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Abstract
A crucial prerequisite for a detailed interpretation of the experimental results obtained with the
most common attosecond spectroscopic techniques is a careful characterization of the attosecond
extreme-ultraviolet (XUV) and femtosecond infrared (IR) pulses used in the measurements. A
commonly adopted approach is based on the measurement of the spectra of the photoelectrons
produced by the interaction of the attosecond pulses with a noble gas in the presence of a delayed
IR pulse. Feeding the resulting spectrogram to reconstruction algorithms, it is then possible to
retrieve the temporal properties of the XUV and IR pulses. To date, all reconstruction techniques
are based on the assumption that the spectrogram is produced by the interaction of a single atom
with a two-color (XUV-IR) field. In this work, we numerically investigate the effect of the actual
XUV and IR beam spatial distributions, and we analyze their impact on the retrieval of the
temporal characteristics of the XUV and IR pulses and on the determination of the photoemission
time delays. We show that the impact of the ensemble effects can be severe, leading to notable
variation of the photoelectron spectrograms, depending on the ratio between the XUV and IR
beam spot sizes and on the IR peak intensity. We demonstrate that the photoemission time delay
can be retrieved with great accuracy even in the presence of large deformations of the
photoelectron spectrograms by employing suitable reconstruction procedures.

1. Introduction

During the last two decades, continuous progress in attosecond technology opened the way to the
investigation of fundamental processes in matter [1–4], for example the charge migration in molecules [5, 6],
the temporal delay in photoemission from atoms [7, 8], the ultrafast dynamics in the process of
photo-ionization [9], with particular attention to photoemission from solid targets [10–12], to name just a
few of them. Several experimental techniques have been introduced for the characterization and application
of attosecond pulses [1, 13, 14]. The typical experimental approach is based on the use of attosecond pulses
in combination with few-femtosecond infrared (IR) pulses. One of the most used spectroscopic schemes is
time-resolved photoelectron spectroscopy, in which extreme-ultraviolet (XUV) attosecond pulses are used to
ionize the sample, and intense (1011–1012Wcm−2) IR pulses probe the response by modifying the final
energy of the photo-emitted electrons. The photoelectron spectra are then collected as a function of the
XUV-IR time delay forming a spectrogram. This is the experimental technique commonly used for the
temporal characterization of attosecond pulses, in the form of a train of pulses or isolated pulses. In the case
of trains, the spectrogram is often analyzed using the reconstruction of attosecond beating by interference of
two-photon transitions (RABBITT) technique [15, 16], from which the average attosecond pulse can be
estimated. More generally, the spectrogram can be treated with a reconstruction algorithm using a
FROG-CRAB (frequency resolved optical gating for complete reconstruction of attosecond bursts) approach,
which is based on the strong field approximation [17]. In the case of isolated pulses, the corresponding
spectrogram is called attosecond streaking trace [18] and the FROG-CRAB method can deliver a complete
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temporal characterization of both the XUV and IR pulses. Attosecond streaking has also been successfully
employed in attosecond metrology, for example, for the study of the timing of the photoemission process
[7, 19]. As important physical effects are encoded in small photoemission delays [20–22], being able to
disentangle the fundamental phenomena happening during photoemission in complex systems calls for a
more and more accurate temporal characterization of the attosecond pulses involved.

To date, all reconstruction algorithms implicitly assume that an experimental streaking trace results from
the interaction of a single atom with a two-color (XUV-IR) field with uniform radial intensity distribution.
In this work, this procedure will be referred to as 1D approach (or 1D approximation). However, in a realistic
attosecond streaking setup, an ensemble of atoms interacts with XUV and IR fields, each characterized by a
given radial intensity distribution. Moreover, the interaction occurs within a finite volume, dictated by the
characteristics of the electron spectrometer used for the measurement of the spectrogram, thus questioning
the validity of the 1D approximation. To our knowledge, the reconstructions of experimental data reported
in the literature have always disregarded these ensemble effects. A reliable and detailed characterization of
both XUV and IR pulses is crucial for a correct analysis of the ultrafast dynamics initiated by attosecond
pulses. Furthermore, theoretical modeling of the attosecond experiment often requires a detailed knowledge
of the temporal and spectral properties of the radiation used. For these reasons, the investigation of the
influence of the spatial distribution of the XUV and IR pulses on the reconstruction of their temporal
characteristics is important for the attosecond and ultrafast spectroscopy communities.

