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AND LUCIA GASTALDI

Dedicated to Prof. Martin Costabel on the occasion of his 65th anniversary

Abstract. In this paper we study an a posteriori error indicator introduced in
E. Dari, R.G. Durán, C. Padra, Appl. Numer. Math., 2012, for the approxima-
tion of the Laplace eigenvalue problem with Crouzeix–Raviart non-conforming
finite elements. In particular, we show that the estimator is robust also in pres-
ence of eigenvalues of multiplicity greater than one. Some numerical examples
confirm the theory and illustrate the convergence of an adaptive algorithm
when dealing with multiple eigenvalues.

1. Introduction

Although the a posteriori error analysis for eigenvalue problems arising from
partial differential equations is a mature field of research, some intriguing ques-
tions remain open when discussing the convergence of an adaptive scheme for the
approximation of eigenvalues with multiplicity greater than one.

In this paper we consider the approximation of Laplace eigenvalue by standard
Crouzeix–Raviart finite elements (see [5] and, for instance, [3]). In [7] an a posteriori
error indicator has been proposed for this problem and its efficiency and reliability
have been proved. The analysis of [7] showed that the indicator is equivalent to the
energy norm of the error in the eigenfunctions (up to higher order terms) and that
it provides an upper bound for the error in the first eigenvalue (up to higher order
terms). In this paper we are mainly interested in the case when an eigenvalue may
have multiplicity greater than one. This topic has been the object of little research
and only very recently people started investigating the issues originating from the
presence of multiple eigenvalues (see, in particular, [2, 15, 11, 6, 9]).

The presented results contain a theoretical part, included in Sections 3 and 4,
and some numerical experiments reported in Section 5.

In Section 3 we study the error estimates for the eigenfunctions and, recalling the
results of [7], we show that the results extend in a natural way to the case of multiple
eigenvalues. In Section 4, using some special tools adapted from [13], we extend
the estimates for the eigenvalues to the general case of multiplicity q ≥ 1. One
of the main difficulties comes from the fact that, when using non-conforming finite
elements, one cannot deduce from the min-max lemma that the discrete eigenvalues
should be upper bounds of the corresponding continuous ones. In our analysis
we study separately the cases when an eigenvalue is approximated by q discrete
eigenvalues from above or from below. Our analysis does not apply to the case when
a continuous eigenvalue corresponds to discrete eigenvalues which can approximate
it simultaneously from above or from below. It should however be noted that
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in most situations Crouzeix-Raviart element provides lower bound: this has been
proved asymptotically for singular eigenspaces (see [1] and [7]). See also [4] where
this property has been used for the construction of guaranteed lower bounds for
eigenvalue approximation. Known examples of discrete eigenvalues which provide
approximation from above are rare and computed on very coarse meshes.

The numerical results shown in Section 5 confirm the theory and aim at investi-
gating the behavior of an adaptive procedure based on the studied indicator in case
of multiple eigenvalues. As expected, it turns out that a correct procedure should
take into account all discrete eigenfunctions approximating the same eigenspace
(see [15]). One of the main issues raised by this investigation is that in general it
is not known a priori (besides very particular situations like the one considered in
our tests) the multiplicity of an eigenvalue of the continuous problem and it is not
obvious to detect which discrete values correspond to it. This phenomenon requires
further investigation and will be the object of future study.

2. Setting of the problem

Let Ω ⊂ R
d, d = 2, 3 be a polygonal or polyhedral Lipschitz domain, we consider

the Laplacian eigenproblem: find λ ∈ R and u ∈ H1
0 (Ω) with u 6= 0 such that

(1) a(u, v) = λ(u, v) ∀v ∈ H1
0 (Ω),

where

a(u, v) =

∫

Ω

∇u∇v dx (u, v) =

∫

Ω

uv dx.

It is well known that the eigenvalues of the problem above form an increasing
sequence tending to infinity:

(2) 0 < λ1 ≤ λ2 ≤ · · · ≤ λi ≤ · · ·

We denote by ui an eigenfunction associated to the eigenvalue λi; it is well known
that the eigenfunctions can be chosen such that the following properties are satis-
fied:

(3)
(ui, ui) = 1 (ui, uj) = 0 if i 6= j

a(ui, ui) = λi a(ui, uj) = 0 if i 6= j.

Let us introduce the Crouzeix–Raviart non conforming finite element space we
shall work with (see [5]). We consider a regular family of decompositions of Ω into
closed triangles or tetrahedra. Let hK denote the diameter of the element K and
h = maxK∈T hK . The set of all faces F of elements in Th is denoted by Fh. For
any internal face F let K and K ′ be two elements such that K∩K ′ = F , we denote
by [v]F the jump across F for v ∈ L2(K ∪K ′). For a face F ⊂ ∂Ω we set [v]F = v.
Then we define

V nc
h = {v ∈ L2(Ω) : v|K ∈ P1(K) ∀K ∈ Th and

∫

F

[v]F = 0 ∀F ∈ Fh}.

We introduce the following discrete bilinear form defined on V nc
h × V nc

h

ah(u, v) =
∑

K∈Th

∫

K

∇u∇v dx =

∫

Ω

∇hu∇hv dx ∀u, v ∈ V nc
h

where

∇hu|K = ∇(u|K).
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Let us recall some standard notation. We set ‖ · ‖20 = (·, ·), the L2-norm, and

(4)
‖u‖21 = a(u, u) = ‖∇u‖20 ∀u ∈ H1

0 (Ω)

‖u‖2h = ah(u, u) = ‖∇hu‖
2
0 ∀u ∈ V nc

h

Notice that thanks to the Poincaré inequality and to its discrete version for non
conforming elements (see [10]) both ‖ · ‖1 and ‖ · ‖h are norms on H1

0 (Ω) and V nc
h ,

respectively.
Let Ṽ = H1

0 (Ω) + V nc
h , that is any element ũ of Ṽ can be written as the sum

ũ = u+ uh with u ∈ H1
0 (Ω) and uh ∈ V nc

h . We have that ‖ · ‖h is a norm in Ṽ and
that in the case of u ∈ H1

0 (Ω) it holds ‖u‖h = ‖u‖1.
Then the discrete eigenproblem reads: find λh ∈ R and uh ∈ V nc

h with uh 6= 0
such that

(5) ah(uh, v) = λh(uh, v) ∀v ∈ V nc
h .

