particular, BCMG gen-

rally shows the best behaviour in terms of number of iterations,

hich results in the best execution times for the solve phase and

n total times better than or comparable with AmgXaggr , as shown

n Fig. 6 (right). 

To gain a better understanding of our performance results,

e analyzed some efficiency parameters of the various precon-

itioners. In Table 3 , for increasing matrix size, we summarize

he number of levels nl of the AMG preconditioner and the V-

ycle operator complexity V cmplx = 

∑ nl 
k =1 

nnz(A k ) 

nnz(A 1 ) 
, where A 

k is the

atrix at level k and nnz ( A 

k ) is the number of nonzeros of A 

k ,

hich give an estimate of the cost, in terms of both memory

nd computation requirements, of the preconditioner. We also

eport the average coarsening ratio of the AMG preconditioner

ratio = 

1 
nl 

∑ nl 
k =2 

n (A k −1 ) 

n (A k ) 
, where n ( A 

k ) is the size of matrix A 

k , which
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Fig. 5. AmgX vs BCMG : ANI1 test cases. 

Fig. 6. AmgX vs BCMG : ANI1 test cases. 

Table 3 

AmgX vs BCMG : ANI1 test cases. 

BCMG AmgXclassic AmgXaggr 

nl Vcmplx cratio nl Vcmplx cratio nl Vcmplx cratio 

ANI1 

4 1.40 3.43 4 1.88 3.04 3 1.29 4.48 

5 1.40 3.11 5 1.89 3.02 4 1.30 4.48 

6 1.40 3.14 6 1.95 2.88 5 1.30 4.48 
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Table 4 

AmgX vs BCMG : LE2D test cases. 

BCMG AmgXclassic AmgXaggr 

nl Vcmplx cratio nl Vcmplx cratio nl Vcmplx cratio 

LE2D 

3 1.42 3.55 2 1.86 3.38 3 1.37 4.05 

4 1.44 3.51 3 1.90 3.63 4 1.38 3.96 

5 1.44 3.21 4 1.88 3.72 5 1.38 3.85 
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easures the ability of the coarsening schemes to obtain efficient

MG preconditioners with few levels and a limited operator com-

lexity. 

We can observe that AMGXaggr is able to build an AMG precon-

itioner with fewer levels and smaller operator complexities, with

espect to BCMG and AmgXclassic , due to its ability to obtain larger

oarsening ratios. This behaviour is the main reason of the shorter

etup times of AMGXaggr , indeed it requires one less coarsening

tep than the other preconditioners for all matrix sizes. On the

ther hand, the quality of BCMG appears better, indeed it requires

ewer iterations for the preconditioned CG convergence leading to

horter solving times. Similar results are obtained for the ANI2 test

ases, therefore, we omit them for sake of space. 

In Figs. 7 and 8 we compare results obtained by the different

reconditioners on the LE2D test cases. General behaviour is very

imilar to that obtained in the previous test cases. We observe that,
lso in this case, AmgXaggr shows better scalability for the setup

f the preconditioner, whereas BCMG outperforms both AmgX pre-

onditioners in the solve phase, due to the better convergence be-

aviour. Indeed, for all matrix sizes, BCMG requires the smallest

umber of iterations. In this case, the significant reduction in the

umber of iterations is able to balance the longer setup times of

CMG , resulting in the best total execution times. 

In Table 4 , we report efficiency parameters of the precondition-

rs for the LE2D test cases. We note that in this case, BCMG shows

etter averaged coarsening ratio than the ANI1 test cases and it

s able to obtain preconditioners with the same number of levels

s AmgXaggr . However, operator complexity of BCMG is yet slightly

arger, showing that coarse matrices are slightly more dense than

mgXaggr . This behavior explains the slightly larger setup times

or BCMG . On the other hand, the quality of our preconditioner is
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Fig. 7. AmgX vs BCMG : LE2D test cases. 

Fig. 8. AmgX vs BCMG : LE2D test cases. 

