
Overview

Methods and techniques for
discovering taxonomies of
behavioral process models
Francesco Folino,1 Gianluigi Greco,2∗ Antonella Guzzo2 and
Luigi Pontieri1

Modeling behavioral aspects of business processes is a hard and costly task,
which usually requires heavy intervention of business experts. This explains the
increasing attention given to process mining techniques, which automatically
extract behavioral process models from log data. In the case of complex pro-
cesses, however, the models identified by classical process mining techniques
are hardly useful to analyze business operations at a suitable abstraction level.
In fact, the need of process abstraction emerged in several application scenarios,
and abstraction methods are already supported in some business-management
platforms, which allow users to manually define abstract views for the process at
hand. Therefore, it comes with no surprise that process mining research recently
considered the issue of mining processes at different abstraction levels, mainly
in the form of a taxonomy of process models, as to overcome the drawbacks of
traditional approaches. This paper presents a general framework for the discov-
ery of such a taxonomy, and offers a survey of different kinds of basic techniques
that can be exploited to this purpose: (1) workflow modeling and discovery tech-
niques, (2) clustering techniques enabling the discovery of different behavioral
process classes, and (3) activity abstraction techniques for associating a general-
ized process model with each higher level taxonomy node. C© 2013 Wiley Periodicals,
Inc.

How to cite this article:
WIREs Data Mining Knowl Discov 2013, 3: 170–189 doi: 10.1002/widm.1081

INTRODUCTION

W orkflow models are an effective way to spec-
ify the behavior of complex processes in terms

of elementary activities and routing constructs (e.g.,
parallelism, loops, splits), and have been largely used
in many Business Process Management (BPM) plat-
forms. Unfortunately, modeling the behavioral as-
pects of a business process is a time-consuming task,
usually requiring heavy intervention by business ex-
perts. This motivates the recent surge of interest to-
ward process mining techniques,1 which allow for
automatically extracting a workflow model based on
the execution logs available for a given process.

However, traditional process discovery ap-
proaches designed to eventually support process en-

∗Correspondence to: ggreco@mat.unical.it
1ICAR-CNR, Rende, Italy
2University of Calabria, Rende, Italy

DOI: 10.1002/widm.1081

actments, extract workflow models specifying all the
operational details of the process. Conversely, busi-
ness users often want to analyze business operations
at higher abstraction levels, and several commer-
cial business-management platforms (e.g., iBOM,2

ARIS3) offer capabilities for manually defining ab-
stract views over a process. Thus, the automated dis-
covery of multiple process views, at different granu-
larity levels, is a natural extension of process mining
and of workflow analysis techniques.

In this work, we specifically consider the case
where multilevel views are induced for describing the
behavior of a process, and eventually organized in the
form of a taxonomy, a valuable kind of knowledge
representation tool, which has found application in
a disparate fields. A process taxonomy, specifically,
is essentially a tree of workflow models, where the
root provides the most abstract view over the exe-
cutions of a process, and any other node refines this
abstract model to describe a subclass of executions.

170 Volume 3, May/ June 2013c© 2013 John Wi ley & Sons , Inc .



WIREs Data Mining and Knowledge Discovery Methods and techniques for discovering taxonomies of behavioral process models

Clearly, such a structure, describing the main behav-
ioral variants of a process in an articulated and modu-
lar way, allows for effectively consolidating, sharing,
and reusing knowledge about its behavior. In fact,
process taxonomies have been profitably used in the
modeling and reengineering of business processes (see,
e.g., the MIT’s Process Handbook project).4

A first step toward such an automatic construc-
tion of process taxonomies, based on process mining,
was presented in Ref 5, where different behavioral
classes of a process are discovered with a cluster-
ing method, and equipped eventually with separate
workflow models. Indeed, such a result can be used
as a basis for obtaining a taxonomy of process mod-
els, by possibly exploiting diverse process abstrac-
tion techniques,6–13 to provide high-level nodes with
coarser grain process models.

In fact, the discovery of taxonomies, in the form
of concept hierarchies, was widely studied in the
past, especially in the context of ontology learning
systems.14 Various approaches have been proposed to
extract concepts’ taxonomies from different kinds of
data sources. For instance, as to the case of structured
input data, taxonomy learning methods have been
defined that can take as input database schemas,15

other existing ontologies,16 knowledge bases,17 and
lexical semantic nets such as WordNet. Some learn-
ing systems (e.g., those in Refs 18–21) can also ex-
ploit semi-structured data (such as, e.g., dictionaries,
HTML, XML, and DTS’s documents) in the discov-
ery of a concept taxonomy. In general, the most dif-
ficult source to deal with are unstructured data, such
as sequences and text documents. In such a case, the
typical approach (see, e.g., Refs 22–25) relies on us-
ing some clustering algorithm to automatically induce
a hierarchy of classes (for words and/or documents),
and regarding each of these classes as the evidence for
a distinct concept. Despite this problem is logically
similar to the one addressed in this work, a main dif-
ference lies in the fact that every node in a concept
taxonomy has a ‘static’ nature, in that it does not en-
code dynamic behaviors, as it happens, instead, in the
case of process models. Hence, these methods cannot
be trivially reused when discovering a process tax-
onomy, where ad hoc process induction/abstraction
mechanisms are needed to capture process dynamics
and guarantee some sort of behavioral consistency
between each model in the taxonomy and its parent.

This paper presents a survey of some ma-
jor issues and solutions related to the discovery of
process taxonomies. After introducing preliminary
concepts (concerning workflow models, activity ab-
stractions and behavioral consistency notions), a gen-
eral approach to the discovery of process taxonomies

is sketched in the third section, parametrically to three
basic tasks: process discovery, trace clustering, and
process abstraction. The following three sections dis-
cuss and compare some major approaches in the liter-
ature that can help solve each of these subproblems,
whereas few concluding remarks are drawn in the last
section.

PRELIMINARIES: WORKFLOWS,
ABSTRACTIONS, AND BEHAVIORAL
CONSISTENCY

Workflow models (precisely control-flow models) are
a popular means for representing the behavior of
a process, and hence constitute a special kind of
model for it. However, as in this paper we are not
considering any other kinds of process models (e.g.,
data-flow models, organizational models, etc.), the
terms ‘workflow model’ and ‘process model’ will be
used interchangeably hereinafter. In the rest of this
section, some basic concepts on workflow models
and on activity abstraction are introduced. The sec-
tion then presents some notions of behavior inheri-
tance/preservation for workflow models, which can
help provide a semantical foundation to parent–child
relationships in a taxonomy of process models.

Workflow Models (Schemas) and Logs
A workflow model (a.k.a. workflow schema) speci-
fies all possible flows along the activities of a process,
by way of a set of constraints defining ‘legal’ execu-
tion in terms of simple relationships of precedence
and/or more elaborate constructs such as loops, par-
allelism, synchronization, and choice (just to cite a
few). A significant amount of research has been done
for the specification of process models (e.g., EPCs,
Petri Nets).

For the sake of clarity, a simple modeling lan-
guage for workflow models is used hereinafter, where
precedence relationships are depicted as arrows be-
tween two nodes of a workflow graph, whereas fur-
ther execution constraints are specified with special
labels associated with the input/output of a task.
Specifically, an AND-join node (i.e., a node with
AND on its input) acts as synchronizer (i.e., it can
be executed only after all its predecessors have been
completed), whereas a OR-join node can start as soon
as one of its predecessors completes. Once finished, an
AND (respectively, OR, XOR)-split node activates all
(respectively, some, one) of its output activities. No-
tice that most of the methods discussed in this paper
are orthogonal to the language adopted to represent

Volume 3, May/ June 2013 171c© 2013 John Wi ley & Sons , Inc .



Overview wires.wiley.com/widm

FIGURE 1 | Workflow model for the sample HandleOrder process.

FIGURE 2 | Sample log for the HandleOrder process.

process behavior, and they do not depend on the sim-
plified notation introduced above.

Example Figure 1 shows a workflow model for a
process concerning the handling of customers’ orders
in a business company. For example, task l is an AND-
join activity, as it must be notified that both the client
is reliable and the order can be supplied. Conversely,
b is a XOR-split activity, whereas it can activate just
one of its adjacent activities.

Each time a workflow model is enacted, its ac-
tivities are executed according to the associated con-
straints, till some final configuration is reached. Many
process-oriented systems store information on pro-
cess instances in a log repository, keeping track of the
events happened during each of them. Basically, a pro-
cess log can be seen as a set of traces, which, in the
most simplistic scenario, correspond to strings over
activity identifiers, representing sequences of activi-
ties. A small log is shown in Figure 2, for the example
process HandleOrder.

Essentially this is the type of historical data that
process discovery algorithms1 take in input to find a
workflow model, even when the original one is un-
known. The quality of a workflow model W can be
evaluated relatively to a log L (the one actually used
for inducing the model, or another log of the same
process) by way of ‘conformance’ measures [usually
ranging over (0. . .1)], which can be distinguished into
two main families: (1) fitness measures (a sort of com-
pleteness measures), which roughly tell how much
the traces in L comply with the behavior encoded

in W, by typically counting the violations that are
needed to perform to replay all the traces through
the model; and (2) precision measures, which try to
quantify how much of the flexibility (ascribable to al-
ternative/parallel constructs) of W is really necessary
to reproduce L.

Activity Abstractions and Process
Taxonomies
Many process abstraction approaches store and ex-
ploit activity abstraction relationships. To make
thinks concrete, we next describe a basic form of
activity ontology, as defined in Ref 6, which intu-
itively captures two different kinds of abstraction,
corresponding to IS-A (a.k.a., ‘hypernimy’ or ‘gen-
eralization’) relations and PART-OF (a.k.a., ‘parton-
omy’ or ‘meronimy’) relations, respectively. Such re-
lations were widely used for representing business ac-
tivities in several application contexts, such as, for
example, the MIT Process Handbook project,4 where
a catalogue of business processes models was defined,
based on interviews with experts, which span several
business domains and features about 5000 activities.

