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Trees outside forest in Italian agroforestry landscapes: detection and mapping 
using sentinel-2 imagery
Maurizio Sarti , Marco Ciolfi , Marco Lauteri , Pierluigi Paris and Francesca Chiocchini

National Research Council, Research Institute on Terrestrial Ecosystems, Porano, Italy

ABSTRACT
This study proposes an automated method for distinguishing trees (T) from no-trees (NT) by 
means of optical data. We make use of an optical approach based on a statistical threshold to 
detect T areas on visible and near infrared bands. An object-based image classification allows 
to detect three kinds of tree out of forest (TOF) structures: forest patches (FP), isolated trees (IT), 
tree hedgerows (THR), distinguished from forest (F). Ground truth validation allows estimating 
the accuracy of classification.

Four optical bands and six spectral indices are compared detecting images’ T areas: B2, B3, 
B4 and B8 bands, Negative Luminance (NL), Normalized Difference Vegetation index (NDVI), 
Green NDVI (GNDVI), Blue NDVI (BNDVI), Panchromatic NDVI (PNDVI) and Enhanced Vegetation 
Index (EVI). NL shows a relatively better capability for TOF detection and classification, with 
overall accuracy (OA) exceeding 92% and p-value = 10−5. Experiments were conducted on 
optical data acquired by Sentinel-2 in 2016 over the Alfina highland, central Italy. The tree 
characteristics were extracted exploiting GNU Octave Image Package. Our results show that 
this new approach could be extended to the detection and mapping of TOF within large areas 
of agroforestry landscape.
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Introduction

Trees and forests are the two facets of the same resource 
in human-influenced landscapes; trees may occur in 
different land uses, such as forest and natural wooded 
lands, agricultural lands and urban lands and they may 
grow under three main patterns such as compact blocks, 
scattered in the landscape and in linear formation (De 
Foresta et al., 2013). Trees occurring on agricultural and 
grazed lands, along roads or waterbodies and in resi-
dential and urban settings are examples of “Trees on 
land not defined as forest and other wooded land” 
according to the FAO definition (FAO, 2001).Small 
woods, tree hedgerows, scattered and isolated trees, 
also known as Trees Outside Forest (TOF), are key 
features of rural, cultural but also urban landscapes 
(Bellefontaine et al., 2002). Although TOF do not 
cover large areas of rural landscapes, they contribute to 
the ecological connectivity and functioning of the land-
scape at different spatial scales, providing environmen-
tal and economic benefits (Bellefontaine et al., 2002; 
Zomer et al., 2016). TOF enrich the soil, promoting 
plant, animal diversity and structural complexity at 
a local scale (Manning et al., 2006); they contribute to 
the protection of soils against wind and water runoff 
(Merot et al., 1999); they also increase animals’ habitat 
and genetic connectivity of the species at the landscape 
scale, playing a key role in the maintenance of biodiver-
sity (Baudry et al., 2000; Burel et al., 1998; Saunders 

et al., 1991). TOF, besides contributing significantly to 
national biomass and carbon stocks (Schnell et al., 
2015a), provide a variety of products and essential envir-
onmental services for people in many regions of the 
world, some of which are independent of land use 
while others are land-use specific (De Foresta et al., 
2013; Shibu, 2009). For example, in agroforestry land-
scapes where TOF coexist with agricultural land or 
pastures, tree hedgerows along fields’ borders can be 
managed as living fences and also used as firewood, 
improving farmstead energy efficiency as well as carbon 
sequestration. Fruit trees, other than raising the farmers’ 
income, provide shade for livestock (De Foresta et al., 
2013). Moreover, for some communities, the aesthetical 
and cultural values of TOF might be more important 
while, for others, the provision of food, firewood, fodder 
and income might prevail (Schnell et al., 2015a).