Problem (5) admits exactly Nh = dim(V nc
h ) positive eigenvalues with

(6) 0 < λ1,h ≤ λ2,h ≤ · · · ≤ λNh,h.

Moreover, we denote by ui,h a discrete eigenfunction associated to the eigenvalue
λi,h with the following properties:

(7)
(ui,h, ui,h) = 1 (ui,h, uj,h) = 0 if i 6= j

ah(ui,h, ui,h) = λi,h ah(ui,h, uj,h) = 0 if i 6= j.

We indicate with Ei,...,j ⊂ H1
0 (Ω) (resp. Ei,...,j,h ⊂ V nc

h ) the span of the eigen-
vectors {ui, . . . , uj} (resp. {ui,h, . . . , uj,h}) and Pi,...,j (resp. Pi,...,j,h) the elliptic
projection onto Ei,...,j (resp. Ei,...,j,h), that is

(8)
for u ∈ H1

0 (Ω), Pi,...,ju ∈ Ei,...,j s.t. a(u− Pi,...,ju, v) = 0 ∀v ∈ Ei,...,j

for u ∈ Ṽ , Pi,...,j,hu ∈ Ei,...,j,h s.t. ah(u− Pi,...,j,hu, v) = 0 ∀v ∈ Ei,...,j,h.

The discrete solution operator Th : L2(Ω) → L2(Ω) is defined as Thf ∈ V nc
h with

(9) ah(Thf, v) = (f, v) ∀v ∈ V nc
h .

In our a posteriori error analysis we shall also make use of the space of conforming
piecewise linear elements

V c
h = {v ∈ H1

0 (Ω) : v|K ∈ P1(K) ∀K ∈ Th}.

The conforming discretization of the eigenvalue problem under consideration reads:
find λc

h ∈ R and uc
h ∈ V c

h with uc
h 6= 0 such that

(10) a(uc
h, v) = λc

h(u
c
h, v) v ∈ V c

h .

Problem (10) admits N c
h = dim(V c

h ) positive eigenvalues

(11) 0 < λc
1,h ≤ λc

2,h ≤ · · · ≤ λc
Nc

h
,h.

As in the case of non conforming discretization we denote by uc
i,h the eigenfunc-

tion associated to the eigenvalue λc
i,h such that (uc

i,h, u
c
i,h) = 1 with the following

orthogonality properties:

(12)
(uc

i,h, u
c
i,h) = 1 (uc

i,h, u
c
j,h) = 0 if i 6= j

ah(u
c
i,h, u

c
i,h) = λc

i,h ah(u
c
i,h, u

c
j,h) = 0 if i 6= j.
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Notice that V c
h = H1

0 (Ω) ∩ V nc
h , hence N c

h < Nh and λi.h ≤ λc
i,h for i = 1, . . . , N c

h

because of the min max characterization.
Let P c

h be the elliptic projection from Ṽ onto V c
h , that is: for all u ∈ Ṽ , P c

hu ∈ V c
h

such that

(13) a(P c
hu, v) = ah(u, v) ∀v ∈ V c

h .

Similarly to the nonconforming approximation, we denote by Ec
i,...,j,h ⊂ V c

h the

span of the eigenvectors {uc
i,h, . . . , u

c
j,h} and by P c

i,...,j,h the elliptic projection onto

Ec
i,...,j,h, that is: for all u ∈ Ṽ , P c

i,...,j,hu ∈ Ec
i,...,j,h such that

(14) ah(u − P c
i,...,j,hu, v) = 0 ∀v ∈ Ec

i,...,j,h.

We shall make use of the Rayleigh quotient associated to the eigenvalue problem (1)

(15) R(w) =
a(w,w)

(w,w)
∀w ∈ H1

0 (Ω) \ {0}

and of the analogous quotient associated to the nonconforming discretization

(16) Rh(w) =
ah(w,w)

(w,w)
∀w ∈ V nc

h \ {0}

In case of multiple eigenvalues we shall need to estimate the distance between
eigenspaces associated to them and to their discrete counterpart. Let E and F be
two subspaces of Ṽ , then the distance between them is defined as

δh(E,F ) = sup
u∈E

‖u‖h=1

inf
v∈F

‖u− v‖h.

For nonzero functions u and v, if E = span{u}, we write δh(u, F ) instead of δh(E,F )
and if E = span{u} and F = span{v}, we write δh(u, v) for δh(E,F ). We have
0 ≤ δh(E,F ) ≤ 1 and δh(E,F ) = 0 if and only if E ⊆ F . If dimE = dimF < ∞
then δh(E,F ) = δh(F,E). If P and Q are the orthogonal projections onto E and F ,
respectively, then δh(E,F ) equals the largest singular value of the operator (I−Q)P
and

(17) δh(E,F ) = ‖(I −Q)P‖
L(Ṽ ),

where the notation ‖ · ‖
L(Ṽ ), as usual, denotes the operator norm from Ṽ into

itself. See for example [14] for these results and the characterization of the distance
between subspaces.

3. Error estimates for the eigenfunctions

In this section we introduce the error indicators and present the a posteriori
error estimates for the eigenfunctions.

First of all let us recall some properties of the Couzeix–Raviart space. Given
w ∈ H1

0 (Ω), we denote by wI ∈ V nc
h its edge/face average interpolant such that

(18)

∫

F

wI =

∫

F

w ∀F ∈ Fh.

It is well known that ∇hwI is the L2-projection of ∇w onto the piecewise constant
vector fields and that the following estimates hold true

(19)
‖∇hwI‖0 ≤ ‖∇w‖0,

‖w − wI‖L2(K) ≤ C1hK‖∇w‖L2(K).
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Our error indicators make use of the following conforming postprocessing for the
elements in V nc

h . To any element v ∈ V nc
h we associate an element ṽ ∈ V c

h obtained
by averaging the value of v at the vertices of the triangulation Th. Namely, follow-
ing [7], for each internal vertex P we consider all elements Ki ∈ Th for i = 1, . . . ,M
which share the vertex P and define

(20) ṽ(P) =

M
∑

i=1

wiv|Ki
(P),

where wi are suitable weights such that
∑M

i=1 wi = 1.