Hereinafter, we will name activity ontology a
tuple D = 〈A, IsA, PartOf〉, where A still denotes a
set of activities, whereas IsA and PartOf are binary
relations over A. Intuitively, given two activities a and
b, (b,a)∈IsA indicates that b is a specialization of a,
whereas (b,a)∈PartOf indicates that b is a component
of a. These basic properties can be extended in a tran-
sitive fashion, as follows. Given two activities a and
x, a abstracts x if there is a path from a to x in the
graphs induced by IsA and PartOf. In such a case, we
also say that a is a complex activity; otherwise, a is a
basic activity. In a sense, complex activities constitute
high-level concepts defined by aggregating or gener-
alizing the basics activities that actually occur in real
process executions. This notion is the building block
for defining a taxonomy of process models, where the

172 Volume 3, May/ June 2013c© 2013 John Wi ley & Sons , Inc .



WIREs Data Mining and Knowledge Discovery Methods and techniques for discovering taxonomies of behavioral process models

knowledge about process behavior is structured into
different abstraction levels.

On the basis of activity abstraction (respec-
tively, refinement) relationships, an intuitive notion
of process model generalization (respectively, special-
ization) can be stated: Given two workflow models
W1 and W2, we say that W1 generalizes W2 (W2 spe-
cializes W1) with respect to an activity ontology D, if
for each activity a2 of W2 (1) either a2 appears in W1

or there is an activity a1 in W1 such that a1 abstracts
a2, and (2) there is no activity b1 in W1 such that a2

abstracts b1.
Definition 1 A process taxonomy is a tree of

workflow models, where the leaves correspond to
distinct classes of process executions, whereas any
nonleaf schema provides a unified and summarized
representation over multiple heterogeneous behav-
ioral classes. Formally, given an activity ontology D,
like that introduced in the previous section, a tree
of workflow models G is said to be a process tax-
onomy with respect to D if, for any pair of models
W and Wp such that W is a child of Wp in G, Wp
generalizes W.

The basic abstraction relations described above
could be specified in many formal knowledge repre-
sentation languages, such as, for example, the family
of Description Logics—in this case each activity label
x can be regarded as a concept term, while assum-
ing that a log trace t is an instance of that concept
if t contains at least one occurrence of x. Even more
directly, one can use object-oriented modeling frame-
works (e.g., OntoDLV)26 natively supporting the con-
structs.

Notice, moreover, that the definition of process
taxonomy does not explicitly embed a precise notion
of behavioral inheritance for the models appearing in
it. Such a desirable property is indeed delegated to the
underlying activity abstraction relationships, which
could be practically defined in accordance with some
kind of behavioral inheritance notion, as discussed in
the next subsection. Notably, the choice of a refer-
ence notion of behavioral inheritance, determines the
semantics of trace abstraction with respect to a given
activity ontology like that defined before, as far as
concerns the possible ways of replacing multiple oc-
currences of concrete activities with a higher level one
that features as an ancestor of these activities in one
of the abstraction hierarchies of the ontology.

Behavior Inheritance/Preservation
Diverse notions of specialization and inheritance
were defined in several application contexts, for ex-
ample, OO-Design/Programming and Process Mod-

elling. The possibility of defining business process tax-
onomies was first considered in Ref 4, where a repos-
itory of process descriptions is envisaged supporting
the design and sharing of process models. However,
this pioneering work builds on a ‘static’ representa-
tion of the processes, which disregards the evolution
of the process over time: each process P is modeled
as a class featuring P’s activities as properties, which
will be inherited by any P’s subclass—by the way, the
framework also allows to remove inherited activities
(nonmonotonic inheritance).

The problem of defining a specializa-
tion/inheritance notion, capable to account for
dynamic behavior, has been studied against different
process modeling languages, such as, for exam-
ple, UML diagrams,27 Petri nets,28 and DataFlow
diagrams.29 Notably, the classical IS-A property
relating the instances of a given class to its superclass
is typically rephrased in these contexts by stating
that all the execution instances of a model may also
be regarded as instances of any model generalizing
it, in connection with some suitable behavioral
equivalence criterion (e.g., trace equivalence or
branching bisimulation).

Two main kinds of specialization may be con-
sidered on a process model: extension (i.e., one or
more activities, and their associated flow links, are
added the model) and refinement (i.e., one or more
activities in the model are refined by replacing each of
them with some more specific activity or with a sub-
process, composed of multiple finer grain activities).

In the first case, a key point for defining a proper
notion of behavioral inheritance concerns how to ab-
stract the execution of any activity that has been
added to the subclass model. Quite a complete and
deep theoretical framework for dealing with such a
situation is presented in Ref 28, where two basic no-
tions of behavior inheritance (and two derived no-
tions based on them) are defined for workflow mod-
els represented as WF nets30–32 (a special kind of Petri
nets). There, it is stated that the external behaviors
shown by a model and by any of its specializations
must not be distinguishable whenever: (1) only com-
mon activities are performed, while blocking the addi-
tional ones (‘protocol inheritance’, conceptually sim-
ilar to the notion of ‘invocation consistency’27); or
(2) when one simply abstracts from activities that
are not in the base model (‘projection inheritance’,
analogous to ‘observation consistency’27). Moreover,
four inheritance-preserving transformation rules are
presented in the same paper, which allow to special-
ize a WF-net model by adding new elements as part
of typical control flow constructs (choice, iteration,
sequential composition, and parallel composition,

Volume 3, May/ June 2013 173c© 2013 John Wi ley & Sons , Inc .



Overview wires.wiley.com/widm

respectively). Notably, when using these rules, the re-
sulting model is ensured to be a subclass of the orig-
inal one, without requiring any explicit verification
of behavior equivalence (which is, in general, a costly
task).

The concept of process specialization as refine-
ment of activities has been largely adopted in the field
of process abstraction2,3,6–12—closely related to the
theme of this paper—where the aim is to simplify the
description of a process model by providing the user
with more abstract and readable process views. In
fact, in this perspective, a more general (and succinct)
view of a process can be formed by making the given
model undergo some activity abstraction transforma-
tion, which essentially amounts to replace a group
of activities (or an entire subprocess) with a single
higher level activity. Clearly enough such a transfor-
mation is the inverse of refining the resulting abstract
model. In actual fact, specialization via extension as
well has a counterpart in a process abstraction set-
ting, which obviously corresponds to the elimination
of activities; however, we do not discuss such a type
of transformation further in the rest of this paper for
two reasons: (1) it has not found as a wide usage as
activity abstraction in the literature, (2) one can still
think of replacing one or more activities he/she wants
to remove with some sort of ‘phantom’ high-level ac-
tivities, which can be kept hidden (along with their
associated links) in the abstracted view shown to the
user.

As far as concerns the similarity of behaviors
between a process model and its abstracted version,
most process abstraction approaches do not fulfill a
precise notion of inheritance like that in Ref 28. Any-
way, some approaches have been defined, which try to
satisfy some kind of behavioral consistence, ensuring
that routing and causal constraints among the activ-
ities are somewhat preserved in the resulting model.
The prevalent way of obtaining such a result is to de-
compose the structure of the input workflow model
into a number of process fragments, possibly defined
in a recursive way (as in the case of the SPQR-tree
structure33), such that each fragment corresponds to
a well-specified composition pattern (e.g., sequential
composition, or split/join structures). In this way, an
order-preserving notion of process generalization can
be met, provided that each set of partonomical rela-
tionships stored in the activity ontology are created
in accordance with these fragments.

An alternative solution consists in taking ac-
count for the ordering relationships between process
activities that are implied by the control-flow model,
when deciding which activities are to be aggregated
together into a higher-level abstract activity. In par-

ticular, in Ref 9, the resulting model M′ is ensured
to be an ‘order preserving’ view of the original pro-
cess model M, in that, for any pair of activities x
and y in M′, if x precedes (respectively, follows, is-
independent-of) y, then any activity abstracted by x
precedes (respectively, follows, is-independent-of) all
the activities abstracted by y. In other words, the im-
plied ordering constraints between concrete activities
of the process, which are produced by the abstraction
process, must coincide with the ordering constrains
in the original model. For example, with regard to
Figure 1, the model obtained by simply abstracting
activities d and p together into a single complex activ-
ity, say x, would comply with this notion of behavior
consistency; the converse would happen, instead, if
we defined x as consisting of c and g.

GENERAL APPROACH TO PROCESS
TAXONOMY DISCOVERY

The problem of discovering a process taxonomy (cf.
Definition 1) can be approached via a two-phase strat-
egy, consisting of two macro-steps: (S1) Clustering-
Based Hierarchy Discovery, where a hierarchical clus-
tering of the log is computed by looking at behavioral
similarities between log traces, so that each cluster can
be regarded as representative of a different behavioral
subclass of the process, and equipped with a separate
workflow model (with the help of a workflow discov-
ery algorithm); and (S2) Abstraction-Based Hierarchy
Restructuring, where the hierarchy of workflow mod-
els is restructured into a taxonomy, by using process
abstraction mechanisms allowing to associate each
nonleaf node v with a workflow model that gener-
alizes all the models appearing in the subtree rooted
in v.