Fig. 9. AmgX vs BCMG : Parflow test cases. 
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s  
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B  
significative better, leading to good scalability and the best total

execution times. 

Finally, in Figs. 9 and 10 , we report performance results of the

preconditioners on the Parflow test cases. We observe that, also in

this case, AmgXclassic has the worst behavior, both in the setup and

in the solve phase. In all cases AmgXaggr has the best setup times.

However, we note that while AmgXaggr builds preconditioners
ith 4 levels for all the Parflow test cases, BCMG , due to smaller

oarsening ratios, builds preconditioners with 6 levels. This re-

ults in a better ratio between setup times and number of lev-

ls for BCMG , showing a good efficiency in the implementation of

he basic parallel kernels of the setup phase of our preconditioner.

or M1 and M4, AmgXaggr requires slightly fewer iterations than

CMG , whereas BCMG largely outperforms AmgXaggr in the case of
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Fig. 10. AmgX vs BCMG : Parflow test cases. 
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5, showing a better robustness with respect to anisotropy levels.

e finally observe that BCMG generally shows the best total exe-

ution time per iteration which ranges from 2.46 ms of M5 to 3.49

s of M2. 

. Conclusions 

We presented the BootCMatchG package, for preconditioning

nd solving sparse s.p.d. linear systems on modern GPU architec-

ures. The code implements an iterative linear solver of Krylov type

oupled with an AMG preconditioner based on the so-called com-

atible weighted matching aggregation algorithm. We exploited

ne-grained parallelism and optimized global memory access in

ach kernel both for the setup and the application of the AMG pre-

onditioner, as well as in the implementation of the Krylov solver.

e have rethought all main algorithms of the original package

vailable for standard CPU, by selecting and optimizing numerical

ernels for effective use of modern GPUs. To this aims, highly par-

llel approximate matching algorithm and a robust version of the

acobi relaxation method were employed. Furthermore, we intro-

uced the concept of miniwarp for accessing GPU global memory

nd using the available computing resources in an effective way.

e discussed results for a large set of s.p.d. scalar and vector linear

ystems and demonstrated that our solver outperforms the single-

ode Nvidia AmgX library. Future work includes the exploitation

f further parallel smoothers, such as sparse approximate inverses,

nd a multi-GPU version of the code. 

The current version of the source code is available on request,

y sending an email to one of the authors. In the near future we

ill make it available in a public repository. 
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ppendix A. Aggregation algorithm based on maximum weight 

atching 

Let M = { e 1 , . . . , e n p } be a matching in the adjacency graph

 = (V, E) of the matrix A , with n p the number of index pairs,

nd let w = (w k ) k =1 , ... ,n be a given (smooth) vector; for each edge

 = (i, j) , we can define the following two local vectors: 

 e = 

1 √ 

w 

2 
i 

+ w 

2 
j 

[
w i 

w j 

]

nd 

 

⊥ 
e = 

1 √ 

w 

2 
j 
/a ii + w 

2 
i 
/a j j 

[
−w j /a ii 
w i /a j j 

]
, 

here D e = 

[
a ii 0 

0 a j j 

]
is the diagonal of the restriction of A to

he edge e . Based on the above vectors, we can define two prolon-

ators : 

 c = 

(
˜ P c 0 

0 W 

)
∈ R 

n ×n c , P f = 

(
˜ P f 
0 

)
∈ R 

n ×n p , 

here: 

˜ 
 c = blockdiag (w e 1 , . . . , w e np 

) , ˜ P f = blockdiag (w 

⊥ 
e 1 

, . . . , w 

⊥ 
e np 

) . 

 = diag (w l / | w l | ) , l = 1 , . . . , n s , is related to possible unmatched

odes in the case M is not a perfect matching for G C and n c =
 p + n s . 

