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Abstract— This work proposes a novel robust nonlinear
model predictive control (NMPC) algorithm for systems de-
scribed by a generic class of recurrent neural networks. The
algorithm enables tracking of constant setpoints in the presence
of input and output constraints. The terminal set and cost
are defined based on linear matrix inequalities to ensure
convergence and recursive feasibility in presence of process
disturbances. Simulation results on a quadruple tank nonlinear
process demonstrate the effectiveness of the proposed control
approach.

I. INTRODUCTION

In recent years, the increased plant sensorization and
the availability of new tools and methods for storing and
extracting information from data [1] have led to increasing
attention to data-based control approaches [2]. Within the
framework of data-based control, recurrent neural networks
(RNNs) are gaining increased popularity and are currently
under investigation for their ability to model plants that dis-
play nonlinear dynamics. Unlike standard neural networks,
RNNs retain memory of past data, making them particularly
suitable for learning dynamical systems [3]. In view of
their modelling capabilities, RNNs are widely employed for
developing model-based control strategies, such as serving
as system models for model predictive control (MPC) [4].
Many types of RNNs have been adopted as system models
for MPC, including gated recurrent units (GRU) [5], [6],
long short-term memory (LSTM) [7]–[9], echo state net-
works (ESN) [10], [11], and neural network autoregressive
exogenous (NARX) [12] models.

Within this framework, a commonly adopted approach
for MPC design consists of constraining the RNN training
procedure so that the identified model fulfils some stability
properties, such as input-to-state stability (ISS) [13], and
incremental ISS (δISS) [14]. Leveraging these open-loop
system properties enables the derivation of nonlinear MPC
(NMPC) laws with guaranteed closed-loop stability, where
no stabilizing auxiliary control law is basically required.
In [11], for instance, conditions to train stable ESN are
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provided, and a model predictive controller with guaranteed
stabilizing properties in the presence of input constraints
is devised. In [8], LSTM stability properties are exploited
to design a stabilizing NMPC with input constraints. A
nominal NMPC law is derived in [5] for δISS GRU networks.
Additionally, in [15], an NMPC law allowing for the control
of general exponential δISS nonlinear systems is presented.
However, the aforementioned NMPC formulations only al-
low for the inclusion of input constraints within the NMPC.
This is a strong limitation since output/state constraints may
be extremely useful if limitations are present on the physical
system variables or if we need to limit the operational range
in the one used in the model identification process. To
address potential model-plant mismatch and disturbances, the
recent work [6] presents a robust NMPC scheme for stable
GRU, which also accommodates the inclusion of output
constraints.
Despite its effectiveness, the approach adopted in the ma-
jority of the cited works, which involves imparting sta-
bility during training and subsequently deriving a stable
NMPC law, suffers from several limitations. Firstly, it is
not applicable when the system under control does not
exhibit ISS or δISS stability properties. Secondly, the latter
stability-related properties during training is done enforcing
sufficient conditions on the model parameters, which may be
rather conservative, leading to suboptimality and resulting in
reduced performance. Finally, the terminal set is often not
defined in the resulting NMPC formulation, with the excep-
tion of [5] and [6], precluding the definition of output/state
constraints.

In this work, we propose a different NMPC design ap-
proach that does not require stability of the identified open-
loop model. Specifically, we focus on a rather generic class of
state-space neural network models which includes, e.g., ESN,
shallow NARX, and nonlinear autoregressive with exogenous
input echo state networks (NARXESN [16]). Leveraging the
stability condition presented in [17] for this class of systems,
we show how to derive a state-space control law ensuring
δISS of the closed-loop system, together with a Lyapunov
function, based on linear matrix inequalities (LMI) [18].
The proposed approach is employed to derive the NMPC
terminal ingredients [4], namely, the auxiliary control law,
terminal cost, and terminal set. Based on these components, a
theoretically sound NMPC strategy is derived, ensuring both
convergence and recursive feasibility, while accommodating
the inclusion of input and output constraints. The developed
approach is aimed to control systems subject to process
disturbances. Specifically, exploiting the δISS of the closed-



loop system, a robustly positive invariant (RPI) set is derived
using the results presented in [14], and robustness is obtained
employing the well-established tube-based MPC [19].