Clearly, such an approach hinges on three dif-
ferent basic computation tasks: (1) Workflow Induc-
tion, amounting to extracting a workflow model out
of a given (sub-)set of log traces; (2) Trace Cluster-
ing, aimed at partitioning a given set of log trace
into a number of behaviorally homogeneous groups;
(3) Workflow Abstraction, devoted to deriving a gen-
eralized coarser grain workflow model for a given set
of workflow models. A range of methods are avail-
able in the literature, which can, in principle, help
solve each of these core subproblems. Figure 3 of-
fers a rough, and yet hopefully intuitive, picture of
how such methods can be exploited to discover a
process taxonomy, according to the two-phase ap-
proach mentioned above. For each task, the figure
shows the respective inputs and outputs, as well as
a list of works in the literature (namely, references

174 Volume 3, May/ June 2013c© 2013 John Wi ley & Sons , Inc .



WIREs Data Mining and Knowledge Discovery Methods and techniques for discovering taxonomies of behavioral process models

FIGURE 3 | A pictorial representation of the overall approach to the discovery of a process taxonomy: core tasks and related works in the
literature (macro-tasks and information flows are annotated with references to the bibliography).

to items in the bibliography) that can be reused to
implement it.

Notice that, in Figure 3, it is envisaged the in-
tegration of this main computation procedure with
Log-Driven Abstraction techniques,7,8 recently ap-
peared in the literature, as an optional preprocessing
step. Essentially, these techniques allow for identi-
fying abstract activities as groups of correlated log
events (based on clustering or pattern-mining algo-
rithms). Each of such high-level activities can be
stored in an activity ontology (along with its associ-
ated low-level activities), and can be used to produce
and abstract view of the log—where, in each log trace,
low-level activities are replaced with the correspond-
ing high-level one. In fact, such a preprocessing step
can be very effective in the case where the logs con-
tains low-level events, which are not directly linked
to semantically relevant process activities. Indeed, as
the raw application of process discovery algorithms
to such logs would results in ‘spaghetti-like’ models
(with many task nodes and links between one an-
other), it is convenient to bring the traces to a higher
level of abstraction, before clustering and analyzing
them.

The rest of this section is devoted to illustrate,
in two separate subsections, two meta-algorithms en-
coding a computational scheme for the high-level
computation steps (S1) and (S2) introduced above,

respectively. Notice that these meta-algorithms are
mainly meant to describe, in a more precise manner,
how the core Workflow Induction, Trace Clustering,
and Workflow Abstraction techniques are employed
within the discovery of a process taxonomy. A deeper
discussion on these three families of techniques will
be provided later on, in the next three sections of the
paper.

Clustering-Based Hierarchy Discovery
Hierarchical clustering methods (agglomerative or di-
visive) have been extensively used in several applica-
tion contexts to construct taxonomies automatically
(see, e.g., Refs 22,23). Traditionally, these schemes
rely on suitable distance measures and linkage strate-
gies, and produce a tree-like partitioning structure
(‘dendrogram’), which can serve as a basis to derive
class hierarchy. However, many of these classical clus-
tering methods risk being too time consuming on large
logs. A possible solution consists in finding an initial
set of, fine grain, clusters for the input log, and then
grouping them into higher level clusters according to
an agglomerative scheme, where the similarity among
clusters is computed by only comparing the workflow
models associated with them (with the help of work-
flow discovery techniques). Workflow-oriented graph
edit distances34 and behavioral similarity measures35

could be exploited to this end.

Volume 3, May/ June 2013 175c© 2013 John Wi ley & Sons , Inc .



Overview wires.wiley.com/widm

FIGURE 4 | Meta-algorithm HierarchyDiscovery.

As an alternative solution, in Figure 4, a top-
down clustering scheme is illustrated, where whatever
(more scalable) clustering method can be exploited
(as in Ref 5). In this meta-algorithm, a given log is de-
composed hierarchically into a number of sublogs, by
iteratively splitting a cluster whose associated model
is expected to mix different usage scenarios. The re-
sult is a tree-like model where each node corresponds
to a set of executions (i.e., process instances) and its
children to a partition of that set.

Initially a single workflow model W0 is ex-
tracted that is a first attempt to model the whole log.
Iteratively, one of the models not refined yet (i.e., cor-
responding to a leaf of the tree) is refined: the set of
traces that are associated with it are split into clusters
by using the meta-function Partition, which could be
implemented by some of the different trace clustering
approaches proposed in the literature (and discussed
later on). A new workflow model is then mined out
for each of these clusters, by using some workflow dis-
covery technique (see next section for more details).
At the end of the process, a hierarchy of workflow
model is obtained, where the leaf nodes constitute
a disjunctive model representing the execution logs
more accurately than W0. Note that the method is
also parametric with respect to the measure quality,
which should evaluate how much adequately the cur-
rent set of unrefined workflow models—that is, the
ones on the frontier of the tree—capture the behavior
of the process under analysis.

Such an evaluation could be made by resorting
to log conformance measures like the ones mentioned
in the previous section and/or to structural complexity
measures.

Example (contd.) To provide insight on how
the above meta-algorithm could work in a practical
case, we randomly generated 100,000 traces from the
workflow in Figure 1, under the additional constraint
that task m cannot occur in any trace containing f (a

fidelity discount is never applied to a new customer),
and task o cannot appear in any trace containing d
and p (fast dispatching cannot be performed when-
ever external supplies are asked for), hence simulat-
ing the presence of different process variants. We then
applied the meta-algorithm HierarchyDiscovery, us-
ing the feature-based clustering in Ref 5 (see the sec-
tion on log clustering methods for further details) to
implement meta-function partition, without perform-
ing any quality check in the test of the main loop
(i.e., function quality is implemented as to always re-
turn the maximal score). This peculiar choice bases
on the observation that such an approach is expected
to be effective enough in dealing with behavioral con-
straints like the ones used in our simulation, and in
identifying behaviorally homogenous clusters. The re-
sulting hierarchy is shown in Figure 5(a), where each
node logically corresponds to a cluster of traces and to
an associated workflow model (induced from the clus-
ter). The model W0 preliminary found for the whole
log (and associated with node v0) actually coincides
with the one shown in Figure 1. Because it was not as
precise as required by the user, the log was partitioned
into two clusters (k = 2). The cluster associated with
v2 was not refined further, whereas that of v1 was
split again into two subclusters. In fact, models W0

and W1 (corresponding to v0 and v1, respectively) are
just preliminary model for their associated log traces,
which are indeed modeled in more precisely by the
leaf models—shown in Figure 5(b)–(d).

Abstraction-Based Hierarchy Restructuring
We next study how a hierarchy of workflow mod-
els can be restructured into a taxonomy of models,
describing the process at different levels of details.
The key point is to equip each nonleaf node with
an abstract model generalizing those associated with
the children of the node. To this aim, some suitable

176 Volume 3, May/ June 2013c© 2013 John Wi ley & Sons , Inc .



WIREs Data Mining and Knowledge Discovery Methods and techniques for discovering taxonomies of behavioral process models

FIGURE 5 | Hierarchy found by HierarchyDiscovery on the running example (details for leaf models only).

activity abstraction method must be used to re-
place groups of (structurally correlated) activities with
higher level activities.

The crucial steps are illustrated in Figure 6, via
a meta-algorithm, named BuildTaxonomy, inspired
to the approach in Ref 6. The algorithm transforms
a given model hierarchy H into a taxonomy, possi-
bly using an activity ontology D, storing basic activ-
ity abstraction relationships. In a bottom-up fashion,
each nonleaf node v in the hierarchy is equipped with
a new workflow model, by using meta-function ab-
stractSchema. This latter is provided with the model
v and with the indication of which activities are to
be abstracted (namely, the tasks that appear only in
a proper subset of v′ children). Optionally, this task
is carried out based on the contents of ontology D,
which is then updated, as to store the links between
abstracted activities and their corresponding complex
ones in the novel (abstract) model of v. In such a case,
D will be restructured eventually by removing ‘su-
perfluous’ activities—that is, activities that does not
appear in any model of H. The above meta-scheme is
parametric to the initial contents of the activity on-
tology D (which can be empty or encoding existing
domain knowledge), as well as to the actual algorithm
implementing abstractSchema, which may disregard
its third argument, which is just returned as it in
output.

Example (contd.) We next consider the applica-
tion of the meta-algorithm in Figure 6, where function
abstractSchema is implemented as in Ref 6. Notably,
any workflow model taken as input by this function
is transformed by replacing ‘specific’ activities (i.e.,

activities that does not appear in all input models)
with new ‘virtual’ ones abstracting them all in the IsA
or PartOf relations based on the current contents of
the reference activity ontology. Figure 7 illustrates the
final outcomes of this restructuring process: (1) a tree
representing the process taxonomy, replicating the
structure of the input workflow hierarchy; (2) the con-
tents of the activity ontology, mapping the abstract
activities, created by the algorithm, to the correspond-
ing concrete ones; (3) the two restructured workflow
models produced for the nodes v′

0 and v′
1 (i.e., the

only two nonleaf nodes in the taxonomy)—the three
remaining (leaf) nodes in the taxonomy (namely v′

2,
v′

3, and v′
4) are simply equipped with the same work-

flow models as their corresponding nodes (namely v2,
v3, and v4, respectively) in the original workflow hi-
erarchy (cf. Figure 5)—that is, leaf models are left
unchanged in the restructuring phase.

Let us now briefly describe how these results
have been obtained. Provided with the hierarchy
of Figure 5 and with an initially empty activity
ontology—we assume that no background knowl-
edge on activity abstraction is available—algorithm
BuildTaxonomy first generalizes the leaf models W3

and W4 (associated with v3 and v4, respectively),
which share all the activities but o, d, and p. In the re-
sulting model W∗

1 , shown in Figure 7(c), d and p have
been aggregated into a new complex activity x1—
while putting the pairs (d, x1) and (p, x1) in the PartOf
relationship. W∗

1 is then merged with the model W2,
and a new abstract model W∗

0 , shown in Figure 7(d), is
build for the root. This model features three complex
activities: x1, aggregating d and p, as discussed before;

Volume 3, May/ June 2013 177c© 2013 John Wi ley & Sons , Inc .



Overview wires.wiley.com/widm

FIGURE 6 | Algorithm BuildTaxonomy.

