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The excitation mechanism for low-n Edge Harmonic Oscillations in quiescent H-mode regimes is identified
analytically. We show that the combined effect of diamagnetic and poloidal MHD flows, with the constraint
of a Doppler-like effect of the ion flow, leads to the stabilisation of short wavelength modes, allowing low-
n perturbation to grow. The analysis, performed in tokamak toroidal geometry, includes the effects of large
edge pressure gradients, associated with the local flattening of the safety factor and diamagnetic flows, sheared
parallel and E X B rotation and a vacuum region between plasma and the ideal metallic wall. The separatrix

also is modelled analytically.

Introduction.— Tokamak high-confinement (H-mode)
regimes are attractive operating scenarios for fusion reactors
because of their long energy confinement time [1]. The large
edge pressure gradients, which characterise H-mode plas-
mas, favour the formation of short wavelength magnetohydro-
dynamic (MHD) perturbations called edge localised modes
(ELMs) [2]. Rapid energy and particle expulsions are usually
associated with ELMs. Though this can be beneficial for im-
purity control, ELMs deposit unacceptable peak heat loads on
the divertor target causing a severe deterioration of the plasma
facing components. This motivates a lively line of research
focussed on the development of sustained high confinement
regimes with intrinsically no ELMs.

One of the most promising high performance naturally
ELM-free operating regimes is the so called quiescent high-
confinement (QH) mode [3-5]. QH scenarios are usually
observed at low edge collisionality (v, < 0.3) over a fairly
broad range in gos (3 < qos < 6) [6, 7]. At low v;, large
edge pressure gradients are associated with a significant boot-
strap contribution to the current. In QH plasmas ELMs are
suppressed and replaced by low-n steady mild MHD per-
turbations called edge harmonic oscillations (EHOs). These
have been observed in DIII-D [4, 6-8], ASDEX-U [5, 9],
JET [10], and JT-60U [11]. The edge particle transport is
enhanced by EHOs, thus allowing density control and po-
tentially ash removal without the impulsive heat load prob-
lem [6, 12]. EHOs are dominantly low-n perturbations (usu-
ally n ~ 1,2) accompanied by weaker higher-n modes up to
n ~ 10 [5, 7, 8]. A single EHO harmonic n rotates with fre-
quency n€,cq (Qpeq 1s the plasma toroidal rotation frequency
at the pedestal top) [3, 10, 13].

The excitation mechanism of such instabilities is still un-
clear. Previous theoretical interpretations suggested that
short wavelength modes exhibiting infernal features [13-16],
though dominant in the linear phase, were suppressed non-
linearly and superseded by steady low-n modes [17, 18] with
no significant effects of the parallel flow [17, 19]. Recent ex-
perimental findings point to the EZ X B shearing rate as the
key ingredient for the development of the characteristics of

these oscillations [19]. Indeed numerical investigations of
QH-mode DIII-D plasma discharges with sheared Ex B flows
showed that low-n modes are linearly dominant and are even-
tually sustained in the nonlinear stage at moderately low am-
plitude [7, 20-24].

In this Letter the specific physical mechanisms which allow
low-n EHOs to emerge are identified by extending the analysis
of Ref. [25] within the infernal model framework. Features of
both external kink and infernal modes are required, viz. vac-
uum between plasma and wall (external kink) and a region of
large pressure gradient and low magnetic shear (infernal). Our
new analytic work, focusses on the linear stability of moder-
ately low-n ideal external-infernal (exfernal) modes with the
inclusion of toroidal effects and toroidal and poloidal flows
(both MHD and diamagnetic). It shows that short wavelength
modes are entirely suppressed. Hence the linear calculations
show that ELM free H-mode regimes are established by ro-
bustly preventing infinitesimally small amplitude short wave-
length modes.

Physical model.— Let us analyse small inverse aspect ratio
tokamak geometry (e = a/Ry < 1 where Ry and a are the ma-
jor and minor radii respectively), with shifted circular toroidal
surfaces. We consider a low-8 = 2uop/B2.(~ &) plasma,
where p is the pressure and B,, the magnetic field strength on
the axis. A right handed straight field line coordinate system
(r, 9, ¢) is introduced where r is a flux label with the dimen-
sions of length, ¥ (counter-clockwise in the poloidal plane)
and ¢ are the poloidal-like and toroidal angles respectively
with contravariant basis vectors (Vr, Vit, V). We assume
that additional effects (i.e. non-static or beyond MHD, e.g
diamagnetic) do not alter to leading order the standard static
equilibrium (whose associated metric tensor coeflicients can
be found in Ref. [26]). The equilibrium magnetic field in the
plasmais B = TV ¢ — Vi x V¢ where ¢ is the poloidal flux.