The matrix P c represents a piecewise-constant interpolation

perator whose range includes the original (smooth) vector w ;

urthermore, by construction (P c ) 
T DP f = 0 , i.e., R ange (P c ) and

 ange (P f ) are orthogonal with respect to the D -inner product on

 

n , with D = diag(A ) . Exploiting the above decomposition, the ma-

rix A admits the following two-by-two block form: 

 P c , P f ] 
T A [ P c , P f ] = 

(
P T c AP c P T c AP f 
P T 

f 
AP c P T 

f 
AP f 

)
= 

(
A c A c f 

A f c A f 

)
. (A.1)

n the above setting, given a smoother M , the relaxation scheme

efined by the following error propagation matrix: 

 f ≡ (I − P f (P T f MP f ) 
−1 P T f A ) (A.2)
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is a compatible relaxation, i.e., it is a smoother that keeps the

coarse variable invariant for the two-level method whose coarse

variables ( x c = P T c x ) are defined by the prolongator P c . We observe

that the sparsity pattern of the above prolongator is completely

defined by the pairwise aggregation stemming from the matching

M , while its values depend on the (smooth) vector w . 

Relaxation defined by the matrix (A.2) is equivalent to an it-

eration of the form: e k +1 = (I − M 

−1 
f 

A f ) e k , k = 1 , . . . , with M f =
P T 

f 
MP f . Therefore, when matrix A f is well conditioned or diago-

nally dominant, i.e., a Richardson-type relaxation method on A f is

fast convergent, the coarse variables defined by the prolongator P c 
can be considered a suitable coarse set for an efficient two-level

method (see [13] and references therein). To this aim, borrowing a

technique widely used in sparse matrix direct solvers [22] to move

large entries onto the main matrix diagonal, M can be chosen as

a maximum product matching , i.e., a matching so that the product

of the diagonal entries of A f is as large as possible. Note that the

diagonal of A f is a subset of the entries of a matrix C = C(A, w ) ,

whose entries are defined as follows: 

c i j = 

1 

w 

2 
j 
/a ii + w 

2 
i 
/a j j 

[
−w j /a ii 
w i /a j j 

]T [
a ii a i j 

a ji a j j 

][
−w j /a ii 
w i /a j j 

]

= 

1 

a j j w 

2 
j 
+ a ii w 

2 
i 

(
a j j w 

2 
j + a ii w 

2 
i − 2 a i j w i w j 

)
= 1 − 2 a i j w i w j 

a ii w 

2 
i 

+ a j j w 

2 
j 

. 

The matrix C has the same adjacency graph as that of A and the

computational cost for building it is O(nnz) , where nnz is the

number of nonzeros of A , or equivalently the size of the edge set

E . Therefore, C is a feasible weight matrix for the edge set E to ob-

tain a pairwise aggregation of the original vertex set, driven by a

maximum product matching for the weighted graph G = (V, E, C) ;

the entries of C serve as edge weights, leading to a matrix A f 

in (A.1) exhibiting (generalized) diagonal dominance. As shown

in [22] , maximizing the product 
∏ 

(i, j) ∈M 

c i j is equivalent to mini-

mizing the quantity: ∑ 

(i, j) ∈M 

( log max i | c i j | − log | c i j | ) , c i j � = 0 . 

Then, by means of a sign change, this can be solved as a max-

imization problem, corresponding to the classic maximum weight

matching or assignment problem. 

The recursive application of the above two-level method de-

fines the coarsening based on compatible weighted matching [12,13] ,

that is a general aggregation-based AMG which does not use any a

priori information on the system matrix. In the recursive applica-

tion of the basic pairwise two-level method, at each new level the

input weighted graph G = (V, E, C(A, w )) corresponds to the adja-

cency graph of the computed coarse matrix whose weights are ob-

tained by involving the restriction of the original vector w on the

coarse space. More aggressive coarsening, with aggregates merging

multiple pairs and having almost arbitrary large size of the type

n c = 2 s for a given s , can be obtained by combining multiple steps

of the basic pairwise aggregation, i.e., by computing the product of

s consecutive pairwise prolongators. 
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