FIGURE 7 | Generalized workflow models in the taxonomy found for the example HandleOrder process.

x2, aggregating e and f; and x3 composed of m and o.
The pairs (e, x2), (f, x2), (m, x3), and (o, x3) eventually
appear in the PartOf relation of the activity ontology.
Notice that a further complex activity x0 was created
during the creation of the abstract schema W∗

1 to ag-
gregate d and p; x0 was then abstracted by x1 through
an IS-A link (in fact these two complex activities had
the same set of subactivities and the same control flow
links), and eventually removed from the activity on-
tology, for it does not feature in any of the workflow
models in the resulting process taxonomy.

WORKFLOW DISCOVERY
TECHNIQUES

Process mining techniques1 try to extract knowledge
on the behavior of a process from an execution log.
The rest of this section illustrates a number of tech-
niques specifically designed for the induction of a
workflow models. In general, the proposals in the lit-
erature differ both in the specific induction algorithm
and in the language for representing workflows—

ranging from simple directed graphs,13,36,37 express-
ing precedence relationships, possibly extended with
simple split/join constraints,5,38 to more expressive
formalisms, sometimes enjoying deep behavioral se-
mantics, like WF nets.30–32

The problem of discovering a workflow model
was analyzed in Ref 31, where a class of Petri nets,
named structured workflow (SWF) net, is identified.
The algorithm proposed, named α, can rediscover
such a model, under the hypothesis that the input log
is ‘complete’—that is, all pairs of tasks linked directly
in the SWF appear consecutively in at least one log
trace. Two extended versions of the algorithm,32,39

were proposed subsequently to discover two specific
kinds of control-flow constructs: short loops (loops
involving one or two activities only) and nonfree-
choice constructs (where the choice of which outgoing
edges of a XOR-split node x is to be executed does
not depends on x only), respectively.

Simple metrics concerning task dependency
and task frequency are exploited in a heuristics
approach,38 capable of discovering a graph-based

178 Volume 3, May/ June 2013c© 2013 John Wi ley & Sons , Inc .



WIREs Data Mining and Knowledge Discovery Methods and techniques for discovering taxonomies of behavioral process models

model, called ‘dependency/frequency graph’, which
encodes both precedencies and split/join constraints.
Notably, this approach can cope with noisy logs,
based on user-given frequency thresholds.

The discovery of block-structured workflows
possibly containing duplicate tasks was addressed in
Refs 40 and 41, where a two-step solution is pre-
sented: first a stochastic activity graph (SAG) is in-
duced from the log, and then the SAG is turned
into a block-structured workflow by suitable trans-
formation rules. The use of term rewriting systems
was also proposed to discover a hierarchically struc-
tured workflow model, in the form of an expres-
sion tree, where the leaves represent tasks (operands),
whereas any other node is associated with a control
flow operator.42

An alternative solution43 to the workflow dis-
covery problem relies on a global search method,
based on genetic algorithms. This allows for dealing
with complex routing constructs (including nonfree-
choice and hidden tasks, i.e., routing activities that
do not appear in the traces) and with noisy data, but
implies highest computational costs.

On the basis of the observation that extract-
ing a single workflow model for very different cases
may lead to overgeneralized process models, work-
flow discovery has been combined with the clustering
of log traces.5 This permits to improve the precision
of basic workflow discovery algorithms by capturing
constraints that are beyond the expressiveness of their
associated modeling languages. To this end, the ap-
proach in Ref 5 essentially exploits a top-down clus-
tering scheme very alike the one in Figure 4 (with-
out any test on the quality of the current hierarchy),
and returns a collection of workflow schemas, corre-
sponding to the ones induced from the leaves of the
discovered clusters’ tree. A more detailed discussion
on the clustering technique is given in the next sub-
section, devoted to trace clustering approaches.

A recent trend in the Process Mining commu-
nity concerns the opportunity to exploit background
knowledge to deal with incomplete logs, first pin-
pointed in Ref 44, where an ILP-based discovery
method is described. Specifically, after extracting tem-
poral constraints, capturing dependence, and paral-
lelism relations between activities, negative events are
generated artificially for each prefix of any log trace;
using both log traces and artificial negative events
as input, a logic program is induced with algorithm
TILDE, which is eventually converted into a Petri
net. Importantly, domain experts can directly provide
an a priori set of temporal constraints, possibly stat-
ing that (1) two activities are parallel (respectively,
not parallel), and (2) that one precedes/succeeds (re-

spectively, does not precede/succeed). A constraint-
based discovery framework was recently proposed in
Ref 45, where the information gathered from the log
and background knowledge are both expressed as
precedence constraints, that is, constraints over the
topology of the graphs. The search of a simple kind
of process model, encoding only precedencies between
tasks, is then rephrased into a constraints satisfaction
problem (CSP), which is eventually solved by lever-
aging an existing CSP solver. Even though the re-
sulting model does not capture typical control-flow
constructs, the activity dependencies encoded by it
can be given as input to other workflow induction
algorithms,30–32 to extract a fully expressive process
model. Some major features of the approaches pre-
sented so far are summarized in Table 1.

As to the effectiveness of workflow discovery
techniques in recognizing the actual structure of the
analyzed process, various dimensions can be consid-
ered, which include the fitness and precision ones
mentioned previously. Maximal fitness is actually
achieved by almost all the algorithms above. How-
ever, this does not imply that the resulting model re-
ally captures the possible behavior of the unknown
process, if the log does not satisfy the completeness
notion underlying the induction algorithm. In particu-
lar, most algorithms based on heuristics-driven local
search, assume that adjacent tasks appear consecu-
tively in some traces. This discourse gets more var-
ied when the process follows complex control-flow
constructs (nonfree-choices, duplicate tasks, hidden
tasks, etc.) and the logs are noisy. As a matter of fact,
Table 1 also reports the behavior of some major pro-
cess mining algorithms with respect to such issues.

On the contrary, the precision of process mining
algorithms may rapidly fall when the analyzed pro-
cess exhibits different execution scenarios, possibly
combined with global behavioral constraints. In such
a case, good results are achieved by approaches based
on genetics algorithms43 or on clustering.5 Clearly,
the first solution might be computationally unviable
for large logs, whereas an excessive partitioning of
log traces may lead to overfitting. In fact, more gen-
erally, the size of the log can impact severely on the
real value of a discovered process model, especially
when the analyzed process exhibits complex dynam-
ics and a high level of concurrency. Indeed, in such
a case, small samples of log traces hardly capture the
different sequencing of activities that are admitted for
the process, so that the model eventually discovered
is likely to provide an undergeneralized (‘overfitted’)
representation of the process’ behavior. For exam-
ple, it may happen that a precedency is incorrectly
discovered between activities belonging to mutually

Volume 3, May/ June 2013 179c© 2013 John Wi ley & Sons , Inc .



Overview wires.wiley.com/widm

TABLE 1 Summary of Process Discovery Techniques

Handled Issues

Duplic. Hidden Nonfree Backgr.
Paper Noise Tasks Tasks Choice Loops Learning Approach Repr. Language Knowl.

35 – – – – – Heuristics Dep. graph –
42

√
–

√ √ √
Genetic alg. Petri Nets –

5
√

– –
√

– Heuristics + clustering Dep. graph –
43

√ √ √ √ √
ILP Petri Nets

√
39,40

√ √ √
– – Heuristics Block structured –

30 – – – – – Heuristics Petri Nets –
14 – – – – – Heuristics EPC, Petri Nets –
37

√
– –

√ √
Heuristics Dep. graph –

31 – – –
√

– Heuristics Petri Nets –
44 – – –

√
– CSP solver DAG

√
13

√
– –

√ √
Heuristics Dep. graph –

The last two columns correspond to the formalism used for representing discovered process models and to the capability to take
advantage of background knowledge about the structure of the process.

TABLE 2 Summary of Trace Clustering Techniques

Nonstructural
Paper Structure Trace Representation Properties Clustering Bias Approach

45 Sequences/string
√

Likelihood Model based
5 Pattern-based vectors

√
Euclidian distance K means

46 Sequences/string – Edit distance AHC
47 Pattern-based vectors

√
Euclidian distance AHC

48 Bag of activities/transitions
√

Euclidian/Hamming/Jaccard distance K-means/AHC/SOM/QTC

The third and forth columns indicate the capability of accounting for properties going beyond the list of executed activities
(e.g., data parameters, executors) and the basic similarity/dissimilarity criterion guiding the clustering, respectively.

parallel branches of the process, only because, in the
given (incomplete) log, these activities always appear
in the same order. A possible way to somewhat pre-
vent the generation of overfitted models, in the case
of clustering-based methods, is to simply set an up-
per bound to the number of clusters (as done in the
algorithm of Figure 4).

Anyway, using abstraction mechanisms as a pre-
processing or postprocessing tool can help alleviate
this problem. In fact, as discussed in more details later
on (in the section illustrating abstraction algorithm)
a process discovery approach leveraging embedded
abstraction capabilities was recently proposed in
Ref 13. This method provides the analyst with a
simplified dependency graph, where only significant
enough activities and edges are depicted, while omit-
ting (or aggregating) minor structural elements of the
process structure.

TRACE CLUSTERING TECHNIQUES

Clustering techniques can help recognize different be-
havioral classes of process instances automatically,
by exploiting the information captured in log data.
In this section, we overview a series of recent meth-
ods for the clustering of workflow traces, which could
be employed, within a recursive partitioning scheme,
to induce a hierarchy of process execution classes,
as discussed previously. Some major features of these
methods are summarized in Table 2.