The interest in TOF has been growing in recent 
decades in many countries (Malkoç et al., 2021; 
Mosquera-Losada et al., 2018; Rigueiro-Rodríguez 
et al., 2009). In Europe, for example, the European 
Commission promotes TOF within the agro- 
environmental measures of the Common Agriculture 
Policy (CAP) (Santiago-Freijane et al., 2018). 
Notwithstanding the debated effectiveness of these 
measures, they should encourage sustainable land 
use practices along with the preservation of the envir-
onment and the countryside.
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The importance of TOF is widely recognized and 
several studies have been published over the last 
years, as detailed in the following. However, data on 
TOF are still scarce and the available information is 
fragmented at regional and national level. The mon-
itoring and assessment of TOF vary across different 
countries as reviewed by Schnell et al. (2015b). 
According to these authors, the combination of field 
surveys and remote sensing is a suitable approach for 
improving TOF estimates. Beckschäfer et al. (2017) 
give an overview of inventory approaches suitable for 
the assessment of TOF, specifically on agricultural 
lands. Many studies used remotely sensed data in 
order to make a global assessment of TOF. Since 
recognition of TOF over a wide spatial extent is time- 
consuming if based on visual interpretation only, 
several studies implemented automatic processes for 
detecting TOF. Usually, a first phase of study consists 
in mapping and separating forest vegetation from 
non-forest vegetation; in a second phase, different 
kinds of TOF are classified according to their geome-
trical properties. Meneguzzo et al. (2013) compared 
pixel- and object-based classification approaches in 
mapping trees outside forest using high-resolution 
aerial imagery. An object-oriented classification of 
very high-resolution airborne imagery was proposed 
by Tansey et al. (2009) for the extraction of hedge-
rows in agricultural areas. Recently, Bolyn et al. 
(2019) proposed a sophisticated classification 
method of TOF in order to support the operational 
management of TOF in rural landscape. Particularly, 
they used open-source software tools, orthophoto 
and LIDAR-based canopy height model. Other 
authors used high-resolution satellite imagery, as 
Singh and Chand (2012). They proposed 
a combined approach of remote sensing and GIS 
based spatial technique, integrated with field data 
for mapping TOF and estimating their biomass. 
Vannier and Hubert-Moy (2014) evaluated and com-
pared various optical remote sensing data, including 
high and very high spatial resolution, active and 
passive sensors and airborne and satellite data. They 
further adopted an object-based image analysis for 
detecting and mapping linear elements, such as 
hedgerows in complex landscapes. A very recent 
study by Malkoç et al. (2021) proposed an automated 
approach for mapping TOF at the countrywide scale 
for Switzerland, based on a high-resolution 
Vegetation Height Model. However, the proposed 
method can be repeated for other countries, provided 
a VHM is available. In the last few years, the launch 
of the Sentinel-2 satellite has made available data 
with high spatial and temporal resolution, particu-
larly suitable for the detection of vegetation. Sentinel- 
2 products are also openly accessible and freely avail-
able for all the continental land surfaces of the world, 
making it easy to integrate such imagery in forest 

mapping. Recently, Ottosen et al. (2020) used 
Sentinel-2 images for producing tree cover maps 
across Europe, achieving results with high thematic 
accuracy. Brandt and Stolle (2021) developed a deep 
learning model to classify TOF across large and het-
erogeneous landscapes of the globe, basing on the use 
of fused multi-temporal imagery from Sentinel-1 and 
Sentinel-2.

Traditional tree-based agriculture systems are 
widespread in Italy, as well as in other 
Mediterranean countries, involving different multi-
purpose trees, such as chestnut (Castanea sativa), 
oaks (Quercus spp.), and olive trees (Olea europaea), 
(Eichhorn et al., 2006; Paris et al., 2019; Rigueiro- 
Rodríguez et al., 2009). However, a quantitative esti-
mation of these systems, both at regional and national 
level, is not actually known.

In this study, we propose an automated method to 
distinguish between tree (T) and not tree (NT) land 
cover and to map TOF in an Italian agroforestry land-
scape, using the freely available Sentinel-2 
Multispectral Instrument (MSI) data. We adopted an 
optical approach consisting in: 1) an automatic iden-
tification of tree covered surface, by applying 
a statistical threshold on visible and near infrared 
bands; 2) an object-based image analysis to classify 
TOF elements in three categories, i.e. isolated trees 
(IT), tree hedgerows (THR) and little groves or forest 
patches (FP), these elements are separated from forest 
ones (F); 3) a ground truth validation process.

The procedure has been developed and tested in 
two Areas of Interest (AoI), both involving Sentinel-2 
Multispectral Instrument (MSI) data, considering: 1) 
four MSI bands (B2, B3, B4 and B8) or 2) a selection of 
six spectral indices. These latter are Negative 
Luminance (NL), Normalized Difference Vegetation 
Index (NDVI), Green and Blue Normalized Difference 
Vegetation Indices (GNDVI and BNDVI), 
Panchromatic Normalized Difference Vegetation 
Index (PNDVI) and Enhanced Vegetation Index 
(EVI). Based on the best performing index for the 
two AoI, we finally derived a classification of the full 
Sentinel-2 subset area.