The plasma is described by the ideal drift-MHD equa-



(m+1)/n I o ]

Figure 1. Example of a model safety factor profile employed in our
analysis. Note the (m + 1)/n resonance at the plasma boundary mim-
icking the separatrix.

tions [27]:

odv+v*-Vv,)=-Vp+JXxXB, (1)
0,B =V x (v x B), 2)
op+v-Vp+IpV.v,=0, 9p+V  -(pv)=0, (@3)

where d, = 8, +v-V, v and v* = m;BxV p/(epB?) (m; is the
ion mass) are the plasma MHD and ion diamagnetic velocities
respectively with v; = v + v™*, p is mass density, J = V x B
the current density (having normalised yy = 1), p the pressure
and I' = 5/ is the adiabatic index. The symbol L indicates
the vector perpendicular projection to the magnetic field, i.e.
v, = B x (v x B)/B?. The Faraday-Ohm’s law has been
approximated within the limit of nearly isobaric surfaces and
small plasma compressibility.

In choosing the equation for the pressure evolution, it has
been implicitly assumed that T; significantly exceeds 7, so
that py = po;. Moreover, by assuming that T, is proportional
to p at equilibrium and that the perturbations of the mass den-
sity and the electron temperature are dominated mainly by
convection (i.e. the v - V term), we obtain that the perturbed
pressure is given by the ion contribution.

The rotational transform profile (denoted with u with g =
1/up) is piecewise continuous [25], constant for 0 < r < rg
and ry < r < r, (r, = (r1 + a)/2), with values u,, and u;
respectively (tqax > p1 = 1/(m/n — 8q)), while u = p;(r1/r)?
for ry < r < ry. The separatrix is modelled by imposing for
r, < r < a anarrow region of high magnetic shear :

(m+Du—n=S[1-(/a)'], 21— oo, 4)

where S is a constant such that u(r,) = u(r) (note that for
A — oo this high shear region becomes infinitesimally narrow
so that we regard the region r; < r < a as shear-free). A vac-
uum region between plasma and the ideally conducting wall
extends from r = a to r = b (the wall thickness is irrelevant).
We refer to the regions 0 < r < r; and a < r < b as the outer
regions, while the region r; < r < a is the pedestal region (the
q profile and the relevant radial positions are shown in Fig. 1).

An equilibrium helical MHD flow (v = 0, vg = wy(r) and
vg = Q(r) [29]) is assumed. We stress that wy is of £ X B

origin. Such a flow is sufficiently weak so that the centrifu-
gal corrections to equilibrium pressure and mass density pro-
files [30] are negligible within the approximations employed
in this work [15]. Equilibrium flow and mass density (pres-
sure) gradients are localised within the pedestal region. Equi-
librium quantities are denoted by the subscript 0 while per-
turbed ones, denoted by a tilde, have a time dependence of the
type e’ (y complex).

Eigenmode equations.— The infernal model [31, 32] as-
sumes the presence of three poloidal Fourier harmonics, one
dominant () coupled to two neighbouring sidebands (m + 1).
Hence we write the perturbed velocity as & = @,,(r)el"” ¢! +
S esl O (P)ELTMII=1] with @, ~ &, (since n is
fixed, we omit to specify the toroidal mode number in writ-
ing the Fourier components). Mode coupling, induced by the
metric oscillation of the Jacobian, is favoured in presence of
large pressure gradients and field line bending weakening (i.e.
weak shear).

In the inner and outer regions, because of field line bend-
ing dominating over inertia and vanishing pressure gradients,
different poloidal Fourier harmonics behave independently ac-
cording to [25, 33] (here { = m,m + 1 and’ = d/dr):

[Peu—ml&] - r@ - Dtu-npe =0, 5

having introduced the Lagrangian-like radial fluid displace-
ment & = ¥, /y, with y, = y + ilwy — inQ [34].

The main difficulty is to derive the eigenmode equation for
the mth harmonic, which contains the inertial contributions
due to E x B and diamagnetic flows. In the pedestal region
we impose the ordering 6g/q ~ € and y/m ~ Q ~ wy ~
w* ~ gwy where w*(r) = v} - Vi and wa = Bux/(Ro +po)
(the Alfvén frequency with B, the magnetic field equilibrium
value on tlle axis). To leading order the I%Vgo projection of
(1) yields BY = 0. From the contravariant radial, poloidal and
toroidal projections of (2) we obtain respectively (\/EBr)g =
ir(Cu — n)ée, L(rvy) + im%, — in¥, = 0 and ¥, + &, = 0.
It follows that (gB"),, = —--(gB"),, and B, ~ B! . We
point out that in case of large radial gradients and poloidal
wave numbers the relations above still hold. The perturbed
pressure is written in terms of ¢ according to p¢ = —pyée+3dpy,
where 6p is the non-convective contribution. In the limit 7; ~
const with 6p small, we have * ~ eVTf x V (:—0) (ng is the
equilibrium numerical density). We takeolarge radial gradients
localised within the narrow pedestal region:

rdIn f/dr> 1, f =&, po,po, 2, wy.