The rest of the work is organized as follows. In Section
II, the considered class of state-space RNNs is presented and
the control goal is stated. Section III formulates the NMPC
algorithm, outlines the offline design procedure to define the
terminal ingredients, and provides formal proof of recursive
feasibility and convergence. In Section IV, the proposed
controller is tested on a quadruple tank benchmark system
in the presence of actuation disturbances. Conclusions are
finally drawn in Section V.

Notation: Given a vector v ∈ Rn, v⊤ represents its
transpose and vi denotes its i-th entry. Given a matrix
M ∈ Rn×n, its entry in position (i, j) is denoted as mij ,
its maximum eigenvalue is denoted as λmax(M), and its
minimum eigenvalue is λmin(M). The diagonal function is
denoted as diag(·), the average function as avg(·), the identity
function as id(·), the set-interior function as INT (·), and
the n × n identity matrix as In. The sequence from time
k up to time k + N , u(k), . . . , u(k +N), is denoted as
u([k : k + N ]). The Minkowski set addition is defined as
X ⊕ Y = {x + y | x ∈ X, y ∈ Y}, and the Pontryagin set
difference as X ⊖ Y = {x ∈ X | x + z ∈ X, ∀z ∈ Y}.
Finally, B(n)

ϵ (0) denotes a ball of radius ϵ, centered at 0, in
Rn. In the text, we make reference to the definitions of δISS
provided in [14], and globally Lipschitz continuous function,
available in [20].

II. PROBLEM STATEMENT

Consider the following discrete-time nonlinear system{
x(k + 1) = f(Ax(k) +Bu(k) + w(k))

y(k) = Cx(k)
, (1)

where x ∈ Rn denotes the state vector, u ∈ Rm the input
vector, y ∈ Rp the output vector, w ∈ Rn the process
disturbance, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and f(·) =[
f1(·) . . . fn(·)

]⊤
is a vector of scalar functions applied

element-wise. We consider the following assumptions.
Assumption 1: The disturbance w(k) satisfies, for all k ≥

0, w(k) ∈ W, where W is a compact and convex set.
Assumption 2: Functions fi(·) i = 1, . . . , n are nonlinear

globally Lipshitz continuous functions with Lipshitz constant
Lpi or identity functions.
Thanks to Assumption 2, we can define matrix W =
diag(Lp1, . . . , Lpn), where Lpi = 1 for all i such that
fi(·) = id(·). As discussed in [17], the class of systems
described by (1) and satisfying assumption 2 includes, for
instance, some classes of recurrent neural networks, such
as echo state networks (ESN), shallow neural nonlinear
autoregressive exogenous models (NARX), and nonlinear
autoregressive with exogenous input echo state networks
(NARXESN).

The control goal is to steer the plant’s output to a piecewise
constant setpoint ȳ ∈ Rp while fulfilling the input constraint

u ∈ U and the output constraint y ∈ Y. The sets U and Y
are assumed to be compact and convex.

To address this control problem, we propose a state-
feedback NMPC law with convergence and recursive feasi-
bility properties. Indeed we assume that, at any time instant
k ≥ 0, an observation x(k) of the system state is available.
Note, however, that this assumption is made in this work
to simplify the framework but may be unrealistic in many
applications; in fact, especially since we are dealing with
RNN models, the state variables may not be directly related
to measurable physical quantities. To solve this issue, an
observer of the type proposed in [Tesi William] can be
used for providing an estimate of x(k): the related quan-
tifiable uncertainty can be accounted for as part of the
process disturbance w(k) and no ad-hoc extension of the
approach proposed in this paper is needed. In any case, future
work will be dedicated to provide a comprehensive output-
feedback controller design procedure.

III. THE PROPOSED NONLINEAR MPC ALGORITHM

In this section we provide the details for the application
of the well-known tube-based approach [19] for the design
of a dedicated robust controller for the system described by
the nonlinear model (1).

