
Integrating Adaptation Rules for People with
Special Needs in Model-Based UI Development
Process
Raúl Miñón1, Fabio Paternò2, Myriam Arrue1, Julio Abascal1

1 EGOKITUZ: Laboratory of HCI for Special Needs University of the Basque Country/
Euskal Herriko Unibertsitatea, Manuel Lardizabal 1, 20018 Donostia, Spain
Tel.: +34 943 015113

{raul.minon, myriam.arrue, julio.abascal}@ehu.es

2 ISTI-CNR Via Moruzzi 1, 56124 Pisa, Italy
Tel.: +39 050 3153066

{fabio.paterno}@isti.cnr.it

Abstract. The adaptation of user interfaces for people with special needs is a promising approach in order

to enable their access to digital services. Model-based user interfaces provide a useful approach for this

purpose since they allow tailoring final user interfaces with a high degree of flexibility. This paper

describes a system called Adaptation Integration System aimed at providing Cameleon Reference

Framework model-based tools with a mechanism to integrate adaptation rules in the development process.

Thus, more accessible user tailored interfaces can be automatically generated. The services provided by

the system can be applied at both design time and runtime. At design time, a user interface can be tailored

at any abstraction level in the development process. At runtime, changes in the context of use trigger the

adaptation process. Adaptation rules are stored in a repository tagged with meta-information useful for

the adaptation process, such as the granularity of the adaptations and the abstraction level. As case

studies, two applications have been developed using the services provided by the system. One of them

exploits the benefits at design time whereas the other application is devoted to describe the adaptation

process at runtime. The results obtained in these two scenarios demonstrate the viability and potential of

the Adaption Integration System since even inexperienced designers may efficiently produce accessible

user interfaces.

Keywords: Accessibility, Design Space, Adaptation Rules and Model-Based UI

1 Introduction

People with disabilities usually find barriers to interact with digital services because the user

interfaces for these services are not adequately adapted to their needs. Designers usually claim

their lack of knowledge of accessibility techniques as well as the high cost in terms of time and

effort of developing accessible user interfaces as the main reasons for this situation. In addition,

it is not always possible to provide a single user interface satisfying the needs of all users.

Consequently, conscious designers have to deal with different versions of interfaces each one

tailored to one group of users.

Development of context-aware accessible user interfaces is even more complex. User interfaces

accessible for a particular user in a specific context may not be accessible in other contexts for

this same user. For instance, a person with mild deafness watching a video on the web in a silent

environment does not have accessibility problems. But when this person moves to a noisy

environment she may experience accessibility barriers to get to the video content.

In order to enhance user interface accessibility, this paper presents a user interface development

process devoted to incorporating adaptation rules for people with special needs. A system called

Adaptation Integration System has been developed to support this process. It facilitates the

integration of adaptation rules into user interfaces in any of the abstraction levels of the

Cameleon Reference Framework [1]. The adaptation rules can be applied in both design and

runtime scenarios. Therefore, the Adaptation Integration System supports designers using

model-based user interface (MBUI) tools in the process of integrating accessibility requirements

at design time and enables the development of context-aware accessible user interfaces at

runtime. This system is connected to an adaptation repository, which stores and provides the

different adaptation rules to apply depending on certain parameters. These adaptation rules

conform to a comprehensive design space based on four dimensions: user disability, abstraction

level, granularity level, and adaptation type. The system has been used for the development of

two applications.

The rest of the paper is organized as follows: Section 2 analyses the related work; subsequently,

Section 3 describes our approach to the development of the Adaptation Integration System, the

system design and the architecture proposed and the implemented Adaptation Repository;

Section 4 shows how the approach can be applied through two applications; and finally,

conclusions and future work are drawn in Section 5.

2 Related Work

Some systems are devoted to automatically providing adequate user interfaces to users with

special needs. Supple [2], for instance, automatically generates user interfaces adapted to users

devices, tasks, preferences and abilities, where the interface generation is defined by the authors

as a discrete constrained optimization problem. Another example is the Egoki system [3], an

adaptive system for automatically generating accessible user interfaces for ubiquitous services.

It focuses on the selection of suitable multimedia interaction resources (text, image, video,

audio, etc.) for each user interface element considering the specific needs of each user.

Nevertheless, none of these systems supports changes depending on the context of use.

Among the various context-aware systems, Bongartz et al. (2012) [4] propose a system

supporting context-aware adaptive user interfaces in work environments. They generate

graphical, vocal or multimodal user interfaces depending on the type of task the user is

performing and the current context of use. They follow a model-based approach to generating

the user interfaces. However, they do not provide specific support for people with special needs.

Even though multimodal user interfaces can be beneficial for people with disabilities, they are

not always enough to meet all their requirements. Daniel et al. (2008) [5] propose the

Bellerofonte Framework aiming at enhancing the adaptation process of adaptive web

applications. To this end, the authors define a language decoupled from the application logic

based on the Event-Condition-Action (ECA) paradigm. It allows implementing an engine for

processing and applying the adaptation rules. However, this framework is totally focused on

context properties and it does not consider explicitly adaptation rules for providing support to

people with special needs. In addition, this approach is only devoted to web user interfaces

whereas our approach is independent of the final user interface implementation language.