Lemma 1. The following estimates hold true with constants C independent of h

(21)

‖ṽ‖0 ≤ C‖v‖0

‖∇ṽ‖0 ≤ C‖∇hv‖0

‖ṽ − v‖0 ≤ Ch‖∇h(ṽ − v)‖0.

Proof. Let P be a vertex of the mesh. It is proved in [7, Th. 5.2], that for all
w ∈ H1

0 (Ω)

(22) |ṽ(P)− v|K(P)| ≤
C

h
d/2−1
K

‖∇h(v − w)‖L2(ΩP),

where ΩP is the union of elements K containing P.
For w = 0, using an inverse estimate, we also have

|ṽ(P) − v|K(P)| ≤
C

h
d/2
K

‖v‖L2(ΩP),

Then, for an element K we write, using the standard notation Ni for nodal basis
functions,

ṽ − v =

d+1
∑

i=1

(ṽ(Pi)− v|K(Pi))Ni

and

∇(ṽ − v) =

d+1
∑

i=1

(ṽ(Pi)− v|K(Pi))∇Ni

and therefore, if K̃ is the union of neighbors of K, using the above estimates and
standard estimates for the basis functions Ni, we obtain

‖ṽ − v‖0,K ≤ C‖v‖0,K̃

and

‖∇(ṽ − v)‖0,K ≤ C‖∇hv‖0,K̃ .

Then the triangle inequality yields the first two estimates in (21). The last one

can also be easily obtained from (22) taking into account that ‖Ni‖0 ≤ Ch
d/2
K and

choosing w = ṽ.
�
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We define the local and global error estimators as follows

(23)

µ2
i,K = ‖∇ũi,h −∇hui,h‖

2
L2(K), µ2

i =
∑

K

µ2
i,K

η2i,K = h2
K‖λi,hui,h‖

2
L2(K), η2i =

∑

K

η2i,K .

The following theorem gives the error estimates for the eigenfunctions in term of
the above error indicators.

Theorem 2. Let λi be an eigenvalue of (1) with multiplicity q ≥ 1 (that is λi =
· · · = λi+q−1) and let Ei,...,i+q−1 be the associated eigenspace. Assume that λj,h is a
discrete eigenvalue of (5) converging to λi and that Ej,h is the associated eigenspace
(j = i, . . . , i+ q − 1). Then

(24) δh(Ej,h, Ei,...,i+q−1) ≤ δh(Ej,h, H
1
0 (Ω)) + C1

ηj
λj,h

+ h.o.t.

More precisely, we have

|h.o.t.| ≤
CΩ

λj,h

(

(λi − λj,h) + (λiλj,h)
1/2 inf

v∈Ei,...,i+q−1

‖v − uj,h‖L2(Ω)

)

,

where C1 is the constant in (19) and CΩ is the Poincaré constant.

Proof. The proof is based on that of [7, Th. 3.2]. Here we make more precise the
case of multiple eigenvalues.

Let us fix j = i, . . . , i + q − 1 and let us consider the eigensolution (λj,h, uj,h)
of (5); we recall that ‖uj,h‖0 = 1. Let uj(h) ∈ Ei,...,i+q−1 be such that ‖uj(h)‖0 = 1
and

(25) ‖uj(h)− uj,h‖h = inf
v∈Ei,...,i+q−1

‖v − uj,h‖h.

We observe that uj(h) is an eigenfunction associated to the multiple eigenvalue
λi, hence it satisfies (1). Then applying the same argument as in the proof of [7,
Th. 3.2], we have that

(26)

‖uj(h)− uj,h‖h ≤ inf
v∈H1

0 (Ω)
‖v − uj,h‖h + C1η + CΩ

(

(λi − λj,h)

+ (λiλj,h)
1/2‖uj(h)− uj,h‖0

)

.

From the definition of the gap we have to estimate

δh(Ej,h, Ei,...,i+q−1) = sup
u∈Ej,h

‖u‖h=1

inf
v∈Ei,...,i+q−1

‖u− v‖h = inf
v∈Ei,...,i+q−1

∥

∥

∥

uj,h

‖uj,h‖h
− v
∥

∥

∥

h
,

since Ej,h is generated by uj,h. With a simple computation, using the above es-
timate for the eigenfunction uj,h and the fact that ‖uj,h‖h = λj,h, we obtain the
desired bound. �

It remains to estimate the gap between Ej,h andH1
0 (Ω) in terms of our indicators.

Lemma 3. Under the same assumptions as in Theorem 2, the following estimate
holds true:

(27) δh(Ej,h, H
1
0 (Ω)) ≤

1

λj,h
µj .
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Proof. By definition we have

δh(Ej,h, H
1
0 (Ω)) = sup

u∈Ej,h

‖u‖h=1

inf
v∈H1

0 (Ω)
‖u− v‖h

=
1

λj,h
inf

v∈H1
0 (Ω)

‖uj,h − v‖h

≤
1

λj,h
‖uj,h − ũj,h‖h =

1

λj,h
µj .

�

For the efficiency of these error estimators we refer to [7] where the following
local bounds from below of the error are proved.

Theorem 4. Let λi be an eigenvalue of (1) with multiplicity q ≥ 1 and let λj,h be
a discrete eigenvalue converging to λi (j = i, . . . , i+ q− 1). Let uj(h) ∈ Ei,...,i+q−1

be such that (25) holds true. Then there exist constants C depending only on the
regularity of the elements such that for all elements K ∈ Th it holds

µK ≤ C‖∇h(uj(h)− uj,h)‖L2(K∗)

ηK ≤ C‖∇h(uj(h)− uj,h)‖L2(K) + h.o.t.,

where K∗ is the union of all the elements in Th sharing a vertex with K and

h.o.t. = hK‖λiuj(h)− λj,huj,h‖L2(K).

4. Error estimates for the eigenvalues

In this section we prove error estimates for the eigenvalues using the a posteriori
error indicators introduced in (23). In the case of conforming approximation of
the eigenvalue problem (1) it is well known that each discrete eigenvalue is greater
than or equal to the corresponding continuous one. In the case of nonconforming
discretization this is not true in general. In [1, 7] it is proved that, for singular eigen-
functions, the Crouzeix-Raviart approximation provides asymptotic lower bounds
of the corresponding eigenvalue. For this reason, in our analysis we consider sepa-
rately the cases where a multiple eigenvalue is approximated by below or by above.
More precisely, given a multiple eigenvalue λi of multiplicity q ≥ 1, we assume that
either λj,h ≤ λi or λi ≤ λj,h for all j = i, . . . , i+ q − 1.