A first kind of approach to trace clustering re-
lies on sequence-oriented techniques,46,47 operating
on the whole event trace ‘as-is’ based on string dis-
tance metrics. For instance, a context-aware approach
based on the generic edit distance was proposed in
Ref 47. The edit distance between two sequences is
defined as the cost of the optimal combination of

180 Volume 3, May/ June 2013c© 2013 John Wi ley & Sons , Inc .



WIREs Data Mining and Knowledge Discovery Methods and techniques for discovering taxonomies of behavioral process models

edit operations (insertion, deletion, or substitution)
that allow to transform one sequence into another.
The cost of edit operations is tailored to the pecu-
liarities (primarily, concurrence nature) of workflow
processes by devising ad hoc algorithms for automat-
ically deriving an optimal setting of such costs. More-
over, an agglomerative clustering scheme is adopted,
and the minimum variance criterion (trying to lo-
cally minimize intracluster variances) is used to select
how clusters are to be grouped into higher level ones.
Conversely, a model-based (probabilistic) approach
is used in Ref 46, where, still regarding log traces as
sequences, a mixture of first-order Markov models is
found, via the Expectation-Maximization algorithm,
which approximates their distribution at best.

The main drawback of string-oriented
techniques46,47 is the typically higher computa-
tional cost, which may make them unpractical when
massive logs are to be analyzed. Notice that this
problem cannot be circumvented, in general, by way
of sampling techniques, as a huge number of distinct
log traces can be actually necessary to rediscover a
workflow with many parallel branches—which may
yield many distinct log traces that only differ from
each other in the ordering of the parallel (and hence
mutually independent) tasks. And yet, heuristics-
based correction mechanisms, for taking account of
the concurrent nature of workflow processes, might
by ineffective against highly concurrent processes.

In principle, higher scalability is achieved with
feature-based approaches,5,48,49 owing to the possi-
bility to exploit consolidated efficient methods for
clustering vectorial data and efficient algorithms for
deriving the features from the given log. On the con-
trary, the quality of results depends on the capability
of the considered structural patterns to capture and
discriminate the main execution variants of the pro-
cess. Hence, a trade-off between the expressiveness of
the patterns used as features and the cost of extracting
them must be suitably selected, according to the spe-
cific application context. Different methods have been
proposed to map log traces into such a feature space,
most of which focus on the frequency of activities
in the log. A prevalent approach to clustering traces
consists in transforming them into vectors where each
dimension corresponds to an activity.5 Clearly such
a bag-of-activities representation, suffers, as a major
drawback, from the loss of temporal information, as
it disregard the ordering of activities.

One way to alleviate this problem is to regard
any trace as a sequence of activities and to extract
a number of k-grams (i.e., subsequences of length
k) from it, as features for the clustering. In par-
ticular, in Ref 49, the vector space model is used

with multiple feature types, corresponding to differ-
ent trace profiles, that is, sets of related items de-
scribing traces from a specific perspective (activities,
transitions, data, performance, etc.). Each item is as-
sociated with a measure assigning a numeric value
to any trace. Therefore, by transforming each log
trace into a vector containing all these measures, any
distance-based clustering method can be exploited to
partition the log. In particular, three distinct distance
measures are considered to calculate the similarity be-
tween cases: Euclidean distance, Hamming distance,
and Jaccard distance. Using these similarity measures,
four clustering schemes are exploited applied to par-
tition log traces: K-means, Quality Threshold Clus-
tering (QTC), Agglomerative Hierarchical Clustering
(AHC), and Self-Organizing Map (SOM).

This vector space model was combined with
new context-aware features,48 by expanding the core
idea of considering activity subsequences that are con-
served across multiple traces. Unlike the k-gram ap-
proach, subsequences of variable length are detected,
which frequently occur in the log, and are assumed to
correspond to some hidden functionalities of the pro-
cess. Using these conserved subsequences as features,
the clustering is expected to put together traces that
are mutually similar from a functional viewpoint. In
more details, the following kinds of conserved sub-
sequences (inspired to sequence mining approaches)
are used: Maximal Repeats, Super Maximal Repeats,
and Near Super Maximal Repeats. Such subsequences
are eventually as the dimensions of the vector space,
while adopting Euclidean distance and the minimum
variance criterion for the clustering.

The hierarchical clustering approach in Ref 5
exploits a special kind of sequential features, named
discriminant rules, devised for capturing behavioral
patterns that are not properly modeled by a given
workflow model. Precisely, a discriminant rule has
the from [a1 . . . ah] −/−> a such that (1) [a1 . . .

ah] and [aha] are both ‘highly’ frequent (i.e., the fre-
quency is above a given threshold σ ), and (2) [a1 . . .

aha] is ‘lowly’ frequent (its frequency is below another
threshold γ ). As an instance, the rule [fil]−/−>m for
the example process HandleOrder, captures the fact
that a fidelity discount is never applied when a (new)
client is registered—this constraint is not captured
by the worfklow model in Figure 1. Such rules can
be straightforwardly derived from frequent sequential
patterns, discovered efficiently via a level-wise search
strategy.

As a final remark, we observe that the clustering
of log traces might well take advantage of the good
results achieved in the field of coclustering, one of the
hottest topics in Data Mining community in recent

Volume 3, May/ June 2013 181c© 2013 John Wi ley & Sons , Inc .



Overview wires.wiley.com/widm

years, where multiple data types are to be partitioned
simultaneously based on their mutual correlations. In-
deed, coclustering methods have shown to work well
even when the real goal is to cluster one data type
with a sparse and high-dimensional space of attributes
(like, e.g., text documents and associated terms). A
pioneering effort along such a direction was done in
Ref 50 (in an outlier detection setting), where the min-
ing of structural patterns is combined with a coclus-
tering scheme focusing on the associations between
such patterns and the given traces. In our opinion,
such an approach can achieve good quality results
when used for clustering the log of a process featur-
ing a large number of structural patterns, without
incurring in the notorious ‘curse of dimensionality’
problem.

Moreover, it could be beneficial to further inves-
tigate on the exploitation of model-based clustering
schemes, which exhibited very good effectiveness and
scalability performances in diverse data mining ap-
plications. Clearly this requires them to be suitably
extended to effectively cope with the peculiar nature
of workflow executions, and, in particular, with the
presence of concurrent execution branches. In fact,
this issue is not considered adequately in Ref 46,
which mainly reuses a classical method conceived for
purely sequential data.

PROCESS ABSTRACTION
TECHNIQUES

A large body of work has been done to (semi-)
automatically derive abstract views from a workflow
model, to simplify the representation of the process.
In principle, one could think of exploiting some of the
inheritance-preserving transformation rules defined in
Ref 28 to this end. However, to the best of our knowl-
edge, no automated abstraction approach exists in the
literature following that theoretical framework. By
contrast, such a kind capability is featured by more
recent process abstraction approaches,6–13 typically
based on less precise modeling languages and looser
behavioral consistency notions. As a matter of fact,
we believe that such an approximated modeling of
process dynamics can be tolerated in a knowledge dis-
covery setting, in exchange for a higher automation
degree. Therefore, we next focus on these latter tech-
niques, whose main features are reported in Table 3.
In particular, the table reports, for each technique,
which kinds of data it takes as input—by specifically
telling whether it receives, or not, an execution log,
a workflow model, an activity ontology, and which
activities are to be abstracted (named here ‘target
tasks’)—and which kinds of results it produces—that

is, only an abstract workflow model, or a set of ac-
tivity abstractions (regarded here as a sort of activity
ontology), or both. Moreover, for each technique it
is reported the underlying abstraction mode (i.e., ag-
gregation or elimination of activities/edges) as well as
whether the returned workflow model (if any) fulfils
some notion of order preservation with respect to the
input one (if any).

Most of these works only resort to the aggrega-
tion of process activities.9–12 In particular, in Ref 9,
an abstract view of a workflow model is obtained au-
tomatically by replacing multiple real activities with
‘virtual’ ones, based on ad hoc aggregation rules, en-
suring that all original ordering relationships among
the activities are preserved. In more detail, three rules
must be followed to ensure the ordering property:
(1) activity membership, (2) activity atomicity, and
(3) order preservation. The first rule allows either base
or previously defined virtual activities to be members
of other virtual activities. The atomicity rule serves to
describe the operational semantic property of the ab-
stracted model. Finally, the order preservation princi-
ple provides a syntactical constraint ensuring that the
abstracted processes also follow the atomicity prop-
erty. In practice, this is meant to ensure that implied
ordering relations in an abstract model comply with
those in the base process. An algorithm is then illus-
trated, which can compute such an order-preserving
abstracted version for a given process model (repre-
sented as a dependency graph with AND/XOR logics
and single-entry single-exit loops), based on a refer-
ence subset of activities (named ‘essential’ activities)
specified by the user, as mandatory abstraction targets
(presumably corresponding to irrelevant or private
tasks). The algorithm iteratively aggregates essential
activities and adjacent ones into legal virtual activi-
ties (i.e., groups of base activities that does not violate
any order-preservation constraint) until a fix point is
reached.

In Ref 10, an abstraction approach is described,
which relies on the partonomical decomposition ob-
tained by building an SPQR-tree33 for the given work-
flow model. As mentioned above, in such a tree, each
leaf node coincides with a single (atomic) process
task, whereas any other node corresponds to a ‘frag-
ment’ of the workflow model. The approach relies
on a manual control by the user, who is incharge of
specifying which process task (or collection of tasks)
in the original workflow model is to be abstracted.
On the basis of a series of abstraction rules (specif-
ically defined for each kind of composition pattern)
the approach automatically replaces each task t, ex-
plicitly indicated by the user, with the finest grain
workflow fragment encompassing t (i.e., the closest

182 Volume 3, May/ June 2013c© 2013 John Wi ley & Sons , Inc .



WIREs Data Mining and Knowledge Discovery Methods and techniques for discovering taxonomies of behavioral process models

TABLE 3 Summary of Process Abstraction Approaches

Input Output Method

Abs. Target Abstr. Abs. Order
Paper Log Model Dict. Tasks Model dict. Abstr. Modes Technical Aspects Pres.