Finally, there are some other systems that consider both accessible user interfaces and context-

aware user interfaces. Stephanidis (2001) [6] discusses the importance of using adaptation

techniques to Universal Access in Human-Computer Interaction (HCI) as well as the

consideration of the users’ context. Moreover, he proposes a development methodology to cope

with the diversity of target groups, tasks and environments of use. This methodology entails

defining a single user interface specification by means of abstract constructors to fit all users

categories. In this way, different accessible versions of user interfaces can be produced both at

design time and at runtime. Despite following a similar approach, our proposal is focused on

providing support to MBUI tools, emerged in the last decade, at different steps of the

development process. Thus, model-based designers can benefit from our system independently

their target users, context and the step of the process they are.

Yang and Shao (2007) [7] propose an approach to applying content adaptations to Web-based

systems. They use a dynamic adaptation strategy to select the adaptation rules to apply, which is

automatically modified when a change in the user context occurs. The adaptation rules take into

consideration the user context including parameters associated with disabilities. Thus, they

provide an alternative content format when required and rearrange the layout to be suited for

different user devices. By contrast, the Adaptation Integration System enables the provision of

accessibility-related and context-sensitive adaptation rules to other developers using the

Cameleon Reference Framework. In this way, user interfaces can be tailored at any step of the

development process. In addition, rather than identifying the interaction elements as atomic

elements, as the proposal of Yang and Shao does, the Adaptation Integration System considers

different granularity levels. This allows carrying out a more flexible transformation process.

Finally, despite their proposal being flexible to include more context parameters, currently, it

only considers four different types of disabilities: blind, weak-sighted, deaf and weak-hearing.

Conversely, while the Adaptation Integration System deals with a wider range of disabilities

from its design being able to relate adaptation rules to any disability.

Quade et al. (2010) [8] propose a model-based approach to exploiting a user model with a

system model at runtime. By performing this simulation, they dynamically evaluate the

adaptation quality for users with disabilities. Then, if usability problems are detected the user

interface is automatically updated. In addition, in future work it is expected the consideration of

the user context. By contrary, the Adaptation Integration System proposes the building of a

repository, which enables not only adaptations at runtime, but also at design time.

Consequently, these adaptations are provided to other systems to benefit from them both in the

early steps of their design processes and at runtime by using the Adaptation Integration System.

The MyUI infrastructure [9] [10] generates individualized user interfaces and performs

adaptations depending on diverse user needs, devices and environmental conditions at runtime.

It also provides a repository with the available adaptation rules based on design patterns. Each

pattern is linked to a reusable software component and associated with a specific source code

representation. The CakePHP framework [11] must be followed in order to be compatible with

their infrastructure. In contrast, our system describes the adaptation rules in a self-explanatory

way using the Advanced Adaptation Logic Description Language (AAL-DL) [12] without any

additional implementation effort. In addition, it is not restricted to any programming language,

since the Cameleon Reference Framework [1] approach is compatible with almost any final

implementation language. Moreover, the possibility of including accessibility requirements in

the first steps of the development process avoids possible design problems in the final steps as

described in Miñón et al. (2014) [13].

The Global Public Inclusive Infrastructure (GPII), proposed by Vanderheiden and Treviranus

(2011) [14], also considers accessibility and context-aware user interfaces. GPII is an

infrastructure aimed at providing access to technology for making the development,

identification, delivery, and use easier, less expensive, and more effective. The authors explain

that GPII has been designed for automatically providing disabled users with solutions able to

enhance their interaction with different public services. For instance, someone needing to access

an inaccessible service, in a specific moment and in a concrete place can obtain an accessible

interface from GPII. This solution would match user’s requirements with the appropriate user

interface without negotiating, explaining, qualifying or justifying. To accomplish this process,

users store their preferences in a local device or in the cloud. Subsequently, they carry out the

login process wherever they are and GPII provides them with a tailored user interface and the

required assistive technologies. To this end, GPII proposes a framework to enable developers

the provision of accessible solutions and a repository to identify assistive technologies. In

addition, the GPII infrastructure also considers the features of the devices from which users are

interacting with the public services. In contrast, the system presented in this paper assists

designers to identifying the most relevant adaptation rules to apply for a given user at service

design time. In addition, the purpose of the Adaptation Integration System is different. Whereas

GPPII is an infrastructure for providing the users with existing accessible solutions, the

Adaptation Integration System is focused on the adaptation of applications built using MBUI

tools, which can generate implementations adapted to various contexts of use.

3 Approach

3.1. Objective and Rationale

As previously mentioned, the objective of the proposed system is to allow the integration of

adaptation rules in the development process of accessible user interfaces when applying MBUI

tools. Therefore, designers using MBUI tools can produce accessible user interfaces even if they

lack knowledge about accessibility requirements. To this end, the applied MBUI tools and the

corresponding User Interface Description Languages (UIDLs) have to support accessibility

patterns in their semantic. Accessibility requirements are integrated in the process through

adaptation rules and transferred to the final user interface.