Let us consider first the case when the eigenvalues are approximated from below.
The first theorem gives an estimate of the relative error for the eigenvalues in

terms of the norm of the distance of the discrete eigenspace from the subspace of
conforming finite elements orthogonal to the span of the first i conforming eigen-
functions.

Theorem 5. Let λi be an eigenvalue with multiplicity q so that

λi−1 < λi = · · · = λi+q−1 < λi+q ,

and let λi,h ≤ · · · ≤ λi+q−1,h be the q discrete eigenvalues converging to λi. We
assume that λj,h ≤ λi for j = i, . . . , i+ q − 1. Then

(28)
λi − λj,h

λi
≤ ‖(I − P c

h + P c
1,...,i−1,h)Pi,...,j,h‖

2
L(Ṽ )

.
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Proof. We observe that the discretization by conforming finite elements produces
q discrete eigenvalues converging to λi and that it holds λi ≤ λc

j,h for j = i, . . . , i+
q − 1.

Let us fix j with i ≤ j ≤ i+ q − 1, then by assumption we have

λj,h ≤ λi ≤ λc
j,h.

The operators I − P c
h + P c

1,...,i−1,h and Pi,...,j,h are orthogonal projections with

respect to the norm ‖ · ‖h of Ṽ . Therefore ‖(I − P c
h + P c

1,...,i−1,h)Pi,...,j,h‖L(Ṽ ) ≤ 1

(see [12, Th. 6.34, p. 56]). If ‖(I − P c
h + P c

1,...,i−1,h)Pi,...,j,h‖L(Ṽ ) = 1 then the

bound (28) is obviously true, since λj,h ≤ λi. Hence we assume that

‖(I − P c
h + P c

1,...,i−1,h)Pi,...,j,h‖L(Ṽ ) < 1.

Thanks to [12, Th. 3.6, Chap. I] this inequality implies that

dim((P c
h − P c

1,...,i−1,h)Ei,...,j,h) = dim(Ei,...,j,h) = j − i+ 1.

We choose u ∈ (P c
h − P c

1,...,i−1,h)Ei,...,j,h ⊂ V c
h such that ‖u‖h = ‖u‖1 = 1 and

R(u) = max
w∈(Pc

h
−Pc

1,...,i−1,h
)Ei,...,j,h

w 6=0

R(w),

where R(w) is the Rayleigh quotient defined in (15).

Let us consider the following orthogonal decomposition of u in Ṽ :

u = u+ v with u ∈ E1,...,j,h and v ∈ (E1,...,j,h)
⊥,

that is ah(w, v) = 0 for all w ∈ E1,...,j,h. Notice that since u ∈ V nc
h also v ∈ V nc

h .
We have that

‖v‖h = δh(u,E1,...,j,h) by definition of v

≤ δh((P
c
h − P c

1,...,i−1,h)Ei,...,j,h, E1,...,j,h) u ∈ (P c
h − P c

1,...,i−1,h)Ei,...,j,h

≤ δh((P
c
h − P c

1,...,i−1,h)Ei,...,j,h, Ei,...,j,h) the inf is taken on a smaller subset

= ‖(I − P c
h + P c

1,...,i−1,h)Pi,...,j,h‖L(Ṽ ) this is a characterization of the gap.

We now prove that

0 ≤
λc
j,h − λj,h

λc
j,h

≤ ‖v‖h

0 ≤
λi − λj,h

λi
≤ ‖v‖h.

We observe that the first inequality implies the second one.
By definition of u and the min-max principle for the eigenvalues we have that

λc
j,h ≤ R(u).

Moreover, since u ∈ E1,...,j,h, we have that u =
∑j

s=1 αsus,h and

Rh(u) =
ah(u, u)

(u, u)
=

∑j
s=1 α

2
sah(us,h, us,h)

∑j
s=1 α

2
s(us,h, us,h)

=

∑j
s=1 α

2
sλs,h

∑j
s=1 α

2
s

≤ λj,h.

In conclusion, the following inequalities hold true (i ≤ j ≤ i+ q − 1):

Rh(u) ≤ λj,h ≤ λj ≤ λc
j,h ≤ R(u),

and the rest of the proof is based on a bound for 1/Rh(u)− 1/R(u).
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Since v ∈ (E1,...,j,h)
⊥ we have that ah(u, v) = 0. We want to show that also

(u, v) = 0. Since we know that v ∈ V nc
h and that E1,...,j,h is invariant with respect

to Th, we have also ah(Thu, v) = 0. Hence

0 = ah(Thu, v) = (u, v),

due to the definition of Th.
We now compute

1

Rh(u)
−

1

R(u)
=

(u, u)

ah(u, u)
−

(u, u) + (v, v)

ah(u, u) + ah(v, v)

=
ah(u, u)(u, u) + ah(v, v)(u, u)− ah(u, u)(u, u)− ah(u, u)(v, v)

ah(u, u) (ah(u, u) + ah(v, v))

=
1

ah(u, u) + ah(v, v)

(

ah(v, v)

ah(u, u)
((u, u) + (v, v)) −

(

ah(v, v)

ah(u, u)
+ 1

)

(v, v)

)

=

(

1

R(u)
−

1

Rh(v)

)

ah(v, v)

ah(u, u)

≤
1

R(u)

ah(v, v)

ah(u, u)
≤

1

λj

ah(v, v)

ah(u, u)
.

We get

1

λjh
−

1

λj
≤

1

Rh(u)
−

1

R(u)
≤

1

λj

ah(v, v)

ah(u, u)

from which we obtain

λj

λj,h
≤ 1 +

ah(v, v)

ah(u, u)
=

ah(u, u) + ah(v, v)

ah(u, u)
=

1

ah(u, u)

and then
λj − λj,h

λj
= 1−

λj,h

λj
≤ 1− ah(u, u) = ah(v, v) = ‖v‖2h.

We can obtain also
λc
j,h − λj,h

λc
j,h

≤ ah(v, v) = ‖v‖2h,

by using the following inequality

1

λj,h
−

1

λc
j,h

≤
1

Rh(u)
−

1

R(u)
≤

1

λc
j,h

ah(v, v)

ah(u, u)
.