Materials and methods

Study area

The study area is located in the municipality of 
Castel Giorgio in Umbria Region (central Italy), 
on the Alfina highland , a component of the 
Vulsinian volcanic area standing northeast of 
Bolsena Lake (figure 1). It is a rural area with 
high incidence of agroforestry surface. The average 
elevation is around 500 m, the annual mean tem-
perature is 13°C and the annual mean precipitation 
is 706 mm.
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A mixed matrix of both agriculture and forestry 
land uses characterises the landscape, resulting in 
a mosaic of fragmented patches of different sizes for 
both land uses. In this way, main landscape elements 
include crops (mostly wheat, barley, sunflower, rape-
seed, pulses, clover and alfalfa), tree hedgerows, shel-
terbelts and forest areas (with prevalence of broad- 
leaved trees, mainly Quercus spp). Aside the extended 
forest patches, trees grow at the edges of the fields, 
within hedgerows, or on scarps and drainage ditches 
between the fields, as isolated trees or little groves. In 
such a diversified context and following the criterion 
of an abundant TOF occurrence, we selected two AoI 
for testing the automated procedure as shown in fig-
ure 1b.

Satellite imagery collection and pre-processing

In the present study, we used Sentinel-2 images (level- 
1C product; tile number T32TQN), downloaded from 
the Copernicus Open Access Hub (ESA, 2018a) 
(https://scihub.copernicus.eu/). We selected a subset 
of imagery for the year 2016, basing on the vegetative 
season, as reported in Table 1.

The images have been chosen taking care of absent 
or minimal cloud/haze (<10%). Furthermore, their 
chronology catches different plant phenological stages 
(e.g., recently renewed crown foliage, mature and 
senescent foliage), and ecophysiology responses to 
the variable spring, summer and fall conditions (e.g., 
photosynthesis, transpiration). Finally, the same 
images contain TOF elements with different aggre-
gated crowns patterns.

Three level-1C Sentinel-2 images, covering the 
study area, were pre-processed using the Sentinel 
Application Platform (SNAP) version 5.0.0 (ESA, 
2018b). The ESA Sen2Cor processor, version 2.4.0, 

was used to perform atmospheric and terrain cor-
rection of Top-Of-Atmosphere (TOA) Level-1C 
input data, creating Level-2A Bottom-Of- 
Atmosphere reflectance (BOA) images (ESA, 
2018c). Optical images were also terrain-corrected 
using a 30 m resolution Shuttle Radar Topography 
Mission (SRTM) digital elevation model (Farr et al., 
2007) and re-projected to UTM WGS84, Zone 32. 
A spatial sub-setting was performed to constrain 
the analysis to a geographic area spanning 
1077 × 1391 pixels. The B2, B3, B4, and B8 
bands, in each of the three scenes, were imported 
to GNU Octave, version 4.0.0 (Eaton et al., 2015) 
for the processing step.

Ground truth data

Google Earth very high-resolution images were used 
to visually identify and classify TOF in the two AoI (IT 
as point features, THR as line features and FP as 
polygons) and to produce a ground truth map. 
Moreover, single trees and aligned trees have been 
georeferenced on site using a Garmin Montana GPS.

Processing method overview

Several previous studies (Colwell, 1974; Goward et al., 
1994; Huemmrich & Goward, 1997) showed that the 
forest is generally darker than most other vegetated 
surfaces in the visible and shortwave infrared bands 
and is among the most easily identifiable feature in 
remote sensing imagery (Dodge & Bryant, 1976). The 
spectral response of deciduous trees is low in the 
visible and shortwave infrared bands and it is high in 
near infrared band, as it is the case in our agroforestry 
landscape, without coniferous TOF.

Figure 1. (a) Location of Castel Giorgio municipality, Alfina highland , central Italy; the yellow square corresponds to the Sentinel-2 
subset; (b) detail of the two areas of interest (white polygons) and the Sentinel-2 subset (yellow). Images superimposed on 
GoogleEarth™ satellite base.
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We used an optical approach based on a statistical 
threshold to detect T pixels on visible and near infra-
red bands. An object-based image analysis was then 
applied to distinguish the three kinds of TOF ele-
ments. In this way, isolated trees (IT), tree hedgerows 
(THR) and forest patches or groves (FP), were 
detected and classified using a decision process.

In detail, we consider four MSI bands: B2 (blue, 
490 nm), B3 (green, 560 nm), B4 (red, 665 nm) and B8 
(near infrared, 842 nm) and we evaluated a selection of 
spectral indices and bands combination: NDVI, 
GNDVI, BNDVI, PNDVI, EVI, and NL, as reported 
in Table 2. We used the visible bands, reversing their 
sign (–B2, –B3 and –B4) instead of their original 
values for homogeneity with the vegetation indices 
and the near infrared (B8) histograms, so that the 
tree pixels fall in the rightmost histogram peak 
(Table 2). Afterwards, we performed an image fusion 
of the three images over time, through minimization 
of each spectral index and band combination. This 
procedure highlights trees from crops and other time- 
varying coverages in the resulting fused image. Basing 
on such assumption, we used the time-minimized 
images to detect T areas, obtaining trees pixels (iso-
lated, grouped or belonging to a forest) in the right-
most peak of their image histogram. Finally, we 
compared the respective resulting tree maps with 
ground truth. A flow chart of the classification work-
flow of this study is shown in Figure 2.