This system is compatible with the different abstraction levels described in the Cameleon

Reference Framework [1] (Task & Concepts, Abstract and Concrete) and the integration of

adaptation rules can be performed at both design and run time. For this purpose, two services

have been designed to enable MBUI tools to interact with the Adaptation Integration System. In

this way, any MBUI tool based on the Cameleon Reference Framework will be able to interact

with the system regardless the technology used. It is worth pointing out that the Adaptation

Integration System is the responsible for providing the necessary semantics to make the

developed user interfaces accessible in any of the levels of the Cameleon Reference Framework

at design time. However, at design time, the designer (or the MBUI tool) is the responsible for

performing the transferring the semantic from one step to the next one in the development

process, as it is illustrated in Figure 1 and described in Miñón et al. (2014) [13]. At runtime, the

MBUI tool is the responsible for transferring the semantic to the user interface.

Fig. 1 Actors responsible for applying each type of transformation at design time.

The adaptation rules designed for the Adaptation Integration System are able to modify the user

interface at different granularity levels (Single Element, Group Element, Presentation and

Application). Additionally, these adaptation rules are compatible with several user disabilities

and platforms.

3.2. System Requirements

Some requirements have to be addressed in order to interact with the system. These

requirements vary depending on when the adaptation rules are applied: design time or runtime.

At design time, as it is highlighted by Gamecho et al. (2013) [15] it is necessary to provide a

logical description of the user interface in any of the abstraction levels described in the

Cameleon Reference Framework [1] and the designer of the service must have alternative

resources (with the same name of the original but with different extension) to meet the

requirements of some adaptation rules. At runtime, the process is more complex and the model-

based user interface tool needs to meet the following requirements. A similar approach can be

found at [16]:

• The application must have been developed following the Cameleon Reference

Framework [1].

• The designer’s tool has to integrate a mechanism to detect changes of context and to

provide this context to the Adaptation Integration System. The context model proposed

in the Serenoa project [17] is used to model the context. It describes the user features

(knowledge, preferences, task, disability and position), the technology used (device,

connectivity, browser), the environment (position, lighting and noise conditions) and

the social relationships for representing the parameters of a group (friendship,

closeness, etc) that the user belongs.

• A mechanism for providing the correspondent user interface in the abstraction level

required of the current final user interface to the Adaptation Integration System.

Depending on the adaptation rules to apply, different abstraction levels can be required.

• A mechanism to reflect the changes applied at runtime in the final user interface.

Figure 2 illustrates an example, where the abstraction level required is the concrete. It shows the

interaction between the designer’s MBUI tool and the Adaptation Integration System at

runtime. The steps of this interaction are the following:

• Step 1: The context manager module detects some changes in the user context.

• Step 2: The contextual events and the correspondent concrete user interface are sent to

the Adaptation Integration System. In this way, the adaptation rules associated with

these contextual events and defined for the concrete level are selected and applied by

the system.

• Step 3: The system returns the resulting concrete user interface to the Final User

Interface Generator module of the designer’s MBUI tool.

• Step 4: Changes are applied to the final user interface based on the new concrete user

interface.

Fig. 2 Interaction between designer’s MBUI tool and the Adaptation Integration System at runtime.

3.3. Design and Architecture

The starting point of the adaptation process differs according to when it is applied: design time

and runtime. At design time, the process starts when designers provide the Adaptation

Integration System with a given user interface specification belonging to any of the levels

described in the Cameleon Reference Framework [1] as well as a parameter indicating specific

user disabilities. For this purpose, designers can interact with a remote service that provides a

list with the disabilities supported by the existing adaptation rules. At runtime, the process starts

when the context manager detects a meaningful change in the context.

Figure 3 illustrates the diverse modules implemented in the Adaptation Integration System as

well as the process followed by the system in both cases. Concretely, the system is composed of

three main modules that are implemented as Java classes: Request Parser, Adaptation Manager,

and Adapter.

3.3.1 Request Parser
The Request Parser is the module in charge of analysing and parsing the parameters in the

received query. This module implements two different services: one for receiving queries at

design time and another one for receiving queries at runtime. At design time, as previously

indicated, the designer specifies the following parameters: the logical description of a UI, its

abstraction level, the disabilities to be considered in the adaptation, and the UIDL used by the

designer (in Figure 3, these parameters are illustrated by the parameter filter). At runtime, the

current context state is sent automatically to the system, so the user’s disability and other

required information are obtained from it. In both cases, the acquired information is redirected

to the Adaptation Manager module.

Fig. 3 Architecture of the Adaptation Integration System.

3.3.2 Adaptation Manager
This module selects the adaptation rules corresponding to the query parameters. The adaptation

rules are adequately sorted to be applied consistently in order to avoid conflicts among them.

For this purpose, the Adaptation Manager retrieves the adaptation rules related to the specified

disability and abstraction level from the Adaptation repository. There is an algorithm for

ordering the rules based on the granularity level of each one. In order to establish this order

among the adaptation rules, firstly, adaptation rules designed for the specific disability and the

abstraction level are selected; afterwards, this selection is filtered considering whether they are

for design time or for runtime scenarios. Finally, they are sorted considering the granularity

level. It is possible to define a strategy for applying first the adaptation rules related to larger

granularity levels. This may be sometimes necessary in order to ensure that all adaptations are

correctly applied. For instance, if there is a rule changing a group of elements and another one

changing only one of such elements, the adaption of the specific single element should not be

hidden by the first rule.