A. The nominal prediction model

The model used for computing the state prediction in the
MPC-related optimization problem is derived from (1), i.e.,

x̂(k + 1) = f(Ax̂(k) +Bû(k)). (2)

The input û(k) will be used to compute the real plant input
u(k) consistently with the following equation

u(k) = û(k) +K(x(k)− x̂(k)). (3)

The gain K is defined in order to fulfil the main assumption
of the following proposition.

Proposition 1: Define matrices Ã = WA and B̃ = WB.
Assume that there exists a symmetric and positive definite
matrix P = P⊤ ≻ 0

• structured in such a way that its off-diagonal entries pi,j
are zero for all i where fi(·) ̸= id(·) and j ̸= i;

• is a solution to the inequality

(Ã+ B̃K)⊤P (Ã+ B̃K)− P ≺ 0 (4)

then the system

x(k + 1) = f((A+BK)x(k) + w(k)) (5)

is δISS [14] with respect to the exogenous variable w(k).
Also, denote the set δX, relative to the dynamics of the error
δx(k) = x(k)− x̂(k) as

δX = {δx ∈ Rn | δx⊤Pδx ≤ b},

where

b =
λmax(P )λw

λmin(A⋆)
v̄max
w∈W

∥w∥2, (6)



and where 0 < v̄ < 1,
A∗=P−(1+τ2)(Ã+ B̃K)⊤P (Ã+ B̃K), with τ

such that 0 < τ2 < λmin(P−(Ã+B̃K)⊤P (Ã+B̃K))

λmax((Ã+B̃K)⊤P (Ã+B̃K))
, and

λw > λmax(B
∗), with B∗ =

(
1 + 1

τ2

)
P . If δx(k) ∈ δX,

then δx(k + 1) ∈ δX for all w(k) ∈ W.
Proof: The first claim relies entirely on Theorem

2 in [17]. More specifically, the δISS Lyapunov function
related to system (5) is V (x1, x2) = ∥x1 − x2∥2P . More
specifically, in [17] it is shown that, if we denote x+

1 =
f((A + BK)x1 + w1) and x+

2 = f((A + BK)x2 +
w2), then V (x+

1 , x
+
2 ) − V (x1 − x2) ≤ −λmin(A

∗)∥x1 −
x2∥2 + λw∥w1 − w2∥2 for any λw > λmax(B

∗), where
A∗ :=P−(1+τ2)(Ã+ B̃K)⊤P (Ã+ B̃K) for all τ such
that 0 < τ2 < λmin(P−(Ã+B̃K)⊤P (Ã+B̃K))

λmax((Ã+B̃K)⊤P (Ã+B̃K))
and B∗ :=(

1 + 1
τ2

)
P . The second claim, related to the robust invari-

ance of δX, is derived by Lemma 2 in [14]. Specifically, for
x1 = x and x2 = x̂, the δISS Lyapunov function V (x, x̂) =
δx⊤Pδx. The expression to compute b in (6) can be derived
by noting that λmin(P )∥δx∥2 ≤ V (x, x̂) ≤ λmax(P )∥δx∥2,
and V (x+, x̂+) − V (x, x̂) ≤ −λmin(A

∗)∥δx∥2 + λw∥w∥2.
This concludes the proof.
For making the proposed control design problem sound, the
set δX must be compliant with the following assumption.

Assumption 3: There exist ϵu, ϵy > 0 such that CδX ⊕
B(p)
ϵy (0) ⊆ Y and KδX⊕ B(m)

ϵu (0) ⊆ U.
Also, the setpoint ȳ must be properly defined, i..e, in line
with the following assumption. Before stating it, we need
to define, thanks to Assumption 3, the tightened sets Û :=
U⊖KδX and Ŷ := Y⊖ CδX.

Assumption 4: The output reference ȳ ∈ INT (Ŷ) must
be selected in such a way that there exist x̄ and ū ∈ INT (Û)
where x̄ = f(Ax̄+Bū), ȳ = Cx̄.