In this work, we numerically investigate the effects of a non-uniform radial intensity profile of the XUV
and IR pulses on the photoelectron spectrograms and on the reconstruction of the temporal and spectral
characteristics of the two pulses. We will first calculate the spectrograms resulting from the photoelectrons
generated by atoms located on a plane perpendicular to the propagation direction of the two-color field (2D
approach). Then we will consider an ensemble of atoms within a finite volume (3D approach). The effects of
the ensemble averaging on the reconstructed temporal characteristics of XUV and IR pulses will be
investigated in section 3, in the 2D and 3D scenarios. For the reconstruction of both pulses, we employed the
extended ptychographic engine (ePIE) algorithm [23]. In section 4, we will investigate how the estimation of
the photoemission time delay is affected by the ensemble effects. In particular, the relative photoemission
time delay between two species (argon and neon) is calculated from two spectrograms by employing a
modified version of the ePIE algorithm, able to reconstruct in parallel both streaking traces by fixing a
unique IR pulse, thus guaranteeing a unique time reference for all fields.

2. Methods

Within the strong field and the wavepacket approximations the photoelectron spectrum (called
spectrogram), S(p, τ), is given (in atomic units) by [24]

S(p, τ) =

∣∣∣∣ˆ ∞

−∞
EWP(t + τ)eiϕ(p,t)e

i
(

p2

2 + IP
)
t
dt

∣∣∣∣2 (1)

where p is the final electron momentum, τ is the temporal delay between the XUV and IR pulses, IP is the gas
ionization potential, ϕ(p, t) is the temporal phase imposed by the IR field to the electron wavepacket
generated by the attosecond pulse in the continuum. This phase modulation is given by

ϕ(p, t) = −
ˆ ∞

t

[
p ·AIR(t

′) + AIR(t
′)2/2

]
dt ′ (2)

where AIR(t) is the vector potential of the IR field. EWP(t) is the electron wavepacket, defined as [25]

EWP(t) = F−1{ẼXUV(ω) · d(ω)} (3)

where F−1 is the inverse Fourier transform operator. The electron wavepacket contains information on both
the electric field of the XUV pulse, EXUV(ω), and on the atomic species involved in the interaction, by means
of the dipole transition matrix element from the ground state to the continuum, d(ω), which can be
written as

d(ω) = σ(ω)eiφ(ω) (4)

where σ(ω) is the cross-section associated to the photoionization probability and φ(ω) is the phase acquired
by the electron during the ionization process [26]. From the spectrogram (1) it is possible to retrieve the
temporal characteristics of both XUV and IR pulses. Equation (1) describes the interaction of an atom with
the XUV and IR pulses, without considering their spatial intensity distributions. In the following, this
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Figure 1. Schematic plot of the interaction between XUV and IR pulses with an ensemble of atoms. The inset shows the radial
intensity profiles of the two beams at z = 0.

approach for the calculation of the spectrogram will be referred to as 1D approximation. Assuming that the
XUV and IR pulses are linearly polarized along the x axis (see figure 1) and that we can neglect angular
effects from the dipole element already discussed in [27], we can re-write equation (1) as a function of the
final kinetic energy of electron E = p2/2, hence expressing it as S(E , τ).

In an actual experiment, however, an ensemble of atoms is subjected to a non-uniform spatial
distribution of the light pulses in a finite interaction volume, as sketched in figure 1. As a result, the recorded
photoelectron distribution is a collection of electrons emitted by the ensemble of atoms. In classical terms,
each photoelectron of each atom is emitted at a specific time-space position and then propagates in free
space, experiencing, during the whole process, different values of the two-color (XUV-IR) fields. The
resulting spectrogram can be calculated as an incoherent sum of different spectrograms, generated by the
interaction of the two-color field with atoms located in points with coordinates (r,θ,z), where r and θ are the
polar coordinates and z is the coordinate along the field propagation axis, as shown in figure 1. Therefore, the
photoelectron energy distribution, S(E , τ), is calculated as

S(E , τ) =
∑
r,θ,z

r∆θ∆r∆z Srθz(E , τ) (5)

where Srθz(E , τ) is calculated by using equation (1) with AIR(r,θ,z, t) and EXUV(r,θ,z, t) evaluated at the
streaking points (r,θ,z).