These adaptation rules are defined in AAL-DL [12], a language designed to be applicable to

languages consistent with the Cameleon Reference Framework, thus ensuring the compatibility

with all the abstraction levels. The UML representation of the components of this language is

shown in Figure 4. For example, we have applied it with user interfaces described in the Model-

based lAnguage foR Interactive Applications (MARIA) [18], which is an engineered notation

able to model dynamic interactive applications at various abstraction levels. We have used it as

reference point since its definition is publicly available, it addresses the use of various

interaction modalities and it is a well‐engineered language that describes all the main aspects

characterizing interactive applications. So far, we have not encountered any particular issue in

transforming descriptions from other UIDLs in it. In addition, MARIA supports the abstractions

of the Cameleon Reference Framework and the necessary semantics to integrate accessibility

patterns. If a given user interface is not specified in MARIA, a language transformation is

previously performed. In the same way, after applying all the adaptation rules, the generated

user interface is transformed from MARIA to the original UIDL.

Fig. 4 Components described in AAL-DL.

3.3.3 Adapter
The Adapter module is in charge of sequentially applying the selected adaptation rules and

language transformations to the logical description of the user interface, as illustrated in Figure

5. An accessible user interface is obtained as a result for this process. At design time, the

designer will obtain a tailored user interface that satisfies the specified accessibility

requirements. Whereas at runtime, the user will be provided with an accessible user interface

tailored to the user and to the changed context of use.

Fig. 5 Flow of the language transformations and the adaptation rules.

3.4. Adaptation Repository

The adaptation repository consists of a compilation of language transformations and adaptation

rules devoted to people with special needs. It is worth pointing out that the language

transformations and the adaptation rules are automatically provided by the system, consequently

situations where the designers insert conflicting rules are minimized. Currently, the developers

of the Adaptation Integration System are responsible for providing these transformations and

adaptation rules to the system. Thus, designers do not have to learn neither MARIA syntax nor

topics related to accessibility. Moreover, there is an XML file describing the meta-information

related to each element of the repository. This file is necessary for adequately processing the

elements as well as for selecting and effectively sorting them. The language transformations for

transforming UIDLs to MARIA require minimum meta-information: the source of the

transformation and the name of the original UIDL (indicated as a parameter). The adaptation

rules devoted to people with disabilities require more meta-information. This meta-information

conforms to the design space for the adaptation rules showed in Figure 6. The main components

of this design space are the following:

User Disability. The disability parameter relates each adaptation rule to a particular disability.

This is due to the fact that since not all the users have the same abilities, tailored user interfaces

taking their specific disabilities into account satisfy better their needs than a “design for all”

approach. In consequence, the Adaptation Integration System is able to adapt user interfaces to

users’ specific disabilities, if there are adaptation rules in the adaptation repository related to

these disabilities. At design time, the designer selects the disabilities to be considered in his/her

logical description of the user interface by interacting with the corresponding service. At

runtime, the disabilities specified in the context model are matched with the adaptation rules.

This approach can cause some conflicts, since the disability value of the context model may not

coincide with the meta-information of the adaptation even if both have the same semantic

meaning. In consequence, the Adaptation Integration System would not be able to select the

proper adaptation rules. For instance, if an adaptation rule is related to the term “blindness” and

the value for the disability parameter of the context model is “blind”, the system is not currently

able to identify that both terms are related to the same meaning. In next versions, we plan to

integrate a mechanism for doing a proper semantic matching between these two terms.

However, this issue goes beyond the scope of this paper.

In addition, specific rules for multiple impairments can be integrated in the system, tagging the

rule with the specific disabilities. The only difference is that the designer (at design time) or the

context model (at runtime) specifies more than one disability and the system selects the

adaptations rules tagged with those disabilities.

Abstraction Level. The Cameleon Reference Framework [1] defines four different abstraction

levels in the model–based user interfaces development process: Task and Domain, Abstract

User Interface, Concrete User Interface and Final User Interface. The adaptations can be applied

in any of these different levels at design time excepting at the final user interface level. For

instance, adaptation rules related to task sequencing should be considered at the Task & Domain

level, whereas adaptation rules related to some specific user interface modalities have to be

considered at the concrete user interface level. At runtime, there are two different approaches:

the adaptation rule can be related to the final user interface level if the changes to apply are

minimum. However, this approach is not always viable. The final user interfaces can be

implemented using different languages (HTML, Java, .Net, Android, etc.), but the adaptation

rules would only work for one of these languages. This approach is suitable for ad-hoc projects

when the final user interface language is previously defined. However, the research work

presented in this paper aims to be compatible with the widest variety of systems. Therefore, a

different approach is applied. It involves obtaining the necessary level of abstraction by means

of an abstraction process, such as the one described in [1]. The MBUI tools are responsible for

performing this task. Therefore, the MBUI tool provides the user interface in an appropriate

level of abstraction in order to apply adaptation rules when a change in the context occurs. The

results of this adaptation process are reflected in the final user interface. This process has been

described in subsection 3.2.