B. Online Optimal Control Problem

Consistently with the tube-based control paradigm, the
optimization variables, at each time instant k, are the nominal
system (2) inputs û(k), . . . , û(k + N − 1) on a given
prediction horizon of length N and the nominal state x̂(k).
The finite-horizon optimal control problem (FHOCP) is
formulated as follows

min
x̂(k),û([k:k+N−1])

J(x̂([k : k +N ]), û([k : k +N − 1])

subject to:
x(k)− x̂(k) ∈ δX (7a)
∀τ = 0, . . . , N − 1 :

x̂(k + τ + 1) = f(Ax̂(k + τ) +Bû(k + τ)) (7b)

û(k + τ) ∈ Û (7c)

Cx̂(k + τ) ∈ Ŷ (7d)
x̂(k +N) ∈ Xf (7e)

Note that constraint (7b) embeds the dynamics of the pre-
dictive model, which is initialized by constraint (7a) in the
neighborhood of the state measurement x(k). Input and out-
put constraints are enforced via (7c) and (7d), respectively.

The cost function, which penalizes the deviation of the
nominal input and state from the target equilibrium (x̄, ū),
is

J =

N−1∑
τ=0

(
∥x̂(k + τ)− x̄∥2Q + ∥û(k + τ)− ū∥2R

)
+ Vf (x̂(k +N)), (8)

where Q ∈ Rn×n and R ∈ Rm×m are positive definite
matrices, and Vf is the terminal cost that will be specified
below.
The solution to the FHOCP (7) at time k is x̂(k), û([k :
N − 1]). The control action u(k) = û(k) +K(x(k)− x̂(k))
is applied to system (1). This process is iterated over time
according to a receding horizon procedure.

C. Terminal ingredients

Convergence and recursive feasibility of the control system
are guaranteed by proper design of the terminal ingredients,
namely the terminal set Xf in (7e), where the nominal state
is constrained to lie at the end of the prediction horizon,
and the terminal cost Vf (x̂(k + N)). As customary, their
definition requires the preliminary definition of the auxiliary
control law; the latter, in this work, is

û(k) = Kf (x̂(k)− x̄) + ū, (9)

where Kf is defined in such a way that there exists a matrix
S, structured (similarly to matrix P in (4)) in such a way
that its off-diagonal entries si,j are zero for all i where
fi(·) ̸= id(·) and j ̸= i and verifying the following Lyapunov
Inequality

(Ã+ B̃Kf )
⊤S(Ã+ B̃Kf )− S ⪯ −(Q+K⊤

f RKf ). (10)

The terminal set can now be defined as

Xf = {x̂ ∈ Rn : (x̂− x̄)⊤S(x̂− x̄) ≤ σ}, (11)

where σ ∈ R is set in such a way that:

σ = max
x̂∈Rn

{(x̂− x̄)⊤S(x̂− x̄) | Cx̂ ∈ Ŷ, Kf x̂ ∈ Û}. (12)

The terminal cost is eventually defined as

Vf (x̂) = ∥x̂− x̄∥2S . (13)

D. Main result

The theoretical properties of the resulting control system
are stated in the following result.

Theorem 2: Suppose that Assumptions 1, 2, 3, and 4 are
verified. Then if the FHOCP (7) admits a solution at time
k = 0, then it admits solution for all k > 0. Moreover, the
output y asymptotically converges to ȳ ⊕ CδX for k → ∞.

Proof: The proof uses standard arguments. For instance,
the proof of Theorem 3 in [14] can be used, with two slight
differences, i.e., the notation and the fact that here a setpoint
triple (x̄, ū, ȳ) is considered, while in [14] a regulation
problem is addressed. For this reason we will not write the
steps of the demonstration but, on the other hand, we will
just verify that the three main assumptions of Theorem 3 in



[14] (using the notation introduced in this work) are fulfilled,
i.e.,
A1: CXf ∈ Ŷ, Xf is closed, x̄ ∈ Xf ;
A2: ∃κf (x̂) s.t. κf (x̂) ∈ Û and f(Ax̂ + Bκf (x̂)) ∈ Xf