As the XUV and IR pulses are linearly polarized, their electric field can be written as

Fj(r,θ,z, t) = Ej(t)Uj(r,θ,z)ex (6)

where ex is the unitary vector of the x-axis and j=XUV, IR. In the simulations, Ej(t) has been assumed as
Gaussian. Transform-limited (TL) IR pulses were used in the simulations, with a full-width at half maximum
(FWHM) duration of 5 fs. In order to take into account the group delay dispersion (GDD) of the XUV
pulses, in this case we have first defined the electric field in the frequency domain as

EXUV(ω) = exp

[
− (ω − ω0)

2

2σ2
XUV

]
e−i(ω−ω0)

2GDD/2 (7)

where ω0 is the central angular frequency of the XUV pulse and σXUV is related to the TL-duration of the
pulse (FWHM of the temporal intensity profile), τXUV, by the following relation: τXUV = 2

√
ln2/σXUV

3
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Table 1. Pulse parameters used in the simulations. TL duration: transform-limited duration; GDD: group delay dispersion; D0: FWHM
spot size in the beam waist; η = w0,IR/w0,XUV.

XUV IR

TL duration (FWHM) (fs) 0.25 5
GDD (fs2) 0.01 0
D0 (µm) 50 50η
Central wavelength (nm) 24.24 800

(in this work we used a TL-duration τXUV = 250 as). For what concerning the spatial distribution, we
assumed a Gaussian spatial profile for the XUV pulse. In a streaking experiment, the IR beam is typically
reflected by a hole-drilled mirror, thus acquiring an annular shape, and it is focused on the gas target
collinearly with the XUV pulse, by a mirror with focal length f (in the simulations, we assumed a 1.5mm
hole diameter and a focal length f = 780mm). Knowing the geometry, the evolution of the transverse profile
of the IR field along the propagation axis can be calculated numerically by using the Fresnel diffraction
integral (as reported in [28]).

The main characteristics of the XUV and IR pulses used in the simulations are listed in table 1.
The FWHM size in the beam waist of the XUV radiation is D0,XUV = 2w0,XUV

√
log2 = 50µm, where

w0,XUV is the corresponding spot size at the beam waist, while the IR beam has a FWHM-size in the beam
waist D0,IR = ηD0,XUV (with η ⩾ 0.5). It is evident that the limit η → ∞ formally corresponds to the 1D
approximation, which will be used as a reference to evaluate the impact of ensemble effects quantitatively.
The energy axis of the simulated final photoelectron trace has a resolution of 0.01 eV, and the time resolution
is 5 a.s. The choice of the delay axis resolution is not a strong constraint for ptychographic algorithms, as
proved in [29], so it was set at 100 a.s. In all simulations, we have implicitly assumed a homogeneous gas
density. We have first calculated the spectrograms resulting from the interaction of the two-color field with
atoms distributed onto the z = 0 plane, considering the radial variation of the fields, upon changing the IR
pulse intensity and the spot size ratio, η. This approach for calculating the spectrograms will be referred to as
2D approximation. The spatial profiles of IR and XUV beams have been sampled over 20 radial points. A
second set of simulations have been performed considering the contributions to the streaking trace of the
photoelectrons ejected inside a three-dimensional interaction region around the IR and XUV beam waist
(hereafter, 3D approach). In this case, the spatial grid was composed of 60 z-points sampled over 3mm,
which is a typical experimental window for a time-of-flight spectrometer used to collect photoelectrons in
streaking experiments [30]. For each z point, a 2D simulation was performed.

3. Ensemble effects on the reconstruction of pulse characteristics

3.1. 2D approach
Figure 2(a) shows the spectrogram calculated in argon, at z = 0 (beam waist), assuming an IR peak intensity
IIR = 2 × 1012Wcm−2, at the limit η → ∞ (1D approximation). Figure 2(b) displays the spectrogram
calculated in the same conditions, but considering the radial variation of the two-color field (2D approach),
assuming η = 0.5.

The spectrogram is notably affected by the ensemble effects, with an overall energy smoothing of the
trace and a clear reduction of the maximum streaking amplitude, due to the averaging over different
streaking points that feel a local IR peak intensity lower than in the 1D approximation. As shown in
figure 2(c), the maximum deviation with respect to the 1D spectrogram, i.e. max[S1D(E , τ) − S2D(E , τ)] is
∼60%. In the worst case scenario (5 × 1012Wcm−2, η = 0.5), this value reaches∼80%.

The extent and severity of the ensemble effects on the streaking trace depend on the IR peak intensity and
on the spot size ratio η, as reported in figure 3(a), which displays the average standard deviation between the
1D and 2D spectrograms,

σtrace =
1

NM

∑
τ

√∑
ϵ

(S1D(E , τ) − S2D(E , τ))2, (8)

as a function of η, for four values of the IR peak intensity, ranging from 2 × 1011Wcm−2 to
5 × 1012Wcm−2. In equation (8) N andM are the 2D matrices dimensions.