6 –
√ √ √ √ √

Aggreg. Ontology-based matching
scores and a fuzzy
order-preservation score

–

7
√

– – – –
√

Aggreg. Hierarchical clustering of
tasks (mapped to vectors
of log-driven features)

–

8
√

– – – –
√

Aggreg. Extracts sequence-oriented
frequent patterns from
log traces

–

9 –
√

– Many
√

– Aggreg. Graph reduction rules
√

10 –
√

– One
√

– Aggreg. Replaces the target task with
the smallest SPQR’s block
enclosing it

√

11 –
√

– Many
√

– Aggreg. +
elimination

Finds, and remove or
aggregate, minimal SESE
fragments that enclose
target tasks

√

12 –
√ √

– –
√

Aggreg. Finds task aggregations that
best match nodes in the
given partonomy

–

13
√

– – –
√

– Aggreg. +
elimination

Uses significance and
correlation scores to
decide which tasks/edges
are to be abstracted

–

Note that in the case of Ref 6, we just consider the method implementing function abstractSchema (see Figure 6).

ancestor of t in the SPQR-tree). Clearly, the process
can be iterated to produce coarser representations of
the workflow.

A similar approach is proposed in Ref 11, aim-
ing at providing personalized process visualization
to the user based on her specific needs. Two basic
abstraction operations are defined to this purpose:
(1) aggregation and (2) reduction (i.e., elimination).
Aggregation allows for replacing original activities
with some abstracted (more general) elements. Re-
duction makes it possible to remove process activities
when relevant information or confidential process de-
tails must be hidden to a particular user group. Both
these operations rely on the so-called SESE (single en-
try single exit) fragments, that is, subprocesses hav-
ing exactly one incoming edge and one outgoing edge
connected with it. In more details, a reduction op-
eration substitutes a SESE with a new edge between
its predecessor and successor activity. Aggregation,
instead, introduces a new, more general activity ab-
stracting a SESE block. Aggregation and reduction
operations are performed while trying to preserve,

at best, the ordering relationships between activities,
and other control-flow constraints.

The aggregation-based approach in Ref 12, still
taking a workflow model as input, can yet take ad-
vantage of a partonomy relation over the activities,
as a form of semantics-oriented background knowl-
edge guiding the abstraction process. The approach
is semi-automated in that it only suggests a list of
possible activity aggregations (in the table, this fact is
summarized with the sole return of an activity on-
tology as output), without computing an abstracted
process view. However, the user can exploit each of
these aggregations to eventually obtain such a view,
by simply replacing it with an abstract activity. Es-
sentially, the approach selects a list of activity groups
such that, for each group G, (1) all the activities in G
are topologically close enough in the process model
(namely, their mutual distance in the workflow graph
is lower than a given threshold) and (2) the activities
in G achieve an optimal compliance score with re-
spect to the input partonomy. This latter score is com-
puted by way of a coverage measure, which, basically,

Volume 3, May/ June 2013 183c© 2013 John Wi ley & Sons , Inc .



Overview wires.wiley.com/widm

evaluates what a percentage of the descendants of a
partonomy node match some of the activities in G.
Notably, the activity names in the input partonomy
are allowed not to range over the same vocabulary as
the activity labels in the model being abstracted, and
a thesaurus-based similarity measure is exploited to
meaningfully match process activities to partonomy
terms.

As mentioned above, the approach in Ref 6
generally attempts to generalize multiple workflow
schemas, describing different variants of a process,
by producing an overall workflow schema where the
structural elements connected with all shared activi-
ties are kept unchanged, whereas groups of ‘specific’
activities (i.e., activities not appearing in all the mod-
els) are replaced with new ‘higher-level’ activities, ab-
stracting them all via IS-A or PART-OF relationships.
Precisely, such abstraction is performed by way of a
heuristics algorithm (whose major features are sum-
marized in Table 3), which iteratively selects a pair
(x,y) of ‘specific’ activities to be abstracted together
into a single higher level activity. Such a pair is chosen
in a greedy fashion, trying to minimize the number of
spurious flow links that their merging introduces be-
tween the remaining activities, and considering their
mutual similarity with respect to the contents of the
activity ontology D. This is done by resorting to a se-
ries of affinity measures assessing how much any two
‘specific’ activities are suitable to be merged accord-
ing the abstraction relationships already stored in D:
(1) a ‘topological’ affinity measure simE(x,y), measur-
ing how similar the neighbourhoods of x and y are
with respect to the flow graph; and (2) two ‘seman-
tical’ affinity measures, simP

D(x, y) and simG
D(x, y),

expressing how similar x and y are with respect to
the relationships of IS-A and PART-OF, respectively,
stored in D. All these measures are combined into
an overall ranking function score as follows: score
(x,y) = 0, if (x,y) is not a ‘merge-safe’ pair of activ-
ities; and score(x,y) = max {simE (x,y), simP

D(x, y),
simP

C(x, y)}, otherwise. By the way, a pair (x,y) of ac-
tivities is said merge-safe (with respect to a given an
set E of precedence relationships), if one of the fol-
lowing conditions holds: (1) there exist no path in E
connecting x and y; (2) x and y are directly linked by
some edges in E and after removing these edges no
other path exists between them.

An emerging trend of research in the Process
Mining community concerns the derivation of activ-
ity abstractions directly out of execution logs.7,8 In
general, such approaches tries to aggregate activities
based on how they appears to be mutually correlated
in past process traces. As we pointed out previously,
such a kind of tools can be very helpful in the discov-

ery of process taxonomies, especially for gaining a
suitable level of abstraction over overly detailed logs.
Moreover, by iterating the application of such tech-
niques to abstracted logs, it is possible to discover
a multilayer activity ontology. In particular, in the
sequence-based approach of Ref 7, multiple abstrac-
tion levels are discovered for log events by using a hi-
erarchical agglomerative clustering method, based on
the proximity of events within log traces. Log traces
can be then transformed into sequences of abstract
activities by choosing a cut of the discovered hierar-
chy of event clusters, and by replacing each event with
the ancestor lying on that cut. The second proposal8

exploits instead repetition patterns (tandem repeats)
and sequence patterns borrowed from bioinformatics,
to capture loops and groups of correlated activities.
Specifically, the approach works in two phases: first,
it extracts repetition patterns by looking at log traces
individually, and then discovers common groups of
activities by logically regarding the whole log as a se-
quence. More complex constructs, such as choice and
intraloop parallelism, are resolved by applying the
preprocessing method on log traces iteratively. Effi-
cient (suffix-tree based) structures are used to curb
computation time. Moreover, to make the approach
robust to the presence of both parallelism and choice
constructs, a single abstract activity is created for
patterns whose associated activity sets either contain
each other or share many elements.

Leveraging the idea of using a process model as
a map showing relevant aspects of process behavior,
an abstraction-enhanced process discovery approach
has been proposed in Ref 13, which is meant to de-
scribe effectively lowly structured processes. Essen-
tially, the approach associate activities and edges with
significance and correlation scores, and eventually
shows a compact dependency graph where only edges
and activities whose scores are above a user-given
threshold, whereas less significant activities/edges are
either grouped into abstract nodes, named (activity)
clusters, if they are correlated enough among each
other, or removed at all from the model, other-
wise. As mentioned previously, this method, mixing
features from both workflow induction techniques
and log-driven abstraction ones, is a process discov-
ery technique empowered with flexible abstraction
capabilities.

A key point, in this setting, is the capability
of the abstraction algorithm to take account for the
fact that the output model is to generalize multi-
ple process variants (i.e., execution classes). To this
regard, a concept of common abstraction of multi-
ple workflow schemas was also defined in Ref 28
(according to the behavioral inheritance notions

184 Volume 3, May/ June 2013c© 2013 John Wi ley & Sons , Inc .



WIREs Data Mining and Knowledge Discovery Methods and techniques for discovering taxonomies of behavioral process models

given in the same work), but without providing any
automated technique for its computation. In fact, the
only method that was explicitly conceived to per-
form abstraction on (the nonleaf nodes of) a hier-
archy of process models is the one in Ref 6. This
is done by exploiting a particular implementation of
meta-function abstractSchema, which takes as input
a workflow schema (modeling a node n in the hier-
archy), an activity ontology, and a set of tasks to be
abstracted—which coincide with all the tasks associ-
ated with some of the children of n, but not with all of
them. In fact, all of the other (semi-)automated model-
based abstraction approaches9–12 just consider a pair
of workflows per time (i.e., a ‘sub-class’ workflow and
a ‘super-class’ workflow), and furnish mechanisms for
deriving one from the other. However, in principle,
all of these methods can be exploited as well to carry
out such a task, as they still allow the user to indi-
cate which tasks need to be abstracted (named ‘target
tasks’ in Table 3). Therefore, it is possible to reuse
these approaches to abstract all the tasks in a process
model that are not shared by all of its submodels in
the taxonomy tree. Clearly, as the method in Ref 10
only takes a target task, such an operation would re-
quire multiple iterations of it. Moreover, all of these
methods can be exploited by the analyst (possibly in-
teractively) to further increase the level of abstraction
of some models (e.g., the root one) in the discovered
taxonomy.

Moreover, only a few methods9,10,11 enjoy
some kind of behavior consistency notion. More
specifically, all of them are guaranteed to produce
an abstracted model that preserves all ordering rela-
tionships in the original one—actually, in the case of
Ref 11, little violations to this constraint are toler-
ated in exchange for achieving a more compact pro-
cess view. Such an order preservation property is not
fulfilled instead by any of the remaining approaches.
However, it is possible to make the method in Ref 6
overcome this limitation, by simply ensuring that all
the PartOf relation created in the abstraction, con-
forms to such an order-preservation notion. This can
be done, for example, either (1) by enforcing ordering-
oriented constraints over the activities, like in Ref 9,
or (2) by requiring that activities can be abstracted
by only using partonomical relationships implied by
some given structural decomposition scheme (like the
fragment-oriented ones used in Refs 10 and 11).