∀x̂ ∈ Xf ;
A3: Vf (f(Ax̂+Bκf (x̂)))−Vf (x̂) ≤ −(∥x̂−x̄∥2Q+∥κf (x̂)−

ū∥2R).
Assumption A1 is fulfilled in view of (11) and (12). Also, the
first claim in Assumption A2 follows from (11) and (12). The
second claim of A2 can be proved by resorting to Proposition
1. In fact, since S is structured in the same way as P and (10)
is verified by the pair (Kf , S), it follows that (4) is verified
by setting K = Kf and P = S. In view of Proposition 1,
then the system x̂(k + 1) = f((A + BKf )x̂(k) + ŵ(k)) is
δISS with respect to w(k); consider the equilibrium motion
defined by x̄ = f(Ax̄+Bū±BKf x̄) = f((A+BKf )x̄+
Bū−BKf x̄) and the nominal system (2) controlled by the
auxiliary control law (9) x̂(k + 1) = f(Ax̂(k) + B(ū +
Kf (x̂(k)− x̄))) = f((A+BKf )x̂(k)+Bū−BKf x̄); from
Proposition 1, δX = {δx ∈ Rn|δx⊤Sδx ≤ σ} (in case σ
is selected as in b in (6)) is robust positively invariant for
δx(k) = x̂(k) − x̄ in case ŵ(k) ∈ W; here, however, the
equivalent differential disturbance is ŵ(k) = 0, making Xf

positively invariant for all σ > 0. This proves that also A2
is fulfilled.
The proof of A3 follows similar lines of the proof of
Theorem 2 in [17], but we report it here for completeness.
Consider again the dynamics of the equilibrium and of (2)
under (9). The latter can be rewritten as

x̂(k + 1) = f(Ax̂(k) +BKf (x̂(k)− x̄) +Bū)

= (Ã+ B̃Kf )x̂(k)− B̃Kf x̄+ B̃ū+ f((A+BKf )x̂(k)

−BKf x̄+Bū)− (Ã+ B̃Kf )x̂(k) + B̃Kf x̄− B̃ū.

Defining variables v(k) = (A+BKf )x̂(k)−BKf x̄+Bū,
v̄ = Ax̄+Bū and ∆(k) = f(v(k))− f(v̄) +W (v̄ − v(k)),
and noting that v(k)− v̄ = (A+BKf )δx(k), we can write

δx(k + 1) = W (v(k)− v̄) + ∆(k). (14)

Using (14) in the final cost, we can write

Vf (x̂(k + 1))− Vf (x̂(k))

= ∥δx(k + 1)∥2S − ∥δx(k)∥2S
= ∥W (v(k)− v̄) + ∆(k)∥2S − ∥δx(k)∥2S
= 2(v(k)− v̄)⊤W⊤S∆(k) + ∆(k)⊤S∆(k)

+ (W (v(k)− v̄))⊤S(W (v(k)− v̄))− ∥δx(k)∥2S .

Expanding the first two terms, we obtain

2(v(k)− v̄)⊤W⊤S∆(k) + ∆(k)⊤S∆(k)

= (2W (v(k)− v̄) + ∆(k))⊤S∆(k)

= (W (v(k)− v̄) + f(v(k))− f(v̄))⊤S(f(v(k))− f(v̄) +W (v̄ − v(k)))

= q(k)⊤Sr(k).

Define the following set

W = {i ∈ [1, n] | fi(·) ̸= id(·)}.

Note that ri(k) = 0 for all i /∈ W . Since matrix S is selected
in such a way that its off-diagonal entries si,j = 0 for all
i ∈ W , j ̸= i, we can write

q(k)⊤Sr(k) =
∑
i∈W

si,i((fi(vi(k))−fi(v̄i))
2−Lpi(vi(k)−v̄i)

2) ≤ 0,

(15)
due to the positive definiteness of S and Assumption 2.
Exploiting (15) and choosing matrix S satisfying the LMI
(4), it follows that

Vf (x̂(k + 1))− Vf (x̂(k))

≤ ∥W (v(k)− v̄)∥2S − ∥δx(k)∥2S
= ∥δx(k)∥2

((Ã+B̃K)⊤S(Ã+B̃K)−S)

≤ −∥δx(k)∥2Q+K⊤
f RKf

.