As shown in figure 3(a), the maximum deviation decreases upon increasing η. This behaviour is related
to the fact that, upon increasing η, the XUV spot size becomes significantly smaller than the IR spot size, thus
reducing the radial variation of the IR intensity experienced by the atoms interacting with the XUV pulse. As
shown in figure 3(b), the deviation increases with IR intensity. At a given η value, stronger IR fields induce a
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Figure 2. Streaking trace, S(E, τ), calculated in argon at z = 0, assuming the pulse parameters listed in table 1, an IR intensity
IIR = 2 × 1012 Wcm−2 and (a) η = ∞ (1D approach), (b) η = 0.5. (c) Difference between the spectrograms reported in
(a) and (b).

Figure 3. (a) Maximum deviation between 1D and 2D spectrograms (z = 0), σtrace equation (8), as a function of the spot size
ratio, η, for four values of the IR peak intensity. (b) same as (a) but as a function of the IR peak intensity.

stronger streaking amplitude in the spectrogram. In addition, also the pulse tails become intense enough to
influence the electron momentum significantly. Consequently, the ‘interaction area’ in the trace increases
and the smoothing operated by the radial average has more severe effects.

Apart from the variations on the spectrogram qualitatively discussed above, it is important to analyze the
effects on the reconstruction of the IR and XUV characteristics. In this regard, particularly relevant are the
retrieved XUV and IR time durations, as well as the IR peak intensity. While the former two define the
achievable time resolution, the latter identifies the interaction regime (e.g. multi-photon vs. field amplitude
driven [31]) which establishes when the IR pulses are used as pump in a time-resolved experiment. Starting
from a simulated spectrogram, these quantities can directly be evaluated from the reconstruction output, as
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Figure 4. (a) Reconstructed IR peak intensity from a set of 2D simulations as a function of η, obtained with ePIE reconstructed IR
electric field. The colored dashed lines on the right part of the plot represent the simulated intensity values. (b) Reconstructed
XUV FWHM duration extracted from the simulations reported in (a), from ePIE algorithm. The error bars are proportional to
the standard deviation obtained by feeding the algorithm with 6 different initial conditions of the IR duration (from 4 to 10 fs).
The black dashed line represents the XUV FWHM duration used in the simulation. Black stars in (a) and (b) are the results of 3D
simulations, assuming η = 2 and I0,IR = 2 × 1012 Wcm−2.

it is routinely done with experimental streaking traces. We found the reconstructed IR time duration, defined
as the full-width half-maximum of the pulse intensity profile, to be largely insensitive to 2D ensemble effects.

Figure 4(a) shows, on a logarithmic scale, the IR peak intensity, as I = 1
2ϵ0c|E0|

2, retrieved with directly
evaluated using the IR field reconstructed by the ePIE algorithm when fed with the streaking traces
calculated within the 2D approximation. The retrieved IR peak intensity is severely affected by ensemble
averaging when η < 2. In this case, the retrieved IR peak intensity is underestimated by more than one order
of magnitude. Upon increasing η, the reconstructed IR intensity asymptotically approaches the correct value,
shown by horizontal dashed lines in figure 4(a). These results are a direct consequence of the ensemble
averaging process. In fact, the reconstructed IR intensity is now an average over many streaking points, each
simulated with a maximum intensity always lower than the peak one.

Figure 4(b) displays the duration of the attosecond pulses retrieved by applying ePIE reconstruction to
the spectrograms calculated using the 2D approach, as a function of η for four values of the streaking pulse
intensity. Also this quantity is affected by ensemble effects, with an error on the reconstructed duration of
almost 40 as, corresponding to a∼15% relative error. The dependence of the reconstructed duration on η
and IR intensity is rather complex. In general, the reconstruction of the XUV pulse duration improves upon
increasing η and the IR intensity. However, at high intensity (5 × 1012Wcm−2), the precision of the
reconstruction procedure gets worst, as highlighted by the increasing error bar size of the blue curve in
figure 4(b).