�

We now want to estimate the right hand side of (28) in terms of P c
h and Pi,...,j,h

only.
First of all, we observe that

‖(I−P c
h+P c

1,...,i−1,h)Pi,...,j,h‖
2
L(Ṽ )

= ‖(I−P c
h)Pi,...,j,h‖

2
L(Ṽ )

+‖P c
1,...,i−1,hPi,...,j,h‖

2
L(Ṽ )

;

hence it remains to estimate the second term, which represents the projection of
the nonconforming invariant subspace associated to the eigenvalues numbered from
i to j onto the subspace of conforming invariant subspace generated by the first
i− 1 eigenvalues.
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Proposition 6. Let λi be an eigenvalue with multiplicity q, so that

λi−1 < λi = · · · = λi+q−1 < λi+q ,

and let λi,h ≤ · · · ≤ λi+q−1,h be the q discrete eigenvalues converging to λi. We
assume that λc

i−1,h < λi,h then, for h small enough, there exists β > 0 such that

(29)

‖P c
1,...,i−1,hPi,...,j,h‖L(Ṽ ) ≤

‖(I − P c
h)ThP

c
1,...,i−1,h‖L(Ṽ )

β
‖(I − P c

h)Pi,...,j,h‖L(Ṽ )

where Th is the solution operator defined in (9).

Proof. Using the same notation as in [13, Th. 4.2], we introduce the following
operators:

P = Pi,...,j,h, R̃ = P c
1,...,i−1,h,

so that P is the elliptic projection onto the invariant nonconforming subspace
Ei,...,j,h, and R̃ is the elliptic projection onto the invariant conforming subspace
Ec

1,...,i−1,h, that is

R̃ = P c
1,...,i−1,h : Ṽ → Ec

1,...,i−1,h

a(R̃w, v) = ah(w, v) ∀v ∈ Ec
1,...,i−1,h.

We observe that ‖R̃w‖1 ≤ ‖w‖h
Moreover, the spectrum of (R̃ThR̃)|ImR̃ is equal to {1/λc

1,h, . . . , 1/λ
c
i−1,h}. In-

deed, ImR̃ is the span of {uc
1,h, . . . , u

c
i−1,h} and by definition Thu

c
k,h (1 ≤ k ≤ i− 1)

belongs to V nc
h and is given by

ah(Thu
c
k,h, v) = (uc

k,h, v) ∀v ∈ V nc
h .

Hence, R̃Thu
c
k,h belongs to Ec

1,...,i−1,h and satisfies

a(R̃Thu
c
k,h, v) = ah(Thu

c
k,h, v) = (uc

k,h, v) ∀v ∈ Ec
1,...,i−1,h.

It follows that

R̃Thu
c
k,h =

1

λc
k,h

uc
k,h,

so that 1/λc
k,h (1 ≤ k ≤ i − 1) coincides with the spectrum of (R̃ThR̃)|ImR̃ (there

cannot be other eigenvalues, since the dimension of ImR̃ is equal to i− 1).

Since the spectrum of (R̃ThR̃)|ImR̃ does not contain the eigenvalues νj,h = 1/λj,h

for j = i, . . . , i+ q − 1, the operator R̃(Th − νj,h)R̃ has a bounded inverse and

d‖R̃P‖
L(Ṽ ) ≤ ‖R̃(Th − νj,h)R̃P‖

L(Ṽ ),

where

d = min
k=1,...,i−1

|νck,h − νj,h| = |νci−1,h − νj,h| ≥ |νci−1,h − νi,h| =
λi,h − λc

i−1,h

λi,hλc
i−1,h

.

We have that

(30) R̃(Th − νj,h)R̃P = R̃(Th − νj,h)P
c
hP.

Namely, since R̃R̃P = R̃P c
hP , it is enough to show that R̃ThR̃P = R̃ThP

c
hP . We

have that T c
h = P c

hTh, which implies that R̃ThR̃P = R̃T c
hR̃P and that R̃ThP

c
hP =

R̃T c
hP

c
hP . Hence, we only have to show that R̃T c

hR̃P = R̃T c
hP

c
hP . Indeed, it

holds R̃T c
hR̃ = R̃T c

hP
c
h . In order to show this result, let’s take f ∈ V nc

h , then



11

P c
hf =

∑dimV c
h

i=1 αiu
c
i,h and R̃f =

∑

i∈I αiu
c
i,h, where I is the finite set of indices

corresponding to the range of R̃. The equality (30) is then easily obtained by

comparing R̃T c
hR̃f and R̃T c

hP
c
hf and taking into account that uc

i,h are eigenfunctions
of T c

h.
From (30) we obtain

R̃(Th − νj,h)P
c
hP = R̃ThP

c
hP − R̃ThP + R̃ThP − R̃νj,hP

c
hP

= −R̃Th(I − P c
h)P + R̃(Th − νj,h)P + νj,hR̃(I − P c

h)P.

The last term is equal to zero since R̃ = R̃P c
h . Hence

d‖R̃P‖
L(Ṽ ) ≤ ‖R̃Th(I − P c

h)P‖
L(Ṽ ) + ‖R̃(Th − νj,h)P‖

L(Ṽ )

≤ ‖R̃Th(I − P c
h)‖L(Ṽ )‖(I − P c

h)P‖
L(Ṽ ) + ‖R̃P‖

L(Ṽ )‖P (Th − νj,h)P‖
L(Ṽ )

≤ ‖(I − P c
h)ThR̃‖

L(Ṽ )‖(I − P c
h)P‖

L(Ṽ ) + δ‖R̃P‖
L(Ṽ ),

where δ is given by
δ = ‖P (Th − νj,h)P‖

L(Ṽ ).

Since P is the elliptic projection onto the invariant nonconforming subspace Ei,...,j,h

we have that

δ ≤ |νi+q−1,h − νi,h| =
1

λi,h
−

1

λi+q−1,h
=

λi+q−1,h − λi,h

λi,hλi+q−1,h
≤

λi+q−1,h − λi,h

λi,hλc
i−1,h

.

For h small enough, β = d− δ > 0 and we conclude that

‖R̃P‖
L(Ṽ ) ≤

‖(I − P c
h)ThR̃‖

L(Ṽ )

β
‖(I − P c

h)P‖
L(Ṽ ).