Tree pixels identification

The identification of T pixels was performed on local 
image windows, containing the two AoI, by identify-
ing the forest peak values and then thresholding the 
time-minimized images. We assumed that the T peak 
coincides with the rightmost peak in the distribution 
of pixels D(x) in the image histogram.

According to Scott (1979) the optimal histogram 
bin width (hn) is assumed as: 

hn ¼ 3:49sn� 1=3 

where s = 1.4826 mad(x) is the estimation of standard 
deviation derived from the mean absolute deviation 
without outliers (mad) of the distribution and n is the 
sample size.

The automatic identification of T pixels is achieved 
according to the following rules:

x is T if D(x) ≥ t
x is NT if D(x) < t

where t is the threshold value identified by the 
forest peak in the image histogram.

Assuming the T distribution to be Gaussian ensures 
that the mean (μ), the median and the mode coincide, 
and that the width can be taken as the standard devia-
tion σ. The distribution parameters are estimated from 
the histogram, in particular, μ is taken as the mode of 
the T pixels’ peak (the rightmost one) and σ is esti-
mated from the upper-half distribution of T (the 
shaded area in figure 3): 

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

X

xi > μ
xi � μð Þ

2
s

where N is the number of pixels greater than µ. As the 
threshold value, we take: 

t ¼ m � zσ 

where z is the standard normal distribution z-value 
(Table 3).

Figure 3 shows an example of the index distribution 
for two synthetic populations where the overlap of two 
tiles increases the relative frequency in real distribu-
tion (e.g., NDVI for T and NT with index µ equal to 
0.7 and 0.4, and σ equal to 0.5 and 0.1, respectively).

Object-based image analysis and classification

Following an object-based analysis in order to achieve 
a real-world interpretation of the images, pixels are 
grouped into segments, which form the minimum 
classification unit. The segments are classified on the 
basis of both T maps and hierarchical approach, by 
using the spectral, textural and spatial attributes of the 
single segments.

The objects in a given digital pattern are segments 
of the T maps. In our classification we assumed 
20 × 20 m (i.e. 2 × 2 pixels) as the largest area covered 
by an isolated tree.

The T maps (binary images [0,1]) were processed in 
GNU Octave (Eaton et al., 2015). The bwboundaries 
and regionprops functions of the GNU Octave Image 
Package allowed us to identify all the external bound-
aries of the objects in the T maps. Once the T object 
structures were singled out, we evaluated their geome-
trical properties such as the area, perimeter, eccentri-
city, rectangularity, etc. The objects were classified 
according to four classes in the decision tree, IT, 
THR, FP and F via the following rules:

Table 1. List of Sentinel-2 images used in this study.
N Identifier data Acquisition date

1 S2A_MSIL1C_20160628T101032_N0204_R022_T32TQN_20160628T101826 28/06/2016
2 S2A_MSIL1C_20160718T101032_N0204_R022_T32TQN_20160718T101028 18/07/2016
3 S2A_MSIL1C_20160926T101022_N0204_R022_T32TQN_20160926T101754 26/09/2016
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Figure 2. Flow chart of the classification workflow.

Figure 3. (a) Distribution of two synthetic populations (red and black curves) with index mean 0.4 (left) and 0.7 (right), standard 
deviation 0.1 (left) and 0.05 (right); (b) Estimate of the μ and σ parameters of the last peak of the histogram. μ is the mode of last 
peak and σ is taken as the half-width of the last histogram peak. The threshold t corresponds to a p-value 0.05 in the left peak tail.
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● IT: if max (N,M) <3 (small, nearly circular, 
structures);

● THR: if max (N,M) >2 and not all pixels of every 
3 × 3 sub-structure within the object are 1 (elon-
gated structures, without a limiting length);

● FP: if all the pixels of 3 × 3 sub-structures within 
the object are 1 and total pixels are < 50 (rela-
tively large uniform patches, still with a small 
extent);

● F: if all pixels of 3 × 3 sub-structures within the 
object are 1 and total pixels identified are ≥50 
(the larger uniform patches);

where M and N are the number of pixel equal to 1 on 
the principal and the perpendicular object axis (or 
sub-structure within the object).