3.2. 3D approach
Assuming an XUV FWHM-spot size at the beam waist D0,XUV = 50µm (see table 1), the corresponding
Rayleigh length is zRXUV ≃ 117mm, much longer than the interaction region contributing to the measured
photoelectron spectra,∆z = 3mm. Therefore, the effect induced by the variation of the XUV intensity
along the z-axis is entirely negligible. Figure 5(a) shows the spectrogram calculated in argon using the
parameters reported in table 1 assuming η = 2 and a streaking peak intensity I0,IR = 2 × 1012Wcm−2. The
corresponding Rayleigh length of the (annular) IR beam is zRIR ≃ 17mm. We assumed an interaction region
extending from z = −1.5mm to z = 1.5mm. Figure 5(b) displays the difference between the two
spectrograms calculated within the 3D and 1D approach, while figure 5(c) shows the difference between the
two spectrograms calculated within the 3D and 2D approaches. While the maximum difference between the
3D and 1D spectrograms is of the order of 10%, the difference between the 3D and 2D spectrograms is quite
small, with a maximum value of the order of 0.2%, thus suggesting that, at least with the pulse parameters of
the simulations, the primary role is played by the 2D-ensemble averaging. For this reason, the IR peak
intensity and the XUV pulse duration retrieved from the 3D spectrograms are close to the values obtained
using the 2D approach. This is shown in figures 4(a) and (b) for a particular value of η and I0,IR
(black star).

Since the Rayleigh length of the IR pulse is significantly longer than the interaction region, we expect that
the intensity variation along the propagation axis induces negligible effects. Therefore, the differences
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Figure 5. (a) Streaking trace, S(E, τ), in argon calculated using the 3D approach, using the parameters listed in table 1 and
assuming an IR peak intensity (in z= 0) I0,IR = 2 × 1012 Wcm−2 and a spot size ratio η = 2. (b) Difference between the 3D
and the 1D spectrograms. (c) Difference between the 3D and the 2D spectrograms (the 2D spectrogram was calculated in z = 0).

between the 3D and 2D approaches can be mainly ascribed to the z-dependence of the Gouy phase. The role
of the Gouy phase, at a given z position, is to shift in time the carrier-envelope phase (CEP) of the IR with
respect to its value at z= 0. Due to Gouy phase averaging, the resulting 3D-trace is generated by summing
different 2D-streaking simulations, each one with a CEP-shifted IR. The maximum shift summed in the
average depends on the maximum Gouy phase variation over the considered integration window. In the case
considered for the simulations reported in figure 5, the largest shift is 120 a.s. The CEP shift present in the IR
temporal profile thus causes a direct CEP-shift in each streaking point at different z-position. As a result, we
observe both a vertical broadening of the 3D-trace due to the sum, at a fixed delay, of 2D-traces which
experience a different IR radial intensity and a horizontal broadening, due to a z-dependence of the IR CEP.

4. Photoemission time-delays

We have then analysed the effects induced by the 2D and 3D approaches on the determination of
photoemission time delays, which, under the right experimental circumstances [19], can be reconstructed
from the streaking trace. Without a priori knowledge of the XUV temporal properties it is only possible to
extract the relative photoemission time delay between two atomic species, for example argon and neon,
∆τAr−Ne [20]. We developed an upgraded version of ePIE that reconstructs in parallel the streaking traces
calculated in argon and neon, by fixing a unique IR pulse. With this approach it is possible to extract

simultaneously the two fields, E(Ar)WP (t) and E(Ne)WP (t) in argon and neon, respectively, and the IR electric field,
EIR(t). This method guarantees a unique time-reference for all the fields and allows us to disentangle the
XUV phase from the atomic information, which otherwise would be impossible to extract from a single
two-color interaction experiment. By using equations (3) and (4), the ratio between the Fourier transforms

of E(Ar)WP (t) and E(Ne)WP (t) can be written as

Ẽ(Ar)WP (ω)

Ẽ(Ne)WP (ω)
=

σAr(ω)

σNe(ω)
ei[φAr(ω)−φNe(ω)]. (9)

7
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Figure 6. Photoemission time-delay difference∆τAr−Ne calculated using the 2D approach, for different values of η, and for
different IR intensities, ranging from 2 × 1011 Wcm−2 to 5 × 1012 Wcm−2. The shaded areas represent the reconstruction error
evaluated by starting from six different IR initial guesses with duration between 4 and 10 fs. Black solid curves show∆τAr−Ne(ω)
calculated by using the atomic dipole phases reported in literature [33].

The phase term in equation (9) contains the relative photoemission time-delay,∆τAr−Ne, as a function of the
photon frequency [32]:

∆τAr−Ne(ω) =
∂ [φAr(ω) − φNe(ω)]

∂ω
. (10)

The solid lines in all panels of figure 6 show the relative photoemission time delay,∆τAr−Ne(ω), calculated by
using the atomic dipole phases, φ(ω), of both atomic species reported in literature [33]. The dashed curves
in figure 6 display the relative photoemission delay, calculated by using the atomic dipole phases retrieved
from the spectrograms obtained in argon and neon using the 2D approach for four different values of the IR
peak intensity. In all simulations, we included the photo-ionization cross-sections, reported in [34].