It is worth noticing that only the abstraction
algorithms in Refs 6 and 12 can take advantage
of existing abstraction relations (e.g., partonomies,
hypernymies, or both) over process activities—even
though the latter does not compute an abstract pro-
cess model, but only gives the analyst a set of pos-

sible activity aggregations. Notably, this feature al-
lows for possibly reusing available domain knowl-
edge or the results of other process abstraction tech-
niques, producing such a kind of relations,6,7,8,12

or of classical approaches to the discovery of con-
cept ontologies/hierarchies14,22–25 from text docu-
ments (provided, in our case, with some textual de-
scription of process activities).

Finally, we observe that the computation times
of all schema-oriented abstraction methods6,9–11 are
practically equivalent, as all of them are (low-degree)
polynomials in the size of the input workflow models,
which usually consist of few hundred of tasks at most
(and of a sparse network of dependency links).

CONCLUSIONS

Several mining and abstraction methods have been
presented, which can help discover a taxonomical
process model for a given process, representing it at
different abstraction levels. In particular, after auto-
matically discovering a hierarchy of behavioral classes
by way of suitable clustering methods, a process tax-
onomy can be derived by applying process abstraction
methods to nonleaf nodes, eventually equipping them
with higher-level models. Choosing an optimal com-
bination of these basic tools is not easy in general,
and it may well depend on the specific application
domain at hand. However, we hope that our study
can give some basic guidelines for analysts/designers
who want to take advantage of such (semi-)automated
techniques in their attempt to build such an expres-
sive representation for a given business process and
for its execution variants. A number of challenging
issues are still open and deserve further investigation.
For example, the recognition of abstract activities can
benefit from available background knowledge on the
activities’ semantics, possibly extracted from a given
thesaurus or a process ontology. Moreover, discov-
ered process taxonomy can be exploited profitably to
analyze relevant measures, such as usage statistics and
performance metrics, along the different usage scenar-
ios of the process at hand. Specifically, by using a tax-
onomy as an aggregation hierarchy for multidimen-
sional OLAP analysis, it is possible to enable the user
to interactively evaluate such measures over different
groups of process instances. Notably, such an exten-
sion would be a valuable feature of interactive process
mining systems, where the user is assisted in evaluat-
ing the discovered process models and in the tuning
of parameters. Finally, the discovered taxonomies can
serve as a basis for further knowledge discovery tasks,
such as the mining of generalized association rules

Volume 3, May/ June 2013 185c© 2013 John Wi ley & Sons , Inc .



Overview wires.wiley.com/widm

between, for example, the users or resources involved
in the workflow process under analysis.

APPENDIX: EXPERIMENTAL RESULTS

To give some evidence for the benefits that can de-
scend from the discovery of process models hier-
archies and taxonomies, we next report an excerpt
of the experimental analysis illustrated in Ref 6. As
a matter of facts, in that work a specific instan-
tiation of the two general meta-algorithms in Fig-
ures 4 and 6 are considered. Specifically, as con-
cerns the discovery of a schema hierarchy (Figure 4),
the induction of each workflow model (i.e., function
mineWFSchema) is performed by using the algo-
rithm in Ref 38, whereas the k-means-based cluster-
ing method introduced in Ref 5 is exploited to split a
(sub-)log into clusters (i.e., function partition). More-
over, the taxonomy restructuring process hinges on
the abstraction procedure introduced in the same
work.6

Benefits of Log Clustering
A series of tests were performed on 10 synthesized
benchmark log files, available in ProM, which repro-
duce different kinds of behavior, ranging from basic
constructs like sequences, choices, parallel forks, and
loop, to complex ones, like nonfree choice and invisi-
ble tasks. Three conformance measures,51 all ranging
over [0,1], are used here to evaluate the quality of
discovered models. can roughly be defined as follows:
(1) Fitness evaluates the percentage of mismatches
occurring along a nonblocking replay of log traces
through the model: the more the mismatches the
lower the measure; (2) Simple behavioral appropri-
ateness (SB-Precision for short) estimates the amount
of the ‘extra behavior’ allowed by the model, quan-
tified according to the average number of transitions
that are enabled during a replay of the log; (3) Ad-
vanced Behavioral Appropriateness (AB-Precision for
short), which expresses the amount of model flexibil-
ity (i.e., alternative or parallel behavior) that was not
needed to replay the log. Conformance measures were
only computed on leaf schemas only, which actually
represent the concrete process variants found via the
clustering, and averaged by assigning each schema a
weight equal to the fraction of log traces fallen in its
associated cluster.

The results computed in this way are compared,
in Table A1, with those obtained by simply discov-
ering a single workflow schema for the whole log,
still using the base learning algorithm in Ref 38.

TABLE A1 Quality Improvement, on Different Benchmark Logs,

Achieved by the Clustering-Based Workflow Induction Scheme of
Figure 4, (With Respect to a Single Overall Workflow Induced from
the Whole Log)

Dataset Fitness SB-Precision AB-Precision

a6nfc 1.2% 3.8% 54%
Example Log 2.0% 3.9% 93%
a7 3.9% 9.6% 39%
a100Skip 4.2% 1.8% –
al1 4.2% 1.0% –
DriversLicence – 3.9% 29%
herbstFig6p36 – 2.0% 20%
al2 – 1.2% –
CHOICE 4.8% 2.7% –
a12 – 1.2% –

More precisely, the table reports the increase (in per-
cent) in the value of the three conformance mea-
sures that is achieved when passing from the base
workflow induction algorithm38 to the clustering-
enhanced workflow discovery approach. Notably,
this latter seems to overcome the difficulty of the
base learner to deal with complex routing constructs
and nonlocal task dependencies (cf., log files a6nfc,
herbstFig6p36, and DriversLicence). This proves that
more complete and precise process models can of-
ten be discovered by taking advantage of a clus-
tering scheme, capable to separate different process
variants.

Benefits of Process Abstraction
To show the benefit of abstraction mechanisms, we
next report some results of an extensive experimen-
tation (presented in Ref 6), which was conducted on
the logs of an Italian maritime container terminal.
Roughly speaking, the operational system supports
and registers several logistic tasks for each container
which come to the port, and underwent various kinds
of moves over the ‘yard’—that is, the main storage
area used in the harbor, consisting of bidimensional
slots, organized in blocks (nearly 100). A sample 5336
of such data was selected, corresponding to history
of containers handled along the first two months of
year 2006, and exchanged with other ports of the
Mediterranean Sea. These data were converted in a
process-oriented form, by encoding the sequence of
yard blocks occupied by a container into a distinct
log trace.

By applying the approach in Figure 4 (instanti-
ated with the techniques in Refs 38 and 5), followed
by the restructuring scheme of Figure 6 (instantiated

186 Volume 3, May/ June 2013c© 2013 John Wi ley & Sons , Inc .



WIREs Data Mining and Knowledge Discovery Methods and techniques for discovering taxonomies of behavioral process models

with the abstraction method of Ref 6), a taxonomy
of five workflow schemas was found, structured into
three abstraction levels: the root T, two nodes T0 and
T1, as children T, and two children of T0, denoted as
T0 0 and T0 1. These schemes (omitted here for lack
of space) differ neatly in complexity and readability.
In particular, the leaf schema T0 0 consists of about
90 nodes, whereas the other two contain less than
one half. A more compact process view was obtained
for the higher-level views: 37 nodes in the schema T0,
and 32 nodes in the root schema.

Interestingly, the effect of using abstraction
mechanisms was not merely syntactical. Indeed, many
of the activities that were abstracted together share
some semantical affinity. For example, some pairs
of activities (i.e., yard blocks in this case) that were
merged together via IS-A or Part-Of relationships are

reported below: (1) (004D,04D), subsequently reck-
oned as two different names for the same block, due
to a misspelling error; (2) (REF01,REF5), which are
two blocks equipped with refrigerating systems; (3)
(TR5,TRF5), (TR7,TRF7), which are both pairs of
codes for multitrailer vehicles, logically viewed as
(mobile) yard areas.

In conclusion, because of the large number
of activity labels, any classical workflow discovery
technique, in its own, would yield a rather unread-
able and imprecise process model. By contrast, the
process taxonomies computed with the approach
described so far were reckoned by experts as re-
ally helpful for an explorative analysis of log data,
thanks to both the recognition of distinct execu-
tion variants and the compactness of higher level
schemas.

REFERENCES

1. van der Aalst WMP, van Dongen BF, Herbst J,
Maruster L, Schimm G, Weijters AJMM. Workflow
mining: a survey of issues and approaches. Data
Knowledge Eng 2003, 47(2):237–267.

2. Casati F, Castellanos M, Dayal U, Shan MC. iBOM:
a platform for intelligent business operation manage-
ment. Proceedings of 21st International Conference on
Data Engineering (ICDE’05). IEEE Computer Society,
Tokio; 2005, 1084–1095.

3. Davis R. ARIS Design Platform: Advanced Pro-
cess Modelling and Administration. London: Springer;
2008, 426.

4. Malone TW, Crowston K, Lee J, Pentland B, Dellaro-
cas C, Wyner G, Quimby J, Osborn CS, Bernstein A,
Herman G et al. Tools for inventing organizations: to-
ward a handbook of organizational processes. Manage
Sci 1999, 45(3):425–443.

5. Greco G, Guzzo A, Pontieri L, Saccà D. Discover-
ing expressive process models by clustering log traces.
IEEE Trans Knowledge Data Eng 2006, 18(8):1010–
1027.

6. Greco G, Guzzo A, Pontieri L. Mining taxonomies of
process models. Data Knowledge Eng 2008, 67(1):74–
102.

7. Günther CW, Rozinat A, van der Aalst WPM. Activity
mining by global trace segmentation. Business Process
Management Workshops 2009; 2009, 129–139.