In addition we assume m > 1 (and so n = m/q with g ~ 1).
The equation for the generic radial displacement &, is ob-
tained by applying the operator D = 1/gV¢-V x1/ Bg on the
perturbed momentum equation [35, 36], and then selecting the
¢th Fourier component. Field line bending dominates over in-
ertia in the sidebands equations (modes with poloidal mode
number m + 1), so that additional flow effects play no role in
their corresponding eigenmode equations which read [25]:

’
(rZimfmil) — rliszi + li—Tma,rltmé»:m’ (6)



where L, are constants of integration which are determined
later. The equation for &, is given by the mth harmonic of
the action of D on (1). At leading order a rather lengthy but
straightforward algebra gives (the cylindrical limit proves to
be sufficient):

[Pl + o7 Vo], = i [ (ke - ke,

with K = (yp + imwy)[yp + im(w* + wﬁ)]/wj andyp =y —
inQ having normalised B,, = 1. Let us call Z(¢,,) the rhs of
the equation above. In the incompressible limit V - 9, — 0
and I’ — oo [36-39], assuming V - v;y negligible and writing
Opm+1 from the perturbed B/ | Bo|? projection of Eq. (1), we
eventually get [D(Vp)l, = 2¢*Z(£,) . which embodies the
Glasser-Greene-Johnson inertia enhancement factor [40]. In
deriving the equation above, we assumed wy + w* ~ w; where
wy has weak radial gradients [41]. Finally, with (6¢g/ q)adir ~1
and —2R [)64]2 = a ~ 1 by taking into account only the leading
order of B, and the incompressible part of 5, the action of
D on the rhs of (1) yields the analogous of the lhs of equation
(16) in Ref. [31], computed in the above mentioned limit of
steep radial gradients and large m. Thus collating these results
together and eliminating the sideband displacements &,,.; by
means of (6), the eigenmode equation for the main harmonic
&, in the pedestal region finally reads [25, 31]:

P (08,) - mP0g, +§ ) T =0, )

where Q = (1+2¢%)K/n*+ (8g/¢)*. Equations (5), (6) and (7)
form the basis for our analysis.

Dispersion relation.— We assume that the profiles of equi-
librium mass density, pressure and toroidal rotation are step-
like [25],i.e. f(r)/f(r1) ~ O(rp — 1) with f = pg, po, 2 where
0(x) is the Heaviside step function of argument x. Without
loss of generality (with w* oc py ~ 6(r - r,,)), we choose wy
of the form [42]:

wy(r) = Wgrpo(r — ry)A + wy,

with A = (a — r1)/r, and wg constant where ¢ is the Dirac
delta. Note that fj] wﬂdr/ffl dr = wg + w; where w; has a
weak radial dependence.

Writing symbolically (7) as (Q¢,,) + f(r) = 0 we define
F(r) = f:1 S(dr so that Q¢ + F(r) = C where C is a con-
stant of integration. The function F is bounded, thus dividing
the previous result by Q (supposed non-vanishing) and then
integrating across r, shows that &, is continuous at r,. The
solutions of Eq. (5) intheregion 0 < r <rjanda <r < b
for the dominant mode &,, provide the appropriate boundary
conditions at r; and a, namely &,(r)) = &,(a) = 0 [25, 43].
Thus using the profiles for mass density, pressure, toroidal
and poloidal MHD flows and solving (7) on the left and on
the right of r, with the boundary conditions at r; and a given
above, we obtain to leading order:

emr/rp _ em(2rf [rp=1]Tp)

fﬂl o

em — em(2rf/r,,—1)

with vy = r| forr < r, and ry = a for r > r, where the slowly
varying terms in r have been approximated by setting r ~ r,,.
Note that &, is symmetric about r,,.

To determine the last term on the lhs of (7), first equation
(6) is evaluated at r; and a providing respectively &,,+1(r1)
and &,,.1(a) (both functions of L,). Then, plugging these
expressions into Eq. (6) and integrating from r; to a gives

Emp 2 N
e o fm(rp)%A(—), where 1 = 2po(r1), &, = r,/Ro and

1+m
A® are given by Eq. (16) in Ref. [25] whose sideband depen-
dence is embedded in the coefficients C, = [rd(Iné,,.1)/dr],,
and B, = [rd(Iné&,,11)/dr],.

The quantities C.. are obtained by solving Eq. (5) in the
region 0 < r < r; and thus imposing smooth matching of
the sideband eigenfunctions &+ across r; [25, 32]. The con-
stant B_ is evaluated similarly (the vacuum perturbation obeys
(5) as well) with the replacement r; — a. These have been
computed in Ref. [25] and for large m and small dq they read
Ci=3m+2,C_~m/6—1/4and B_ =~ 2 — 3m (in the latter
expression we approximated (a/ b)?"-2 - 0).