�

Combining the results of Theorem 5 and of Proposition 6 we have the following
result

(31)
λi − λj,h

λi
≤

(

1 +
‖(I − P c

h)ThP
c
1,...,i−1,h‖L(Ṽ )

β

)

‖(I − P c
h)Pi,...,j,h‖

2
L(Ṽ )

,

from which we deduce the following a posteriori estimate involving the indicators
introduced in (23)

Theorem 7. Let us assume the same hypotheses as in Theorem 5 and Proposi-
tion 6. Then, for h small enough, we have

λi − λj,h

λi
≤ Cδ2h(Ei,...,j,h, V

c
h ) ≤ C

j
∑

k=i

1

λ2
k,h

µ2
k.

Proof. The quotient within the parentheses in (31) tends to zero as h tends to zero,
hence it is bounded. On the other hand, from (17) we have that

‖(I − P c
h)Pi,...,j,h‖

2
L(Ṽ )

= δ2h(Ei,...,j,h, V
c
h ).

Thanks to (7), uk,h for k = i, . . . , j form an orthogonal basis for Ei,...,j,h, so that
(see, e.g. [13, Cor. 2.2])

δ2h(Ei,...,j,h, V
c
h ) ≤

j
∑

k=i

δ2h(Ek,h, V
c
h ).
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Applying Lemma 3 we arrive at the desired estimate. �

Let us now consider the case of discrete nonconforming eigenvalues approximat-
ing the continuous ones from above. We estimate first the distance between an
eigenvalue λi of multiplicity q and the average of the discrete eigenvalues λk,h for
k = i, . . . , j (here j = i, . . . , i+ q − 1).

Lemma 8. Let λi be an eigenvalue with multiplicity q, so that

λi−1 < λi = · · · = λi+q−1 < λi+q ,

and let λi,h ≤ · · · ≤ λi+q−1,h be q discrete eigenvalues converging to λi. We assume
that λj,h ≥ λi for j = i, . . . , i+ q − 1, then for all j = i, . . . , i+ q − 1

(32)
1

J

j
∑

k=i

λk,h − λi ≤
1

J

j
∑

k=i

(

6µ2
k + 4C1η

2
k + 4|h.o.t.|2

)

+ |h.o.t.|2

where

|h.o.t.|2 =
C

J

j
∑

k=i

k−i
∑

m=1

h2m
k−m
∑

l=i

C(µk + µl)
2λl,h,

J = j − i+ 1 and the higher order terms |h.o.t.| are defined in Th. 2.

Proof. The proof is divided into two parts. We start by estimating the error for the
first discrete eigenvalue λi,h converging to λi, next we shall deal with the general
case.

First case. Let λi with i ≥ 1 be a multiple eigenvalue with multiplicity q ≥ 1.
It holds that λi ≤ λi,h ≤ λc

i,h. The first inequality holds by assumption and
the second one is due to the min-max principle for the eigenvalues and the fact
that V c

h ⊂ V nc
h . Let ui,h ∈ Vh be the eigensolution associated with λi,h and

ui(h) ∈ Ei,...,i+q−1 be such that ‖ui(h)‖0 = 1 and satisfies (25) and (26), then, for
all v ∈ (P c

h − P c
1,...,i−1,h)Ei,h with ‖v‖0 = 1, we have

λi + λi,h ≤ ‖∇ui(h)‖
2
0 +R(v) = ‖∇ui(h)‖

2
0 + ‖∇v‖20.

Hence
λi + λi,h ≤ ‖∇ui(h)‖

2
0 + ‖∇v‖20

= ‖∇(ui(h)− v)‖20 + 2

∫

Ω

∇ui(h)∇v dx

= ‖∇(ui(h)− v)‖20 + 2λi

∫

Ω

ui(h)v dx

= ‖∇(ui(h)− v)‖20 − λi‖ui(h)− v‖20 + 2λi

and

λi,h − λi ≤ ‖∇(ui(h)− v)‖20 ≤ 2‖∇h(ui(h)− ui,h)‖
2
0 + 2‖∇h(ui,h − v)‖20.

The first term on the right hand side can be estimated with (26). Since v is arbitrary
in (P c

h − P c
1,...,i−1,h)Ei,h, we can set v = (P c

h − P c
1,...,i−1,h)ui,h. Hence

‖∇h(ui,h − v)‖0 = ‖∇h(ui,h − (P c
h − P c

1,...,i−1,h)ui,h)‖0

≤ ‖∇h(I − P c
h)ui,h‖0 + ‖∇hP

c
1,...,i−1,hui,h‖0.

The hypotheses of Proposition 6 are satisfied, so that

‖∇h(ui,h − v)‖0 ≤ C‖∇h(I − P c
h)ui,h‖0 ≤ Cµi.
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Finally, we obtain

λi,h − λi ≤ 4µ2
i + C1η

2
i + |h.o.t.|2.

Second case. Due to the min-max characterization for the eigenvalues we have
that for k = i, . . . , j

λi ≤ λk,h ≤ λc
k,h.

Let us take J arbitrary elements v1, . . . , vJ of V c
h belonging to (Ec

1,...,i−1,h)
⊥

(to be specified later in the proof) which are orthogonal to each other, that is
(vl, vm) = 0 for l 6= m.

We show that

(33)

j
∑

k=i

λc
k,h ≤

J
∑

l=1

R(vl),

where R(vl) denotes the Rayleigh quotient (see (15)). For simplicity, we show the
result under the normalization ‖vl‖0 = 1 (l = 1, . . . , J), so that R(vl) = a(vl, vl)
(this does not limit the generality of our proof). Let us write vl by decomposing it
as its components in Ec

i,...,j,h and a remainder as follows:

vl =

j
∑

k=i

αlku
c
k,h + wl.

It turns out that

R(vl) = a(vl, vl) ≥

j
∑

k=i

α2
lkλ

c
k,h +

(

1−

j
∑

k=i

α2
lk

)

λc
j+1,h,

so that
J
∑

l=1

R(vl) ≥

j
∑

k=i

λc
k,h +

j
∑

k=i

(λc
j+1,h − λc

k,h)

(

1−

J
∑

l=1

α2
lk

)

.

Hence, the estimate (33) is proved if we can show that

J
∑

l=1

α2
lk ≤ 1 ∀k.