Figure 4 shows an example of objects classification 
in T and NT, according with four types of tree 
structures.

Ground truth identification of TOF and 
classification accuracy assessment

Recognition of TOF was also performed, in QGIS 
environment (QGIS, 2018), by visual photo interpre-
tation of high-resolution imagery from Google Earth, 
for both AoI 1 and 2. Single trees (IT) and aligned 
trees, such as THR, were georeferenced on site with 
a Garmin Montana GPS device as additional ground 
truth reference data. IT, THR FP and F were digitized 
and represented respectively as point, line and 

polygon features in QGIS. Then, point and line fea-
tures were buffered (with a buffer distance of 10 m, 
according with images spatial resolution) to obtained 
polygon representations of the trees’ crowns coverage 
for IT and THR. Afterwards TOF vector features were 
converted to raster data for the validation of automa-
tically detected TOF maps.

We used confusion matrix (or error matrix) 
method to assess the accuracy of the image classifica-
tion results. The error matrix compares, on a class-by- 
class basis, the relationship between known reference 
data (ground truth) and the corresponding results of 
the classification procedure. We use the results of TOF 
identification based on visual interpretation of Google 
Earth images and GPS georeferencing as reference 
data for the computation of confusion matrix.

According to Congalton (1991), we evaluated the 
Overall Accuracy (OA) as accuracy metric. The OA 
is computed by dividing the total number of cor-
rectly classified pixels (i.e., the sum of the elements 
along the principal diagonal) by the total number 
of reference pixels. We also calculated the Producer 
Accuracy (PA), representing how accurately the 
reference pixels of the ground cover type are clas-
sified, and the User Accuracy (UA), representing 
the probability that a pixel classified into a given 
category actually represents that category on the 
ground. These metrics were calculated for all the 
resulting T maps relative to the two AoI, for each 
of the optical bands and the spectral indices, seek-
ing for the best match.

Figure 4. An example of objects classification in tree (T) and not tree (NT) map [1,0] according with four types of tree structures: 
isolated tree (IT), tree hedgerow (THR), forest patches (FP) and forest (F).
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Basing on the best performer index, we finally clas-
sified T pixels over the full Sentinel-2 subset area, 
identifying objects as IT, THR, FP and F.

Results and discussion

Tree pixels identification

Natural colour RGB composition of Sentinel-2 images 
for the two AoI and for three dates of acquisition (see 
Table 1) are shown in Figure 5.

Some parts of the observed scenes are time- 
invariant while others change over time. The time- 
invariant units of the images correspond to potential 
T pixels, while the time-varying units are all consid-
ered as NT (e.g., crops, meadows).

Figure 6 and 7 show for AoI 1 and AoI 2, respec-
tively, the maximum value for natural colour imagery 
(RGB composition) (a), the minimum value of NB (b), 
NG (c), NR (d), NIR bands (e), and NL (f). Figures 6 
and 7 highlight a clearer separation of T (orange-red 
colour) from NT (blue-cyan colour).

For the identification of T pixels we evaluated five 
thresholds to separate T from NT pixels, generating 
five T maps for each index.

The confusion matrix was calculated using 
ground truth data for estimating the image classi-
fication accuracy. The quantitative results for the 
identification of T pixels with our proposed method 
are summarized in Table 4, concerning either AoI 1 
and AoI 2. Table 4 shows the OA (%) evaluated for 
five significance p-values from 10−2 to 10−6, for 

each band and spectral index; an asterisk (*) 
marks the two best comparison results for each 
given p-value for each AoI.

The best performance is given by the NL with nine 
total asterisks for the OA (Table 4). Notice that NG 
gives the best performance by yielding five asterisks 
both for the OA for the AoI 1, but none for the AoI 2. 
The NIR shows the worst detection scores. In fact, the 
T pixels are completely overlapped with the NT pixels 
in histogram of NIR (data not shown). All tested 
indices based on NIR (BNDVI, GNDVI, PNDVI and 
EVI) also showed a weak capability in separating 
T from NT pixels. In both the AoI, the NT pixels 
mainly correspond to agricultural vegetation, with 
herbaceous land cover during the reference periods. 
This evidence would explain the low discriminating 
power between T/NT cover of the vegetation indices 
in rural areas. The balanced linear combination of NB, 
NG and NR makes NL the best index for the T/NT 
discrimination. For all the given p-values, the perfor-
mances of NL are similar for the OA for both AoI 1 
and 2.

Figure 8a shows the index distribution for NL with 
p-value = 10−5 and the identification of T populations 
for both AoI 1 (b) and AoI 2 (c).