Granularity levels. Adaptation rules can be applied at different granularity levels of the user

interface: Application, Presentation, Group of Elements and Single Element. This parameter is

required for sorting adequately the selected adaptation rules.

Adaptation Type. Tailored user interfaces are adapted at design time by service designers or by

using a system such as the Adaptation Integration System and are instantiated at runtime. In the

case of people with special needs, the interfaces are tailored considering the specific disabilities

of the users. Thus, interfaces are adapted to their special needs. These are the default interfaces

presented to the user. For instance, a blind user would be provided with a tailored user interface

with an adequate structure of the headings, with a way to directly access the main content and

with textual interaction elements. However, changes in the context of use have to be considered

in some cases. Therefore, the user interface has to be adaptive in order to adapt to the context

[19]. For example, when the user is walking the interface may adapt to this situation, or when

the environment is noisy the audio elements in the interface may get textual. Therefore, context-

aware adaptations are necessary in some cases. They may require changes of user interface

modality (for instance, from audio to text) when the context changes are triggered.

Fig. 6 Design space of the adaptation rules.

3.5. Examples of Adaptation Rules

As reported in Section 3.3, two classes of elements have been integrated into the repository:

language transformations and adaptation rules for people with disabilities. The adaptation rules

devoted to people with disabilities are derived from the analysis of different research works,

such as the Barrier Walkthrough evaluation method [20]. Adaptation rules devoted to users with

motor impairments were obtained from Gajos et al. (2010) [2]. Techniques focused on cognitive

and sensory impairments were collected from Kurniawan et al. (2006) [21], from National

Institute on Aging and National Library of Medicine [22] and Richards et al. (2004) [23].

Finally specific techniques for visual impairments were obtained from Lunn, D. et al. (2008)

[24]. Conversely, the language transformations for transforming the UIDL can be defined

analysing each UIDL specification.

In this section some examples of adaptation rules devoted to people with disabilities are

presented to provide a better understanding of the approach. Other examples can be found in

[25]. Table 1 lists the parameters of each adaptation rule described in this subsection and the

meta-information related according to the design space described before. Figures 7 and 8

provide some excerpts of code related to Rule 1. Note that the event part of the rule component

is not considered in adaptation rules devoted to tailored user interfaces. These rules have been

designed for design time so there is not any context change event triggering the adaptation rule.

They are directly integrated in the user interface when the designer interacts with the Adaptation

Integration System at design time.
Table 1 Parameters of some adaptation rules

 Attributes

Rules

Tailored/Adaptive User
Disability

Granularity
Level

Abstraction
Level

1 Tailored UI Blindness Group Abstract UI
2 Tailored UI Low Vision Single Concrete UI
3 Tailored UI Colour

Blindness
Presentation Concrete UI

4 Adaptive UI Paraplegia Application Concrete UI
5 Adaptive UI Low Vision Application Concrete UI
6 Adaptive UI Parkinson Application Concrete UI

Rule 1

• Condition: the user is blind and he/she accesses an application with many interaction

elements.

• Action: a table of content is created to easily access each interaction element.

Rule 2

• Condition: the size of the text of the user interface is smaller than 14 px. and the user

has low vision.

• Action: increase the size of the text of the user interface to 14 px.

Rule 3

• Condition: the user is colour-blind.

• Action: change the foreground colour to black and background colour to white.

Rule 4

• Event: a wheelchair starts to move.

• Condition: the user has paraplegia and the user interface is not rendered with the vocal

modality.

• Action: the user interface modality is changed to the vocal modality.

Rule 5

• Event: the user’s walking speed is increased.

• Condition: the speed of the user while walking is greater than 3 km/h AND the user has

low vision AND the modality of the user interface is graphical.

• Action: the user interface modality is changed to multimodal modality to allow the user

selecting the most confortable modality for him/her while walking.

Rule 6

• Event: the user starts to move.

• Condition: the user has Parkinson disease AND the user interface is not of the type

multimodal.

• Action: the user interface is changed to the multimodal type.

Fig. 7 An excerpt of the specification of Adaptation Rule 1’s event and condition elements. The event

section specifies that the adaptation rule is applied when the user interface is rendered. The condition part

describes a complex condition containing two elementary conditions. Both elementary conditions have to

be satisfied to apply the adaptation rule. The first one is satisfied if the user is blind and the second one if

there are more than four interaction elements enabled in the user interface.

Fig. 8 Representation of the action element of the Adaptation Rule 1. If Event and Condition parts are
satisfied (see Figure 7), the action part creates a container with the value tableOfContentId for the id
attribute. The aim of this container is to allocate the links for the table of contents. Then, for each element
of the user interface that represents an interaction element (text_field element, single_choice element,
multiple_choice element, etc.), a link is generated and inserted in the container previously created.

4 CASE STUDY

The objective of this case study is to assess that the Adaptation Integration System is able to

provide different model-based tools based on the Cameleon Reference Framework with

adaptation rules dedicated to including accessibility requirements and to support context-

awareness, both at design time and runtime. Consequently, we wanted to consider the following

hypotheses:

• The Adaptation Integration System is able to tailor a user interfaces provided by a

MBUI tool at design time.