This follows from the orthogonality of the vl’s. Indeed, for all k,

J
∑

l=1

α2
lk =

(

J
∑

l=1

αlkvl, u
c
k,h

)

≤
∥

∥

∥

J
∑

l=1

αlkvl

∥

∥

∥

0
=

√

√

√

√

J
∑

l=1

α2
lk.

As in the proof of the first case, for k = i, . . . , j, let uk(h) ∈ Ei,...,i+q−1 with
‖uk(h)‖0 = 1 be such that (26) holds true. Then we have

Jλi +

j
∑

k=i

λk,h ≤

j
∑

k=i

(

‖∇uk(h)‖
2
0 + ‖∇vk−i+1‖

2
0

)

=

j
∑

k=i

(

‖∇(uk(h)− vk−i+1)‖
2
0 − λi‖uk(h)− vk−i+1‖

2
0

)

+ 2Jλi
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Hence

(34)

1

J

j
∑

k=i

λk,h − λi ≤
1

J

j
∑

k=i

‖∇(uk(h)− vk−i+1)‖
2
0

≤
2

J

j
∑

k=i

(

‖∇h(uk(h)− uk,h)‖
2
0 + ‖∇h(uk,h − vk−i+1)‖

2
0

)

The first term in the sum appearing in the last line of (34) can be bounded
by (26), while for the remaining term we now make a choice for the definition of
vl, l = 1, . . . , J , which will be analogous to what has been done in the first case.

For k = i, . . . , j let ûk,h ∈ V c
h be the projection of uk,h onto (Ec

1,...,i−1,h)
⊥

performed according to (13).
Then we choose

(35)

v1 = ûi,h

vl = ûi+l−1,h −
l−1
∑

m=1

(ûi+l−1,h, vm)

‖vm‖20
vm, l = 2, . . . , J.

By construction, we have that for h small enough

(36)
1

2
≤ ‖vl‖0 ≤ C.

The same argument used in the first case shows that

(37) ‖∇h(uk,h − ûk,h)‖
2
0 ≤ Cµ2

k, ∀k = i, . . . , j.

Moreover, standard properties of the projections and a duality argument give

(38) ‖uk,h − ûk,h‖0 ≤ Chµk, ∀k = i, . . . , j.

In order to estimate the right hand side of (34), we start with j = i; we have

(39) ‖∇v1‖
2
0 = ‖∇ûi,h‖

2
0 ≤ ‖∇hui,h‖

2
0 = λi,h.

For k = i+ 1, . . . , j, set l = k − i+ 1, so that we have

(40) ‖∇h(uk,h − vl)‖
2
0 ≤ ‖∇h(uk,h − ûk,h)‖

2
0 +

l−1
∑

m=1

|(ûk,h, vm)|2

‖vm‖40
‖∇vm‖20.

We detail the cases when k = i+1 and k = i+2; the general situation should then
be clear.

If k = i+1, then l = 2, so that the last term in (40) can be estimated using (36)
and (38) as follows:

(41)

|(ûi+1,h, v1)| ≤ |(ûi+1,h − ui+1,h, v1)|+ |(ui+1,h, v1 − ui,h)|

≤ ‖ûi+1,h − ui+1,h‖0‖v1‖0 + ‖ui+1,h‖0‖ûi,h − ui,h‖0

≤ Ch(µi+1 + µi).

Hence we obtain

‖∇h(ui+1,h − v2)‖
2
0 ≤ ‖∇h(ui+1,h − ûi+1,h)‖

2
0 + Ch2(µ2

i+1 + µ2
i )λi,h

≤ Cµ2
i+1 + Ch2(µ2

i+1 + µ2
i )λi,h
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and
(42)

‖∇v2‖
2
0 ≤ 2‖∇ûi+1,h‖

2
0 + 2

|(ûi+1,h, v1)|
2

‖v1‖40
‖∇v1‖

2
0 ≤ Cλi+1,h + Ch2(µi+1 + µi)

2λi,h.

If k = i + 2, then l = 3 and we have two terms in the sum on the right hand side
of (40), that is (ûi+2,h, v1) and (ûi+2,h, v2). For the first term, working as in (41),
we obtain

(43)
|(ûi+2,h, v1)| ≤ C‖ûi+2,h − ui+2,h‖0‖v1‖0 + ‖ui+2,h‖0‖ûi,h − ui,h‖0

≤ Ch(µi+2 + µi).

Next, from the definition of v1 and v2 we have using also (41)

(44)

|(ûi+2,h, v2)| ≤ |(ûi+2,h − ui+2,h, v2)|+ |(ui+2,h, ûi+1,h − ui+1,h)|

+
|(ûi+1,h, v1)|

‖v1‖20
|(ui+2,h, ûi,h − ui,h)|

≤ Ch(µi+2 + µi+1) + Ch2(µi+1 + µi)µi.

Therefore, putting things together, we get

‖∇h(ui+2,h − v3)‖
2
0 ≤ µ2

i+2 + Ch2
i+1
∑

l=i

(µi+2 + µl)
2λl,h + Ch4(µi+1 + µi)

2µ2
iλi+1,h.

From this estimate it is straightforward to obtain the estimate of ‖∇v3‖0, and so
on. �

It is now easy to obtain the desired a posteriori error estimate for the eigenvalues
approaching the continuous one from above.

Theorem 9. Under the same hypotheses as in Lemma 8 the following bound holds
true for j = i, . . . , i+ q − 1

λj,h − λi

λi
≤

1

λi

(

1

J

j
∑

k=i

(

6µ2
k + 4C1η

2
k + 4|h.o.t.|2

)

+ |h.o.t.|2 +
1

J

j−1
∑

k=i

(λj,h − λk,h)

)

.

Proof. The proof is straightforward since

λj,h − λi =
1

J

j−1
∑

k=i

(λj,h − λk,h) +
1

J

j
∑

k=i

λk,h − λi,

which combined with (32) gives the result.
�

5. Numerical results

In this section we present some numerical results obtained applying the estimator
discussed in this paper.

The aim of our tests is not to show the reliability and the efficiency of the er-
ror indicator, since results in this direction have been already reported in [7]. The
emphasis of our computations will be put on the approximation of multiple eigenval-
ues. There are few papers concerning adaptivity for the numerical approximation
of multiple eigenvalues, among those we recall in particular [15], [6], and [9]. A
consequence of the results contained in these three papers is, in particular, that
an adaptive algorithm aiming at a refinement procedure for the approximation of
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a multiple eigenvalue, needs to take into account indicators belonging to all the
discrete eigenfunctions approximating the continuous eigenspace.