At each IR intensity, five spot-size ratios were considered. The black solid curve in figure 6 corresponds to
the theoretical values of∆τAr−Ne. In the case of low IR intensity (I0,IR = 2 × 1011Wcm−2), reported in
figure 6(a),∆τAr−Ne is only slightly affected by the 2D ensemble averaging. Weak deviations from the
1D-case (η →∞) are present at the edges of the energy region of interest (42–64 eV), outside of which the
reconstruction is unreliable as the spectral intensity is very low. Similar trends are reported in the medium
intensity regime (I0,IR = 5 × 1011Wcm−2 and I0,IR = 2 × 1012Wcm−2), shown in figures 6(b) and (c),
where the deviation from the 1D case increases upon decreasing η. The larger deviation from the theoretical
value observed at lower photon energies when I0,IR = 2 × 1012Wcm−2 (figure 6(c)) is a consequence of the
central momentum approximation used in the reconstruction algorithm [23]. Nevertheless it is worth
noticing that the weighted standard deviation, defined as

σ∆τ =

ˆ +∞

−∞

√
[∆τAr−Ne(E) − ∆τAr−Ne,th(E)]2|EXUV(E)|2dE (11)

where |EXUV(E)|2 is the normalized reconstructed XUV intensity spectrum while∆τAr−Ne,th is the
theoretical relative photoemission delay, is always<15 a.s. Therefore, despite the significant spectrogram
variation induced by ensemble effects (figures 3 and 4), the retrieved relative photoemission time-delay is
consistently close both to the one reconstructed using the 1D approach and to the theoretical curve. This is
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Figure 7. Reconstruction of photoemission time-delay obtained using the 3D, 2D and 1D approaches, assuming η = 2 and
I0,IR = 2 × 1012 Wcm−2. The shaded area represents the standard deviation of the reconstruction, obtained by varying the
initial guess for the IR temporal duration from 4 fs to 10 fs. Black solid curve shows∆τAr−Ne(ω) calculated by using the atomic
dipole phases reported in literature [33].

mainly due to the fact that ensemble effects alter both argon and neon traces in a similar way, thus
compensating each other when calculating the relative difference.

The IR intensity I0,IR = 5 × 1012Wcm−2 (figure 6(d)) can be considered an upper limit for delay
extraction, at least in this spectral region. Indeed the 1D approach already shows more severe deviations
from the theoretical curve, indicating that at this intensity, the ePIE convergence is also worsened in the ideal
case. It is interesting to notice that, in this particular case, ensemble effects help convergence since, as already
discussed, their primary effect is to reduce the effective IR field intensity. However, if the ensemble effects are
too severe (η = 0.5) the reconstruction is distorted.

We have then applied the 3D approach to the calculation of the relative photoemission time delay, with
the same pulse parameters used in section 3.2. The result is reported in figure 7. The relative photoemission
time delay is reconstructed with good accuracy. With respect to the 2D simulations (green line in figure 7),
an increase in the reconstruction convergence error is observed. This is a consequence of the IR CEP
averaging, induced by Gouy phase variation over z, making it more challenging for the algorithm to define a
unique IR temporal profile.

5. Conclusions

We calculated the streaking traces produced by the interaction of an attosecond XUV pulse and an IR
streaking pulse with an ensemble of atoms, taking into account the radial intensity distribution of the XUV
and IR beams in a finite interaction region along the propagation axis. Ensemble effects notably affect the
streaking traces, particularly upon decreasing the IR beam’s spot size compared to that of the XUV beam and
upon increasing the IR peak intensity. We showed that the reconstruction of the duration of the attosecond
pulses and of the peak intensity of the streaking pulses are severely affected by ensemble averaging when the
spot size of the IR beam is smaller than∼2 times the XUV spot size. We proved that standard reconstruction
techniques such as ePIE are capable of accessing spectroscopic information as the photo-ionization time
delay if a parallel reconstruction exploiting two streaking traces sharing the same fields is used. The results
reported in this work provide well-defined boundaries on the suitable experimental conditions that have to
be used for both photoemission phase (time-delay) measurements and ultrashort pulse characterization,
performed with the attosecond streaking technique.
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