Finally B, is obtained by solving equation (5) (which is
equivalent to (6) for u constant and @ — 0) forr, < r < a
with u given by (4). The solution for &, can be expressed
exactly in terms of the hypergeometric functions [26], so that
forcing &,,41 to be finite at its own resonant surface and taking
the limit A — oo yields:

Empr < (r]a) ™2 + (1 + 2m)(r/a)™,

from which B, = 0. We point out that with an ideally con-
ducting metallic wall directly interfaced with the plasma (i.e.
B, — oo) the driving term A + A is negative implying
stability, reflecting the necessary condition of good plasma-
wall detachment as observed in various machines [4, 5, 11].
Thus in the limit of large m and sufficiently far wall we may

. +) _ m(r,,/a)z’" =) _ 2m(a/rp)2’"
approximate A" = o= T2 Ja and A7) = @ The

m upper boundary for which the approximations hold can be
estimated by requiring ird In&,r/drl,, 2 1 (for the parame-
ters which will be employed in the numerical evaluation of the
growth rate we would take m ~ 40 — 50).

Therefore by taking yp = y — in€)y with Q; = Q(r}), ac-
cording to Refs. [25, 30] integration of (7) across r, yields the
dispersion relation which in the limit g > 1 reads:

y KO wy N m2wgA
AP el B Bt i
nwa WA wy  2Dwy
N (0 N G O W
4De? q* 2Dwy

where A = A® + A® and ® = mcoth[m(l —
r/rp)l =(rdIn&,/drl,,-s with 6 — 0). Hereafter it is un-
derstood that wy is the value of the Alfvén frequency on the
magnetic axis.

By setting wg = w; = 0 we recover the dispersion rela-
tion derived in [25] (note that the only effect of toroidal rota-
tion is to Doppler shift the eigenmode frequency in agreement
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Figure 2. Real (a) and imaginary (b) parts of y evaluated from

Eq. (8) withqg ~ 5, & = ', ri/a = 095, Q/ws = 5% 102,
wifws =3 %1073, B, = 0.3% and 6q = 0.1.

with the requirement that EHOs exist with either sign of the
toroidal rotation frequency [44]). Indeed the first two terms
under the sign of square root are the linear growth rate of
the purely MHD perturbation. The imbalance in the inertial
contribution of the Doppler correction to y due to the com-
bination of poloidal MHD and diamagnetic flows, produces
the last term in the square root of (8). This term, although
small for small m values, increases its amplitude with the
poloidal (or equivalently the toroidal) mode number. Hence
due to its interplay with the pressure (« ) and field line
bending weakening (« dq) driving terms, allows the suppres-
sion of short wavelength perturbations favouring the growth
of low n modes. This is shown in figure 2 where the real
and imaginary parts of y are computed by means of (8) with
reactor relevant parameters. Note that being wg different in
different machines/regimes, a different number of harmonics
can be excited [5, 8]. The E X B shearing rate estimated
as wrg/A ~ wy (order of MHz) is in line with the results
of Ref. [45]. Finally we point out that the wg stabilisation
mechanism is independent of mode coupling. Hence it may
be expected that if a larger number of coupled harmonics is
allowed, with the growth rate driving contribution increasing
linearly with n [7, 20], such a stabilisation stills occurs. If
additional Doppler contributions enter the diamagnetic flow,
stabilisation is nevertheless achieved with the wg term in (8)
being dominant for short wavelength modes.

Conclusions.— In this Letter the excitation mechanism for
low-n EHOs has been identified analytically. Besides the edge
local flattening of the safety factor and local sharp pressure
gradients [25], the short wavelength (viz. high-m) modes sup-
pression is achieved by the combined effect of poloidal MHD
and ion diamagnetic flow with the constraint of a Doppler-like
effect of the ion flow. This approximation has been employed
primarily to keep the algebra manageable. A vacuum gap be-
tween plasma and the metallic wall is necessary, though its
effect is weakened for sufficiently large m and reduced by the
presence of the separatrix. Although highly simplified profiles
for pressure, mass density and equilibrium rotation have been
employed, all features measured experimentally and modelled
numerically have been retrieved within the exfernal frame-
work. These are: (i) the strong dependence of the EHO ap-

pearance on the 2 X B poloidal rotation letting low-n modes
emerge, (ii) the independence of the growth rate upon the sign
of the toroidal flow [17, 19, 44], (iii) the rotation frequency
spacing of the toroidal harmonics close to the plasma toroidal
rotation (if sufficiently large) at the pedestal top [10, 13] and
(iv) the pedestal localised structure of the radial eigenfunction.
Further work is required to extend the analysis of such phe-
nomena with more realistic profiles in a beyond-MHD frame-
work.
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