In all our numerical tests the discrete eigenvalues are lower bounds for the contin-
uous ones. Actually, we checked the first one hundred eigenvalues of our numerical
tests and all of them appear to be lower bounds for the corresponding exact frequen-
cies. Our experience, is that the method generally provides eigenvalues converging
from below (apart from very pathological examples with few elements). So far, a
proof of this fact is still missing.

We focus our attention on eigenvalues of multiplicity two. We consider an adap-
tive algorithm based on standard Dörfler marking strategy [8]. In case of double
eigenvalues, we choose either to mark elements according to the error indicator
based on one of the two discrete corresponding eigenfunctions, or to the sum of
the indicators of the two eigenfunctions. From the discussion of the results we are
going to present, it will be clear that the results of [15], [6], and [9] are confirmed.
A more comprehensive and detailed study of the numerical tests will be included
in a forthcoming paper.

5.1. The square ring domain. Let Ω be the domain obtaining by subtracting
the square (1/3, 2/3)2 from the square (0, 1)2. This is the same domain considered
in [15, Sect. 2].

It turns out that λ2 is an eigenvalue with multiplicity two. More precisely, the
two-dimensional eigenspace corresponding to λ2 = λ3 can be generated by two
singular eigenfunctions: each of them has a singularity at two opposite reentrant
corners of Ω. We used the reference value λ2 = λ3 = 84.517 . . . computed by Aitken
extrapolation using very fine meshes and conforming linear elements.

We use Matlab for our tests, so that the eigenvalues/eigenvectors are computed
with the command eigs. At each stage we compute the three smallest eigenvalues
and take into account the second and third ones.

We start by using a refinement strategy based on the discrete eigenfunction u2,h

(notice that, due to the fact that the discrete eigenvalues are lower bounds, this
corresponds to the one which is farther away from the double eigenvalue we want
to approximate). The initial non-structured mesh is shown in Figure 1. The plot
of the discrete eigenvalues is reported in Figure 2.

It is clear that the phenomenon already explained in [15] is present. The two
discrete eigenvalues apparently change their position as the mesh is refined. For
example, on the first mesh the two values are equal since the mesh is symmetric. It
turns out that the solver determines a decomposition of the discrete eigenspace: let’s
call uj,h1 (j = 2, 3) the two eigenfunctions on the initial mesh. The first refinement
step is then performed by using the eigenfunction u2,h1 ; it happens that on the
second mesh λ2,h2 and λ3,h2 are separated and correspond to new eigenfunctions
u2,h2 and u3,h2. Actually, due to the performed refinement, this can be interpreted
as if u3,h2 was an improved approximation of u2,h1 ; in some sense, the position of the
two eigenfunctions has exchanged after the first refinement step. This phenomenon
is more clear by looking at the corresponding meshes (see Figure 3): the second
mesh has been refined at the North-West and South-East corners, while the new
second eigenfunction u2,h2 is singular at the other two opposite corners.

In order to better highlight this phenomenon, in Figure 4 we report a sequence of
meshes obtained after eight level of refinements. It is clear that the method refines
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Figure 1. The initial mesh for the square ring test case
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Figure 2. The values of the discrete eigenvalues λ2,h and λ3,h

on the square ring for different refinement levels (non structured
initial mesh, refined based on u2,h)

a region close to all four reentrant corners even if we are constructing our indica-
tor only according to the second discrete eigenfunction. Moreover, the refinement
strategy is not optimal since at each step only two of the four involved regions are
considered.

As a second test, we consider an adaptive strategy driven by the approximation
of the eigenfunction u3,h corresponding to the third eigenvalue. A plot of the values
of λ2,h and λ3,h is reported in Figure 5. It is clear that in this case the adaptive
procedure is effective in pushing the convergence of λ3,h, while λ2,h is converging
more slowly.

The corresponding meshes are reported in Figure 6, where it can be seen that
the refinements is always performed in a neighborhood of the same two corners.
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Figure 3. The eigenfunctions corresponding to λ2,h on the square
ring for the first four refinement levels (non structured initial mesh,
refined based on u2,h)

The eigenfunctions on the first four meshes are plotted in Figure 7: it can be seen
that they always have singularities about the top right and bottom left reentrant
corners. It should be clear that this behavior is just a good luck of this partic-
ular situation. Readers are warned that in case of invariant spaces of dimension
greater than one, an effective adaptive strategy should consider all involved discrete
eigenfunctions.

This approach is presented as a conclusion of this section, where we repeat the
same computation with an error indicator based on both singular eigenfunctions
u2,h and u3,h. The plot of the eigenvalues is reported in Figure 8 where it can
be observed that now the two discrete values approximating the double eigenvalue
λ2 = λ3 are almost superimposed.

For completeness, we report in Figure 9 the eigenfunctions corresponding to λ2,h

and λ3,h after three refinements and in Figure 10 the sequence of mesh obtained
after eight level of refinements.

The convergence history of the adaptive algorithm is shown in Figure 11. It can
be seen that the procedure is performing optimally with respect to the degrees of
freedom. Finally, the effectivity index is reported in Figure 12; it can be seen that
the ratio between the error in the eigenvalues and the indicators is bounded above
and below.
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Figure 4. Eight level of refinements of the square ring domain:
indicator based on u2,h
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Figure 5. The values of the discrete eigenvalues λ2,h and λ3,h

on the square ring for different refinement levels (non structured
initial mesh, refined based on u3,h)
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Figure 7. The eigenfunctions corresponding to λ3,h on the square
ring for the first four refinement levels (non structured initial mesh,
refined based on u3,h)
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Figure 8. The values of the discrete eigenvalues λ2,h and λ3,h

on the square ring for different refinement levels (non structured
initial mesh, refined based on both u2,h and u3,h)
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Figure 9. Eigenfunctions corresponding to λ2,h and λ3,h after
three levels of refinements: indicator based on u2,h and u3,h
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Figure 10. Eight level of refinements of the square ring domain:
indicator based on u2,h and u3,h
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Figure 11. Convergence history of the adaptive procedure: indi-
cator based on u2,h and u3,h
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Figure 12. Effectivity index: indicator based on u2,h and u3,h
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