Sentinel-2 images allowed mapping tree cover with 
high accuracy as confirmed in a recent study by 
Ottosen et al. (2020), which produced tree maps 
from Sentinel-2, with high thematic accuracy, for sev-
eral European areas, showing that the imagery resolu-
tion allows the identification of TOF.

Object-based image classification of TOF and 
accuracy assessment

The object-based classified TOF map and the ground 
truth TOF data for AoI 1 and 2 are used as the input 
for the computation of the confusion matrices (Tables 
5 and Tables 6, figure 9).

Table 5 and Table 6 show the confusion matrices, 
respectively for AoI 1 and 2, and the accuracy metrics 
for the TOF classification based on NL, with 

Table 2. Sentinel-2 MSI bands, band combination and indices considered in the study: – B2 (Negative Blue), – B3 (Negative 
Green), – B4 (Negative Red) and B8 (Near Infrared), NL (Negative Luminance), Normalized Difference Vegetation Index (NDVI), 
Green and Blue Normalized Difference Vegetation Indices (GNDVI and BNDVI), Panchromatic Normalized Difference Vegetation 
Index (PNDVI) and Enhanced Vegetation Index (EVI).

Index Name Sentinel-2 MSI band combination Reference

NB Negative Blue -B2
NG Negative Green -B3
NR Negative Red -B4
NIR Near Infrared B8
NL Negative Luminance � 0:299B4þ 0:587B3þ 0:114B2ð Þ J Yang et al. (2010)
NDVI Normalized Vegetation Index B8 � B4=B8þ B4 Rouse et al. (1973)
GNDVI Green Normalized Vegetation Index B8 � B3=B8þ B3 Gitelson (1996)
BNDVI Blue Normalized Vegetation Index B8 � B2=B8þ B2 C Yang et al. (2004)
PNDVI Panchromatic NDVI B8 � B4þ B3þ B2ð Þ=B8þ B4þ B3þ B2ð Þ Wang et al. (2007)
EVI Enhanced Vegetation Index GB8 � B4=B8þ C1B4 � C2B2þ L with G = 2.5, C1 = 6, C2 = 7.5, and L = 1 Huete et al. (1999)

Table 3. Significance level p-value and z for lower tailed test.
p z

10−2 2.326
10−3 3.090
10−4 3.719
10−5 4.264
10−6 4.753
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p-value = 10−5. The results are similar for both AoI: 
OA is 92.39% for AoI 1 and is 92.47% for AoI 2. The 
best classified class is NT with a Producer Accuracy 
(PA) at least 96.61% and a User Accuracy (UA) of 
95.23% while the worst classification score is for IT, 
with a smallest PA 11.29% and UA 3.97%. In fact, the 
classification procedure overestimated the IT class for 
both AoI, especially with respect to NT and THR 
classes of the reference map (see Tables 5 and Tables 
6). This result may derive from the different spatial 
resolution between the Sentinel-2 images used for the 
classification and the Google Earth images used to 
produce the reference map. Although the Sentinel-2 
images have high spatial resolution, the minimum 
pixel unit of 10 × 10 m may contain spectral informa-
tion of more than one land cover/use type, which can 
lead to misclassification.

The numerical results of confusion matrix sug-
gest that NT are always well identified followed by 
the F class. The IT, THR and FP are no so well 
identified from the numerical point of view while 
a visual comparison between automatically classi-
fied TOF maps and ground truth TOF maps of 
AoI 1 and 2 reveals similarity. Indeed, in figure 
9 we show the ground truth classification for AoI 
1 and 2, based on visual classification by photo 
interpretation, while in figure 9 the corresponding 
NL automated classification with p = 10−5. 
Although the patterns of NL classification well 
describe the observed scenes, there are several 
mismatches between the numerical and the visual 
classification results. Such inconsistencies could be 
attributed to the following reasons: 1) differences 
in the resolution of satellite data used for the 

Table 4. The Overall Accuracy (%) for AoI 1 and 2, with significance level p-values from 10−2 to 10−6, for bands, bands 
combinations and indices are compared to detect T areas: Negative Blue (NB), Negative Green (NG), Negative Red (NG), Near 
Infrared (NIR), Negative Luminance (NL), Normalized Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation 
Index (GNDVI), Blue Normalized Difference Vegetation Index (BNDVI), Panchromatic NDVI (PNDVI) and Enhancement Vegetation 
Index (EVI). The last column shows the number of best performing variables.