8. Jagadeesh Chandra Bose RP, van der Aalst WPM. Ab-
stractions in process mining: a taxonomy of patterns.
Proceedings of 7th International Conference on Busi-
ness Process Management (BPM’09). Springer-Verlag,
Ulm; 2009, 159–175.

9. Liu DR, Shen M. Workflow modeling for virtual
processes: an order-preserving process-view approach.
Inform Syst 2003, 28:505–532.

10. Polyvyanyy A, Smirnov V, Weske M. The triconnected
abstraction of process models. Proceedings of 7th In-
ternational Conference on Business Process Manage-
ment (BPM’09). Springer-Verlag, Ulm; 2009, 229–
244.

11. Bobrik R, Reichert M, Bauer T. View-based process
visualization. Proceedings of 5th International Con-
ference on Business Process Management (BPM’07).
Springer-Verlag, Brisbane; 2007, 88–95.

12. Smirnov S, Dijkman R, Mendling J, Weske M.
Meronymy-based aggregation of activities in busi-
ness process models. Proceedings of 29th Interna-
tional Conference on Conceptual Modeling (ER’10).
Springer, Vancouver; 2010, 1–14.

13. Günther CW, van der Aalst WPM. Fuzzy mining: adap-
tive process simplification based on multi-perspective
metrics. Proceedings of 5th International Conference
on Business Process Management (BPM’07). Springer-
Verlag, Brisbane; 2007, 328–343.

14. Zhou L. Ontology learning: state of the art and open
issues. Inform Technol Manage 2007, 8(3), 241–252.

15. Kashyap V. Design and creation of ontologies for envi-
ronmental information retrieval. Proceedings of 12th
Workshop on Knowledge Acquisition, Modeling and
Management (EKAW’00). Springer-Verlag, Juan-les-
Pins; 1999.

16. Williams AB, Tsatsoulis C. An instance-based ap-
proach for identifying candidate ontology relations
within a multi-agent system. Proceedings of ECAI

Volume 3, May/ June 2013 187c© 2013 John Wi ley & Sons , Inc .



Overview wires.wiley.com/widm

2000 Workshop on Ontology Learning (OL’2000).
IOS Press, Berlin; 2000.

17. Suryanto H, Compton P. Learning classification tax-
onomies from a classification knowledge based system.
Proceedings of ECAI 2000 Workshop on Ontology
Learning (OL’2000). IOS Press, Berlin; 2000.

18. Pernelle N, Rousset MC, Ventos V. Automatic con-
struction and refinement of a class hierarchy over
semistructured data. Proceedings of IJCAI 2001
Workshop on Ontology Learning (OL’2001). CEUR-
WS.org, Seattle; 2001.

19. Kavalec M, Svatek V. Information extraction and on-
tology learning guided by web directory. Proceedings
of the ECAI 2002 Workshop on Machine Learning
and Natural Language Processing for Ontology Engi-
neering (OLT’2002). IOS Press, Berlin; 2002.

20. Maedche A, Staab S. Ontology learning for the Seman-
tic Web. IEEE J Intell Syst 2001, 16(2):72–79.

21. Craven M, DiPasquo D, Freitag D, McCallum A,
Mitchell T, Nigam K, Slattery S. Learning to construct
knowledge bases from the World Wide Web. Artific
Intell 2000, 118:69–113.

22. Chuang SL, Chien LF. A practical web-based approach
to generating topic hierarchy for text segments. Pro-
ceedings of 13th ACM International Conference on
Information and Knowledge Management (CIKM’04).
ACM, Washington, D.C.; 2004, 127–136.

23. Kozareva Z, Hovy R. A semi-supervised method
to learn and construct taxonomies using the web.
Proceedings of International Conference on Empirical
Methods in Natural Language Processing
(EMNLP’10). ACL, MIT, MA; 2010, 1110–1118.

24. Li T, Zhu S. Hierarchical document classification using
automatically generated hierarchy. J Intell Inform Syst
2007, 29(2):211–230.

25. Navigli R, Velardi P, Faralli S. A graph-based algo-
rithm for inducing lexical taxonomies from scratch.
Proceedings of International Joint Conference on
Artificial Intelligence (IJCAI’11). IJCAI/AAAI,
Barcelona; 2011, 1872–1877.

26. Ricca F, Gallucci L, Schindlauer R, Dell’Armi T,
Grasso G, Leone N. OntoDLV: an ASP-based sys-
tem for enterprise ontologies. J Log Comput 2009,
19(4):643–670.

27. Stumptner M, Schrefl M. Behavior consistent inheri-
tance in UML. Proceedings 19th International Confer-
ence on Conceptual Modeling (ER’00). Springer, Salt
Lake City, UT; 2000, 527–542.

28. Basten T, van der Aalst WMP. Inheritance of behavior.
J Log Algebraic Program2001, 47(2):47–145.

29. Lee J, Wyner GM. Defining specialization for dataflow
diagrams. Inform Syst 2003, 28(6):651–671.

30. van Dongen BF, van der Aalst WMP. Multi-phase pro-
cess mining: aggregating instance graphs into EPCs
and Petri Nets. Proceedings of International Workshop
on Applications of Petri Nets to Coordination, Work-

flow and Business Process Management (PNCWB’05).
Florida International University, Miami, FL; 2005, 35–
58.

31. van der Aalst WMP, Weijters AJMM, Maruster L.
Workflow mining: discovering process models from
event logs. IEEE Trans Knowledge Data Eng 2004,
16(9):1128–1142.

32. Wen L, van der Aalst WMP, Wang J, Sun JG. Mining
process models with non-free-choice constructs. Data
Min Knowledge Discov 2007, 15, 145–180.

33. Battista GD, Tamassia R. On-line maintenance of tri-
connected components with SPQR-trees. Algorithmica
1996, 15(4):302–318.

34. Dijkman RM, Dumas M, Garcia-Bañuelos L, Käärik R.
Aligning business process models. Proceedings of 13th
International Enterprise Distributed Object Comput-
ing (EDOC’09). IEEE Computer Society, Auckland;
2009, 45–53.

35. van Dongen BF, Dijkman RM, Mendling J. Measuring
similarity between business process models. Proceed-
ings of 24th International Conference on Advanced In-
formation Systems Engineering (CAiSE’08). Springer,
Montpellier; 2008, 450–464.

36. Agrawal R, Gunopulos D, Leymann F. Mining process
models from workflow logs. Proceedings of 6th In-
ternational Conference on Extending Database Tech-
nology (EDBT’98). Springer, Valencia; 1998, 469–
483.

37. Chen CWK, Yun DYY. Discovering process models
from execution history by graph matching. Proceed-
ings 4th International Conference on Intelligent Data
Engineering and Automated Learning (IDEAL’03).
Springer, Hong Kong; 2003, 887–892.

38. Weijters AJMM, van der Aalst WMP. Rediscovering
workflow models from event-based data using Little
Thumb. Integr Comput Aided Eng 2003, 10(2):151–
162.

39. de Medeiros AKA, van Dongen BF, van der Aalst
WMP, Weijters AJMM. Process mining: extending the
α-algorithm to mine short loops. Technical Report WP
2004, 113.

40. Herbst J, Karagiannis D. Integrating machine learning
and workflow management to support acquisition and
adaptation of workflow models. J Intell Syst Account,
Finance Manage 2000, 9:67–92.

41. Herbst J, Karagiannis D. Workflow mining with
InWoLvE. Comput Ind 2003, 53(3):245–264.

42. Schimm G. Mining most specific workflow mod-
els from event-based data. Proceedings of Interna-
tional Conference on Business Process Management
(BPM’03). Eindhoven, The Netherlands: Springer;
2003, 25–40.

43. de Medeiros AKA, Weijters AJMM, van der Aalst
WMP. Genetic process mining: an experimental evalu-
ation. Data Min Knowledge Discov 2007, 14(2):245–
304.

188 Volume 3, May/ June 2013c© 2013 John Wi ley & Sons , Inc .



WIREs Data Mining and Knowledge Discovery Methods and techniques for discovering taxonomies of behavioral process models

44. Goedertier S, Martens D, Vanthienen J, Baesens B.
Robust process discovery with artificial negative
events. J Mach Learn Res 2009, 10:1305–1340.

45. Greco G, Guzzo A, Pontieri L. Process discovery via
precedence constraints. Proceedings of 20th European
Conference on Artificial Intelligence (ECAI’12). IOS
Press, Montpellier; 2012.

46. Ferreira DR, Zacarias M, Malheiros M, Ferreira P.
Approaching process mining with sequence clustering:
Experiments and findings. Proceedings of 5th Inter-
national Conference on Business Process Management
(BPM’07). Springer, Brisbane; 2007, 360–374.

47. Jagadeesh Chandra Bose RP, van der Aalst WPM. Con-
text aware trace clustering: towards improving pro-
cess mining results. Proceedings of SIAM International
Conference on Data Mining (SDM’09). SIAM, Sparks,
NV; 2009, 401–412.

48. Jagadeesh Chandra Bose RP, van der Aalst WPM.
Trace clustering based on conserved patterns
towards achieving better process models. Proceedings
of 5th International Workshop on Business Process
Intelligence (BPI’09). Springer, Ulm; 2009, 170–181.

49. Song M, Günther CW, van der Aalst WPM. Trace
clustering in process mining. Business Process Man-
agement Workshops (BPM’08). Springer, Milan; 2008,
109–120.

50. Ghionna L, Greco G, Guzzo A, Pontieri L. Out-
lier detection techniques for process mining applica-
tions. Proceedings of 17th International Symposium
on Foundations of Intelligent Systems (ISMIS’08).
Springer, Toronto; 2008, 150–159.

51. Rozinat A, van der Aalst WMP. Conformance check-
ing of processes based on monitoring real behaviour.
Inform Syst 2008, 33(1):64–95.

Volume 3, May/ June 2013 189c© 2013 John Wi ley & Sons , Inc .