• The Adaptation Integration System is able to receive user interfaces created by using a

MBUI tool and make them adaptive at runtime.

• The Adaptation Integration System supports different UIDLs based on the Cameleon

Reference Framework.

To this end, two different applications have been developed using different MBUI tools and the

Adaptation Integration System. For the first application, some adaptation rules are applied at

design time in order to obtain user-tailored interfaces (Application 1). This application is

devoted to assessing adaptation during design time at the abstract user interface level and the

normalization of the UIDL by the use of language transformations. The second application is

devoted to demonstrating the runtime adaptation (Application 2). It presents an example where

the modality of the user interface is changed from graphical to vocal, at the concrete user

interface level.

4.1. Application 1: Design Time

This application supports making appointments with a doctor. The following interaction

elements had to be included in the application:

• Medical Number

• Birth Date

• Hospital Name

• Doctor Name

• Date of the Appointment

• Time

• Reason of the appointment

• Submit Button

• Confirmation of the Appointment

The development of the application was performed following a model-based approach.

SPA4USXML [26], a tool that assists designers integrating accessibility requirements in the

task and abstract models of the User Interface eXtended Markup Language (UsiXML) [27], was

used in order to create the abstract user interface. Figure 9 shows a screenshot of the abstract

user interface created by this tool. It was sent to the Adaptation Integration System indicating

that this is an abstract user interface and requesting a tailored interface for blind people. The

adaptation process consists of the following steps:

• The designer submits the abstract user interface to the Adaptation Integration System.

• The system detects that the original UIDL is UsiXML and applies the UsiXML to

MARIA language transformation.

• Adaptation rules devoted to people with blindness are selected and applied. Figure 10

shows a screenshot of the result of applying the adaptation rule to the abstract user

interface. Concretely, one adaptation rule is selected and applied:

o Adaptation rule related to the WCAG 2.0 2.4.5 success criterion “provide blind

users with a table of content to access easily the content” (see Rule 1 in

Subsection 3.5)

• The MARIA to UsiXML language transformation is applied.

Afterwards, the designer continues the development process generating the concrete user

interface. The final user interface will be tailored for people with blindness as the necessary

accessibility requirements have already been integrated at the abstract level and are supported in

the concrete user interface.

Fig. 9 Original abstract user interface devoted to making appointments with the doctor. This abstract user
interface provides four interaction elements of type inputIU to insert a value (Medical Number, Birth Date,
Date of the Appointment and Reason of the Appointment), two interaction elements of type SelectionIU
(Hospital Name and Doctor Name) for selecting a value from a set of options, one interaction element of
type OutputIU for providing feedback to the user when the form is submitted (Confirmation Feedback) and
one interaction element of type OperationIU for submitting the form (Submit).

Fig. 10 Tailored abstract user interface for appointments with the doctor. This abstract user interface
represents the original application with a table of content added. The yellow rectangle on the left area of
the figure represents the table of content inserted after applying the adaptation rules selected, whereas the
yellow rectangle on the right area of the figure represents the elements of the original application. The
table of content includes a container including a link targeting to each interaction element of the elements
of the right area. For instance, on the left area the first navigationUI element is a link identified as
MedicalNumberLink. This link targets to the first element on the right area corresponding to an element of
type InputIU identified as MedicalNumber.

4.2. Application 2: Runtime

The second application shows the runtime adaptation. It is an Airport survey application

implemented in HTML (see Figure 11) built by using MARIA as underlying UIDL. In this

application, the user interface needed to be adaptive to the context of a person with paraplegia

using a wheelchair. The elements of the context model used for this application are shown in

Figure 12.

As described in the subsection 3.2, the service has to be integrated with a context manager

system for detecting the relevant changes in the context. In this concrete scenario, the context

change detected is that the user’s wheelchair starts to move and that his/her disability is

paraplegia. The process for adapting the user interface was the following:

• The service provides the correspondent concrete user interface version of the user

interface (See Figure 13) and the context model states (“the user’s wheelchair starts to

move” and “the user has paraplegia”) as input parameters for the Adaptation Integration

System.

• The Adaptation Integration System identifies one rule to be applied:

o Change graphical modality to vocal modality (Rule 4 described in Section 3.5)

• The tailored concrete user interface is generated (see Figure 14) applying the adaptation

rule to the original concrete user interface. Therefore, vocal interaction elements are

integrated allowing the user to interact by voice.

• The original service gets the result and reflects the changes in the final user interface.

Fig. 11 HTML of the Airport Survey Service.

Fig. 12 Context Model of the application.

Fig. 13 Excerpt of the original concrete user
interface.

Fig. 14 Excerpt of the tailored concrete user
interface with the vocal modality.

4.3. Discussion

Both case studies provided positive feedback. The first case study shows that the SPA4USXML

tool provided with an abstract user interface described in UsiXML, which was tailored

considering the needs of blind users. In the second case study, the runtime adaptation is

illustrated by modifying the modality of a concrete user interface from graphical to vocal.