Area 1 Area 2 Best count

p 10−2 10−3 10−4 10−5 10−6 10−2 10−3 10−4 10−5 10−6 N

NB 92.90* 93.33 93.40 93.31 93.05 93.46* 93.67* 93.69* 93.63 93.49 1 + 3
NG 93.08* 93.69* 93.85* 93.83* 93.55* 93.18 93.37 93.22 92.85 92.20 5 + 0
NR 92.33 92.56 92.61 92.50 92.25 93.36 93.55 93.68 93.76* 93.76* 0 + 2
NIR 61.32 45.26 33.06 33.06 33.06 69.42 43.13 32.14 32.14 32.14 0 + 0
NL 92.78 93.34* 93.69* 93.64* 93.60* 93.42* 93.76* 93.73* 93.65* 93.50* 4 + 5
NDVI 91.69 91.71 91.54 91.19 91.19 92.71 93.02 93.27 93.37 93.37 0 + 0
GNDVI 91.98 92.22 92.60 92.64 92.55 92.11 92.38 92.84 93.02 93.16 0 + 0
BNDVI 91.29 91.27 90.97 90.62 90.09 92.35 92.65 92.87 93.01 93.13 0 + 0
PNDVI 91.66 92.09 92.14 91.96 91.60 92.14 92.64 92.85 93.18 93.30 0 + 0
EVI 74.24 70.39 67.96 64.91 60.04 87.67 81.35 71.76 61.33 50.97 0 + 0

Table 5. Confusion matrix and accuracy measures for the Negative Luminance (NL) based classification of T, NT, TOF, with 
significance level p= 10−5 for the AoI 1.

Reference Data

NT IT THR FP F Total UA (%)

Not Tree (NT) 50,150 29 953 199 1304 52,635 95.27
Isolated Tree (IT) 80 8 44 0 4 136 05.88
Tree Hedgerow (THR) 816 4 513 154 374 1861 27.56
Forest Patches (FP) 103 0 36 183 40 362 50.55
Forest (F) 559 0 137 0 7938 8634 91.93
Total 51,708 41 1683 536 9960 63,628
PA (%) 96.98 19.51 30.48 34.14 82.17
OA (%) 92.39

Table 6. Confusion matrix and accuracy measures for the Negative Luminance (NL) based classification of T, NT, TOF, with 
significance level p= 10−5 for the AoI 2.

Reference Data

NT IT THR FP F Total UA (%)

Not Tree (NT) 65,651 42 1312 80 1143 68,228 96.22
Isolated Tree (IT) 105 7 61 3 0 176 3.97
Tree Hedgerow (THR) 1012 10 599 37 371 2029 29.52
Forest Patches (FP) 141 0 55 23 146 365 6.30
Forest (F) 1043 3 144 76 4789 6055 79.09
Total 67,952 62 2171 219 6449 76,853
PA (%) 96.61 11.29 27.59 10.50 74.25
OA (%) 92.47
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classification of reference map (very high- 
resolution Google Earth images) and automated 
classification map (high-resolution Sentinel-2 
images); 2) spatial shift between the ground 
truth map and the reconstructed map. This is the 
case with a misaligned crown with respect to the 
stem in non-nadiral aerial imagery; 3) the 
choice of threshold t; for instance, in the discri-
mination of a THR, some T could be below 
the threshold t. This could lead to several inter-
ruptions along the reconstructed THR, several 
sub-THR interspersed with IT; 4) possible misclas-
sifications by the human interpreter in the refer-
ence map.

According to previous studies by Liknes et al. 
(2010) and Meneguzzo et al. (2013) an object- 
based image analysis approach is much better at 
mimicking how a human interpreter groups trees 
into patches, and allows for better patch-based 
metrics for describing spatial pattern, in compar-
ison with a pixel-based approach. Due to the vary-
ing nature of the agroforestry landscape, we chose 
a topological approach to the TOF classification, 
limiting classes only to points (IT), lines (THR) 
and surfaces (FP), without introducing any pattern 
in the TOF spatial arrangement. However, the 
knowledge of a local pattern could be exploited 

to improve the spatial accuracy of the classified 
TOF (Khan et al., 2018). The proposed method, 
based only on free optical data, allowed us to 
perform a TOF classification accurate enough to 
distinguish IT, THR and FP, although coarser than 
the classification achieved by Bolyn et al. (2019), 
who exploited orthophoto and LIDAR data. 
Moreover, the open accessibility of Copernicus 
Sentinel products for all the continental land sur-
faces and their short revisit time makes the pro-
posed method easy to replicate over large rural 
areas. Locally integrating other information 
sources, e.g., a detailed vegetation height map as 
in Malkoç et al. (2021) could improve the accu-
racy of trees identification and TOF classification. 
Image pre-processing should also include a slope 
adjustment in case of rugged terrain, as our study 
area is relatively flat. Suitably detailed Digital 
Terrain Models are generally available worldwide. 
Further improvement in TOF detection could be 
achieved integrating the Sentinel-1 SAR imagery 
(Brandt & Stolle, 2021).