Since ∥δx∥2
Q+K⊤

f RKf
= ∥x̂ − x̄∥2Q + ∥Kf (x̂ − x̄)∥2R and

Kf (x̂− x̄) = κf (x̂)− ū, this completes the proof.

E. Offline design procedure

In this section we now discuss how the design parameters
are defined. Note that we basically need K,P fulfilling (4)
and Kf , S fulfilling (10). To do so, the following procedure
is proposed.
Step 1: Define a symmetric and positive definite matrix Y ∈
Rn×n structured like P , and a matrix L ∈ Rm×n. Solve the
following LMI with unknowns Y and L:[

Y Y Ã⊤ + L⊤B̃⊤

ÃY + B̃L Y

]
≻ 0. (16)

If a solution exists, set P = Y −1 and K = LP . Note that
Step 1 guarantees the fulfilment of (4) in view of the Schur
complement [18].
Step 2: Set Kf = K and compute S = αP where α > 0 is
defined such that

α = argmin
α

{(Ã+ B̃Kf )
⊤αP (Ã+ B̃Kf )

− αP ⪯ −(Q+K⊤
f RKf )}. (17)

IV. SIMULATION EXAMPLE

In this section, the proposed control approach is tested to
control the model of a quadruple tank, firstly presented in
[21], and then used as a benchmark, e.g., in [3] [22].

The system consists of four tanks containing water. The
tank levels are denoted as h1, h2, h3 and h4. Water is
delivered to the system by two pumps with flow rates qa and
qb, respectively, and it is split in the four tanks according to
two triplet valves. The dynamics of the system is given by

ḣ1 = −
a1

S

√
2gh1 +

a3

S

√
2gh3 +

γa

S
qa

ḣ2 = −
a2

S

√
2gh2 +

a4

S

√
2gh4 +

γb

S
qb

ḣ3 = −
a3

S

√
2gh3 +

1− γb

S
qb

ḣ4 = −
a4

S

√
2gh4 +

1− γa

S
qa

(18)



where the system parameters are summarized in Table I.

TABLE I
QUADRUPLE TANK SYSTEM PARAMETERS.

a1 1.31 · 10−4 m2 S 0.006 m
a2 1.51 · 10−4 m2 γa 0.3
a3 9.27 · 10−4 m2 γb 0.4
a4 8.82 · 10−4 m2 g 9.81 m/s2

The water levels and the flow rates are subject to saturation
limits, i.e.

hi ∈ [0, 1.36] m i = 1, 2

hi ∈ [0, 1.3] m i = 3, 4

qa ∈ [0, 9 · 10−4] m3/s

qb ∈ [0, 1.3 · 10−3] m3/s

The control input vector is u = [qa qb]
⊤, and the output

vector is y = [h1 h2]
⊤.

The control procedure comprises a training phase to
identify a suitable RNN model of the form (1), capable of
describing the system dynamics, followed by a control design
phase where the proposed NMPC algorithm is applied,
leveraging the identified model.

A. Model identification

To control the system, the following NARXESN RNN
architecture with nχ = 8 internal states has been considered:{

χ(k + 1) = ζ(Wχχ(k) +Wϕϕ(k) +Wyy(k + 1))

y(k) = Wo,1χ(k) +Wo,2ϕ(k)
(19)

where χ ∈ Rnχ , and ϕ = [u(k)⊤ u(k − 1)⊤ . . . u(k −
nu)

⊤ y(k)⊤ . . . y(k − ny)
⊤]⊤ ∈ Rnu+ny , with nu =

ny = 4. The function ζi(·) = tanh(·) for i = 1, . . . , 5 and
ζi(·) = id(·) for i = 6, . . . , nχ, and weights Wχ ∈ Rnχ×nχ ,
Wϕ ∈ Rnχ×(ny+nu), Wy ∈ Rnχ×p, Wo,1 ∈ Rm×nχ and
Wo,2 ∈ Rm×(nu+ny). Note that, in (19), only Wo,1 and Wo,2