Despite having achieved positive feedback, more studies have to be carried out for a complete

validation. In both case studies only one adaptation rule has been applied. Therefore, the system

has to support a greater number of adaptation rules to evaluate, and it should be able to detect

specific situations that can cause conflicts among the adaptation rules. In addition, no problems

have been found in the transformations at the abstract user interface level from UsiXML to

MARIA and vice versa. However, more specific tests have to be performed to adequately assess

the support of the other abstraction levels and to identify whether there is specific semantics that

cannot be transferred between both UIDLs.

5 Conclusions and Future Work

In this paper we presented the Adaptation Integration System aiming at integrating accessibility

requirements in model-based user interfaces, both at design time and at runtime. Two case

studies have been described, showing how this approach can support application designers in

the process of integrating accessibility requirements in a transparent way. As consequence,

designers inexperienced in the area of accessibility can benefit from such approach, since it does

not require special accessibility knowledge to apply it. In the same way, both case studies also

illustrate that it is useful for experienced designers producing accessible interfaces, because it

decreases the development time necessary for building a user interface tailored to the needs of

each user type, since designers do not have to implement, manually, each adaptation for each

group of users. Moreover, the case studies also indicate that model-based context-aware

applications based on the Cameleon Reference Framework, even not described in MARIA, can

benefit from the Adaptation Integration System since it ensures the accessibility of adaptive

user interfaces when there is a change in the context of use.

The two applications provided in the paper show that the approach works both at design time

and at runtime and that it is compatible with different model-based tools based on Cameleon

Reference Framework supporting different UIDLs.

Future work will be dedicated to improving the Adaptation Integration System in order to:

• Test the transformations between MARIA and UsiXML at all the abstraction levels of

the Cameleon Reference Framework and to integrate UIDLs that do not follow this

framework. Indeed, other UIDLs do not follow the same structure and semantic

provided by the Cameleon Reference Framework. Therefore, there is not a direct

mechanism to map the elements among different structures. In order to solve this

obstacle, it is necessary to identify the semantic of the UIDL elements and to map each

element to the correspondent element of the Cameleon Reference Framework.

• Add a new granularity level type called “External” [28]. This granularity level would

indicate that a given user requires a specific assistive technology for interacting with the

user interface. Consequently, the adaptation rule would consist in initializing that

assistive technology provided it had been previously installed.

• Develop a graphical tool to allow experts to include new language transformations and

new adaptation rules in the Adaptation Integration System. This approach would need a

system for checking the correctness of the new rules. In this way, the adaptation

repository will be globally accessible to enable the community the use of the repository

by other systems and the inclusion of new adaptation rules. In this version, some

conflicts can arise when adaptation rules and the context models describe an element

with the same semantic by means of two different terms.

• Integrate a semantic matching mechanism into the system for identifying when different

terms correspond to the same meaning in order to overcome this issue.

Acknowledgements

This research work has been partly funded by the Spanish Ministry of Science and Innovation

ModelAccess project (grant TIN2010-15549), and by the EU FP7 STREP SERENOA project

(http://www.serenoa-fp7.eu). The EGOKITUZ Research Lab is funded by the Department of

Education, Universities and Research of the Basque Government (grant IT395-10). In addition,

Raúl Miñón holds a Ph.D. scholarship from the Research Staff Training Programme of the same

Department.

References

1. Calvary G, Coutaz J, Bouillon L, Florins M, Limbourg Q, Marucci L, Paternò F, Santoro C,

Souchon N, Thevenin D, Vanderdonckt J (2002) The CAMELEON reference framework. In:

Deliverable 1.1, CAMELEON Project, 2002. http://www.w3.org/2005/Incubator/model-based-

ui/wiki/Cameleon_reference_framework. Accessed 09 July 2014.

2. Gajos KZ, Weld DS, Wobbrock JO (2010) Automatically Generating Custom User Interfaces for

Users with Physical Disabilities. J. Artificial Intelligence, 174:12-13:910-950.

3. Abascal J, Aizpurua A, Cearreta I, Gamecho B, Garay-Vitoria N, Miñón R (2011) Automatically

Generating Tailored Accessible User Interfaces for Ubiquitous Services. Proc. of the 13th Int.

ACM SIGACCESS Conf. on Computers and Accessibility, ASSETS, 187-194.

4. Bongartz S, Jin Y, Paternò F, Rett J, Santoro C, Spano LD (2012) Adaptive User Interfaces for

Smart Environments with the Support of Model-Based Languages. In: Paternò F, de Ruyter B,

Markopoulos P, Santoro C, van Loenen E, Luyten K (eds.) Ambient Intelligence, LNCS,

7683:33-48.

5. Daniel F, Matera M, Pozzi G (2008) Managing Runtime Adaptivity through Active Rules: the

Bellerofonte Framework. J. Web Eng., 7:3:179-199.

6. Stephanidis C (2001) Adaptive Techniques for Universal Access. J. on User Modelling and

User-Adapted Interaction, 11:1-2:159-179.

7. Yang SJH, Shao NWY (2007) Enhancing Pervasive Web Accessibility with Rule-Based

Adaptation Strategy. J. on Expert Systems with Applications, 32:4:1154-1167.

8. Quade M, Blumendorf M, Albayrak S (2010) Towards Model-Based Runtime Evaluation and

Adaptation of User Interfaces. Proc. of the 1st Int. Workshop on User Modelling and Adaptation

for Daily Routines (UMADR): Providing Assistance to People with Special and Specific Needs,

31-36.