Finally, Figure 10 shows an object-based classifica-
tion T map for the full Sentinel-2 subset area by NL, 
with p-value = 10−5. Numbers of pixel and objects 
identified by Negative Luminance (NL) based classifi-
cation of T were reported in Table 7.

Figure 5. Natural colour Sentinel-2 images for the two areas of interest and for three dates of acquisition. AoI 1: (a) 28 June 2016, 
(b) 18 July 2016 and (c) 26 September 2016; AoI 2: (d) 28 June 2016, (e) 18 July 2016 and (f) 26 September 2016.
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The availability of cloud computing platforms, 
like Google™ EarthEngine™ (Gorelick et al., 2017), 
could speed-up the pre-processing phase (images 
retrieval, fusion and band extraction), leaving the 
tree pixels identification and TOF classification for 
off-grid, local computing.

Conclusions

A procedure for the detection of T/NT land cover and 
for the automated classification of TOF in rural land-
scapes, based on optical data, was presented in this 
study. An optical approach based on a statistical 
threshold appropriately tailored for visible and near 
infrared bands was used over Sentinel-2 images in 
order to automatically identify tree covered surfaces 
in two areas of interest. The relevance of the single 
bands B2, B3, B4, B8 and the spectral indices NL, 

NDVI, GNDVI, BNDVI, PNDVI, EVI was evaluated 
in the procedure for T identification. NL resulted the 
best performing spectral index in identifying the tree 
covered pixels, with the best scores for OA (higher 
than 93.64%) respect to the other indices. The OA of 
the automated classification of TOF was about 92% for 
both area of interest, while the PA and the UA for 
individual classes resulted low, due to the spatial 

Figure 6. (a) Maximum value for natural colour RGB imagery. Minimum value for: (b) Negative Blue (NB), (c) Negative Green (NG), 
(d) Negative Red (NR), (e) Near Infrared (NIR), (f) Negative Luminance (NL) for AoI 1.

Table 7. Number of pixels and objects identified by Negative 
Luminance (NL) based classification of T, with p = 10−5 for the 
full Sentinel-2 subset area.

N pixel N sub-object

Not Tree (NT) 986,493
Isolated Tree (IT) 2996 1861

Tree Hedgerow (THR) 39,063 1933
Forest Patches (FP) 6572 773

Forest (F) 361,762 195
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resolution of Sentinel-2 images. The use of freely 
available high-resolution Sentinel-2 data set and the 
use of publicly available software tools allowed us to 
produce a fairly accurate automated classification of 
TOF in an Italian agroforestry landscape. The 

proposed approach is also easily repeatable over large 
rural areas, thanks to the worldwide coverage of 
Sentinel-2 images. Such method allowed estimating 
the TOF covered surface of Italian agroforestry sys-
tems, of which little information is available both at 

Figure 7. (a) Maximum value for natural colour RGB imagery. Minimum value for: (b) Negative Blue (NB), (c) Negative Green (NG), 
(d) Negative Red (NR), (e) Near Infrared (NIR), (f) Negative Luminance (NL) for AoI 2.

Figure 8. Histogram of Negative Luminance (NL). The tree (T) distribution is identify by the black curve. b) Tree map for area of 
interest 1 with p-value = 10−5. c) Tree map for area of interest 2 with p = 10−\5.
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regional and National scale. Our results also represent 

Figure 9. (a) Ground truth classification of area of interest 1. b) Negative Luminance (NL) based classification of area of interest 1 
with p-value = 10−5. c) Ground truth classification of area of interest 2. d) NL based classification of area of interest 2 with p= 10−5. 
The cyan colour stands for No Trees (NT), the red is for Isolated Trees (IT), green for Tree Hedgerows (THR), blue for Forest Patches 
(FP) and purple for Forest (F).

Figure 10. Object-based classification of the full Sentinel-2 subset area: IT = isolated trees, THR = tree hedgerows, FP = forest 
patches, F = forest. The areas of interest are outlined in white.
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new insight in the development of tree mapping algo-
rithms as well as accuracy assessment of such algo-
rithms based on the Sentinel-2 products.

Given likely significant contribution of TOF to 
national biomass and carbon stocks and provision 
for essential ecosystem services, filling the lack of 
information on TOF extension can be crucial to 
prepare effective agro-environmental measures 
and rural development policies.
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