are free identification parameters, while the other weights are
a priori defined hyperparameters.
The training dataset is used to identify the NARXESN (19)
parameters, according to the training algorithm described in
[10]. Basically, matrices Wχ, Wϕ, and Wy are randomly
generated, while Wo,1 and Wo,2 are obtained by solving a
least-square problem defined on the training dataset.
To identify the identification parameters of model (19),
the Quadruple Tank system (18) has been implemented in
MATLAB. With a sampling time of 15 seconds, training
and test datasets have been created. These datasets consist of
two input/output data sequences, independently extracted by
feeding the system with a multilevel pseudo-random signal
(MPRS), exciting the system in different operating regions.
The two input/output sequences’ lengths are 10000 and
3000 samples, respectively, for the two datasets. A coloured
flicker [23] noise is added to the output sequences to simulate
process disturbance. Finally, data is suitably normalized so

that input/output constraints translate into yi ∈ [0, 1] and
ui ∈ [0, 1], for i = 1, 2.
The modelling performances of the model are tested on the
test dataset. To assess the identification performance, the
following fitting index is calculated over the test dataset:

FIT% = 100 ·

(
1−

∥y⋆ − ys∥
∥y⋆ − avg (y⋆)∥

)
∈ (−∞, 100]

where y⋆ represents the real system output sequence, and ys
denotes the output sequence obtained by feeding (19) with
the test dataset input sequence. A fitting FIT% = 90.86% is
obtained, indicating satisfactory identification performance.

Note that (19) can be expressed in the form (1) by setting
x(k) = [χ(k)T u(k−1)T . . . u(k−nu)

T y(k)T . . . y(k−
ny)

T ]T , f(·) = [ζ(·) id(·)], and matrices A, B and C as
described in [17].

B. Control design and results

Based on the identified model, the NMPC algorithm pro-
posed in Section III has been implemented in the MATLAB
environment and tested for control of the simulated quadru-
ple tank system to track a piecewise constant setpoint that
satisfies assumption (4). In the simulation, we have assumed
the presence of a bounded unknown actuation disturbance
d = [d1 d2], with d1 ∈ [−0.09, 0.09] · 10−4 m3/s and
d2 ∈ [−0.13, 0.13] · 10−4 m3/s. This disturbance enters
system (2) through the process disturbance w = Bd. Matrix
S = diag (I5, Sf ), with Sf ∈ R(nx−5)×(nx−5) being a full
matrix, and parameters σ and b have been selected according
to the procedure proposed in Section III. For completess, the
observer proposed in [Tesi William] is adopted to estimate
the RNN model state necessary to initialize the FHOCP (7)
at each time step.
Figures 1-2 display the closed-loop simulation results. The
figures show that the controller achieves satisfactory tracking
accuracy while fulfilling the constraints on the input variable
u and output variable y. Also, it can be noted that despite
the presence of the disturbance, for k > 0 the closed-loop
output trajectories and the input trajectories lie within the
tubes ŷ(k)⊕ CδX and û(k)⊕KδX, respectively.

V. CONCLUSIONS

In this paper, a rather novel robust NMPC for a generic
class of RNNs has been proposed. The algorithm enables
the tracking of constant setpoints in the presence of input
and output constraints. The NMPC terminal ingredients are
derived based on LMIs, leveraging stability results recently
derived for the considered class of systems. Notably, no
initial assumptions on the model stability are made. Proofs
of convergence and recursive feasibility of the resulting
NMPC law have been provided. Furthermore, robustness
against process disturbances is achieved by employing the
tube-based MPC formulation and exploiting the δISS of the
closed-loop system when defining the RPI set.

Future work will investigate the use of conditions for local
stability to increase the range of application of the approach.
Also, we will extend this approach for tracking of piecewise
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Fig. 1. Closed-loop output tracking performances of the nominal system
(yellow continuous line), of the real system (blue solid line), compared to
the reference (red dashed-dotted line). Output constraints are represented
by the black dashed lines, and the shaded areas are the tubes around the
nominal trajectories.
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Fig. 2. Evolution of the nominal control input (yellow continuous line) and
real control input (blue solid line). Input constraints are represented by the
black dashed lines, and the shaded areas are the tubes around the nominal
trajectories.

constant reference using the approach proposed in [24]. The
application in the distributed control framework will also be
subject of future research.
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