9. Peissner M, Häbe D, Janssen D, Sellner T (2012) MyUI: generating accessible user interfaces

from multimodal design patterns. Proc. of the 4th ACM SIGCHI symposium on Engineering

interactive computing systems 81-90.

10. Garcia A, Sánchez J, Sánchez V, Hernández JA (2012) Integration of a Regular Application into

a User Interface Adaptation Engine in the MyUI Project. In: Miesenberger K, Karshmer A,

Penaz P, Zagler W (eds) Computers Helping People With Special Needs, 13th International

Conference, ICCHP, Linz, Austria. Proc. Part I, L.N.C.S., Springer Verlag, Berlin 7382:311-

314.

11. CakePHP framework, http://cakephp.org Accessed 09 July 2014.

http://cakephp.org/

12. Serenoa Project, deliverable 3.3.2 AAL-DL: Semantics, Syntaxes and Stylistics,

http://www.serenoa-fp7.eu/wp-content/uploads/2013/09/SERENOA_D3.3.2.pdf,

Accessed 09 July 2014.

13. Miñón R, Moreno L, Martínez P, Abascal J (2014) An Approach to the Integration of

Accessibility Requirements into a User Interface Development Method. In: Vanderdonckt J,

López-Jaquero V (eds.) International Journal Science of Computer Programming (SCP), Special

Issue on Tool Support for User Interface Description Languages 86:58-73

14. Vanderheiden GC, Treviranus J (2011) Creating a Global Public Inclusive Infrastructure. In:

Proc. of HCI International, LNCS 6765, 5:517-526.

15. Gamecho B, Miñón R, Abascal J (2013) Design Issues in Accessible User Interface Generation

for Ubiquitous Services through Egoki. In the 12th European AAATE Conference, 1304-1309.

16. Ghiani G, Manca M, Paternò F, Porta C (2014) Beyond Responsive Design: Context-Dependent

Multimodal Augmentation of Web Applications. Proc. of 11th International Conference on

Mobile Web Information Systems, MobiWis, LNCS 8640, 71-85.

17. Serenoa project: deliverable 4.4.1, Context of Use Runtime and Infrastructure,

http://www.serenoa-fp7.eu/wp-content/uploads/2012/07/SERENOA_D4.4.1.pdf. Accessed 09

July 2014.

18. Paternò F, Santoro C, Spano LD (2009) MARIA: A Universal Language for Service-Oriented

Applications in Ubiquitous Environment. ACM Transactions on Computer-Human Interaction,

16:4:19:1-19:30.

19. Model-Based UI XG Final Report, http://www.w3.org/2005/Incubator/model-based-ui/XGR-
mbui-20100504/. Accessed 29 December 2014.

20. Barrier Walkthrough Procedure, http://sole.dimi.uniud.it/~giorgio.brajnik/projects/bw/bw.html.

Accessed 09 July 2014.

21. Kurniawan SH, King AD, Evans G, Blenkhorn PL (2006) Personalising web page presentation

for older people. Interacting with Computers 18:3:457-477.

22. National Institute on Aging and National Library of Medicine. Making Your Web Site Senior

Friendly: A Checklist. , NIH & NLM, 2002, http://www.nlm.nih.gov/pubs/checklist.pdf.

Accessed 09 July 2014.

23. Richards JT, Hanson VL (2004) Web Accessibility: A Broader View. Proc. of the 13th Int.

conference on World Wide Web, 72-79.

24. Lunn D, Bechhofer S, Harper S (2008) The SADIe transcoding platform. Proc. of the 2008

international cross-disciplinary conference on Web accessibility, W4A, 128-129.

25. Adaptation Repository Web Page, http://sipt07.si.ehu.es/aptrep/html/index.html. Accessed 09

July 2014.

26. Miñón R, Moreno L, Abascal J (2013) A Graphical Tool to Create User Interface Models for

Ubiquitous Interaction Satisfying Accessibility Requirements. Universal Access in the

Information Society, 12:1-13.

27. Limbourg Q, Vanderdonckt J, Michotte B, Bouillon L, López V (2005) UsiXML: a Language

Supporting Multi-Path Development of User Interfaces. In: Bastide R, Palanque P, Roth J (eds.)

Engineering Human Computer Interaction and Interactive Systems LNCS 3425:200-220.

http://www.serenoa-fp7.eu/wp-content/uploads/2012/07/SERENOA_D4.4.1.pdf
http://www.w3.org/2005/Incubator/model-based-ui/XGR-mbui-20100504/
http://www.w3.org/2005/Incubator/model-based-ui/XGR-mbui-20100504/
http://sole.dimi.uniud.it/%7Egiorgio.brajnik/projects/bw/bw.html
http://www.nlm.nih.gov/pubs/checklist.pdf
http://sipt07.si.ehu.es/aptrep/html/index.html

28. Miñón R, Paternò F, Arrue M (2013) An environment for designing and sharing adaptation rules

for accessible applications. Proc. of the Int. Conf. EICS, 43-48.

	Integrating Adaptation Rules for People with Special Needs in Model-Based UI Development Process

